Universiteit

4 Leiden
The Netherlands

Towards high performance and efficient brain computer interface

character speller : convolutional neural network based methods
Shan, H.

Citation

Shan, H. (2020, February 25). Towards high performance and efficient brain computer
interface character speller : convolutional neural network based methods. Retrieved from
https://hdl.handle.net/1887/85675

Version: Publisher's Version
Licence agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/85675

License:

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/85675

Cover Page

The handle http://hdl.handle.net/1887/85675 holds various files of this Leiden University

dissertation.

Author: Shan, H.

Title: Towards high performance and efficient brain computer interface character speller :
convolutional neural network based methods

Issue Date: 2020-02-25

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/85675
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 2

Background

~ this chapter, to better understand the contributions of this dissertation, we intro-

duce some background information on machine learning, neural networks, Con-

volutional Neural Networks (CNNs), P300 signals, P300 spellers, the performance
assessment of a P300 speller, and the datasets used in this dissertation.

In this dissertation, our proposed methods for P300-based BCls are mainly based
on CNNs. A CNN is a specific kind of a neural network. A neural network is a
specific machine learning model in the machine learning field. Thus, first, we briefly
introduce what machine learning is in Section 2.1. Then, we describe how a neural
network works in Section 2.2. After that, we introduce what a CNN is in Section 2.3.
The introductory text of each of the aforementioned sections is excerpts from well-
known books with small modifications. For example, Section 2.1 is based on [Qiu],
Section 2.2.1 and Section 2.2.2 are based on [Hay94], Section 2.2.3 and Section 2.3
are based on [Niel5].

The aim of this dissertation is to research and develop high performance and effi-
cient P300-based BCI systems. Thus, we also introduce some background information
on P300-based BCIs in Section 2.4.

Finally, in Section 2.5, we describe the datasets used in the dissertation to assess
the performance of our proposed methods for P300-based BCls.

2.1 Machine Learning

Machine learning is a subfield of artificial intelligence. Machine learning is the sci-
ence of getting computers to learn from data in an autonomous manner [Sam67,
M*97].

Let us take an example to show how the machine learning works and also explain
some other terminologies used in the machine learning field. Suppose that now we

15

CHAPTER 2. BACKGROUND

need to select good apples in a fruit market. How does the machine learning works to
select good apples?

First, we takes some apples from the market. We list 3 features: color, shape, and
size of each apple. The color, shape, and size are called the features that are related to
apples. Then, we mark each apple with labels. For example, the label for each apple
can be the label "good" or the label "bad". Labeled features and their corresponding
labels constitute a dataset. Typically, there are two kinds of dataset, i.e., training
dataset and test dataset. A machine learning method learns from the training dataset.
The test dataset is used to assess the performance of this machine learning method.

We use a 3-dimension vector X = [z1, x9, x3] to denote a vector constructed by
the aforementioned apple’s features, where =1, x2, and x3 denote the color, shape, and
size of an apple, respectively. Here X is called a feature vector. We use a 2-dimension
vector y = [y1, y2] to denote a vector constructed by the aforementioned labels for an
apple, where y; denotes the label "good" and yo denotes the label "bad". We use
D to denote a training dataset. D is shown in Equation (2.1), where F' denotes that
there are in total F' apples, which means there are F' feature vectors in the training
dataset; X (i), i € {1, ..., F'} denotes the ith feature vector in the training dataset, and
yW ie {1, ..., F'} denotes the corresponding label for X (@),

D= {(X(l)vy(l))v (X(2),y(2)), - (X(F),y(F))} 2.1)

For the given training dataset D, we want to get a computer to automatically find
a function f (X, #) to build a mapping from the feature vector X to the label y, where
0 is a set of parameters of the function f(-). The function f(X, 6) is called a machine
learning model. By using an algorithm A, we can find a set of parameters 6* that is
able to make the function f(X,6#*) build the mapping from the feature vector X to
the label y from the training dataset D. This process is called learning or training.
The algorithm A used in the learning or training process to find 6* is called a learning
algorithm.

After we find f(X,0*) from the training dataset, when we buy new apples next
time, based on the features (that constitute the feature vector) of the new apples X*,
we can use the aforementioned trained model f (X, #*) to predict the labels (i.e., good
apples or bad apples) for these new apples X *.

To summarize the aforementioned introduction to the machine learning, we show
the workflow of a machine learning method in Figure 2.1. This figure shows that the
input to a machine learning method is a feature vector X, the output of this machine
learning method is the label y. A machine learning model f(X,#) is used in the
machine learning method. By using a learning algorithm A and the training dataset
D, the machine learning method finds a set of parameters 6* that makes the function

16

CHAPTER 2. BACKGROUND

f(X,6%) build the mapping from the feature vector X to the label y. After this, the
machine learning method gets a trained model f(X, 6*). Then, for a new input X*,
the trained model f(X, 0*) can predict a label for this new input X*.

Machine Learning Model
Input Output

X — (X,0) b—> vy

A

p—— A

Training Dataset Learning Algorithm

Figure 2.1: The workflow of machine learning.

2.2 Neural Network

A neural network is a specific machine learning model used in the machine learning
method (introduced in Section 2.1). A neural network is made up of neurons . There-
fore, we first introduce what a neuron is in a neural network in Section 2.2.1. Then,
we describe how neurons constitute a neural network in Section 2.2.2. Finally, we
introduce the learning algorithm used for neural networks.

2.2.1 Neurons

In this section, we introduce how a neuron works. First, we describe the model of a
neuron in Section 2.2.1.1. Then, we introduce some functions used in the model of
the neuron in Section 2.2.1.2.

2.2.1.1 Model of a Neuron

A neuron is an information processing unit which is fundamental to the operation of a
neural network. Figure 2.2 shows the model of a neuron. We call this neuron neuron r
since a neural network is constructed by many neurons (see Figure 2.4 and Figure 2.5
in Section 2.2.2). In Figure 2.2, neuron r takes several signals, namely, i1, 12, ..., i,
as inputs and produces a single output o,.. From this picture, we can see that a neuron
has the following three basic elements:

17

CHAPTER 2. BACKGROUND

1) A set of connecting links. Each of these links is characterized by a weight w;.;,
J € [1,m]. Aninput signal 4; is connected to neuron r by multiplying the weight w;;;

2) An adder. This adder sums the input signals (41, %9, ..., i,,), weighted by the
corresponding weights mentioned above;

3) An activation function. This activation function limits the amplitude of the
output signal o, to be in a certain range. Typically, the range of the output of a neuron
is limited to [0, 1] or [—1, 1].

Bias
Input
Signals br
ll
I Output
2
o()— o,
) Summing Activation
; Function
lm Wrm

Figure 2.2: The model of a neuron.

Figure 2.2 shows that the model of a neuron also includes an externally applied
parameter called bias. The bias is denoted by b, in this model of neuron r. The bias
b, is used to increase or decrease the input of the activation function.

In mathematical terms, we can model neuron 7 by using Equations (2.2), (2.3) and
(2.4), where i1, 12, ..., iy, are the input signals to neuron r; wy1, Wy2, ..., Wrm are the
weights of neuron r; b, is the bias; o(-) is the activation function; and o, is the output
of neuron 7.

U = Y wrji; 22)
j=1

b =ty + b, 2.3)

or = p(ly) (2.4)

18

CHAPTER 2. BACKGROUND

2.2.1.2 Types of Activation Functions

The aforementioned activation function, denoted by (-), defines the output of neuron
r. Here, we introduce some basic activation functions:

1) Threshold Function. The threshold function is given by Equation (2.5), where
©(+) denotes the activation function; and ,- denotes the input to the activation function
©(+), and [, is defined using Equation (2.3).

1 if 1,>0

o) = (2.5)
0 if 1.<0

2) Sigmoid Function. The sigmoid activation function is given by Equation (2.6),
where a is used to control the output of the sigmoid function. Note that the output
of a sigmoid function is in a continuous range [0, 1] while the output of the threshold
function is ether 1 or 0.

1

o(ly) = T cap(—al,)

(2.6)
3) Rectified Linear Unit (ReLU) Function. The ReLLU function is given by Equa-
tion (2.7). ReLU is by far the most commonly used activation function in CNNss.

o(ly) = max(0,1,) (2.7)

4) Softmax Function. The Softmax function is given by Equation (2.8), where p
denotes that there are p neurons in total in a layer of a neural network. The layer of a
neural network is described in Section 2.2.2.

elr

)= =
e(lr) P,

(2.8)

2.2.2 The Architecture of a Neural Network

Neurons constitute a neural network. In this section, we describe the architecture of a
neural network that is constructed by the neurons. For better readability, we simplify
the model of a neuron shown in Figure 2.2 with the graph shown in Figure 2.3. This
means that the graph shown in Figure 2.3 denotes neuron r with input signals 71, i9,

19

CHAPTER 2. BACKGROUND

Inputs
4
Output
(0]
r
lm

Figure 2.3: Architectural graph to model a neuron.

..., ¥m and an output o,. How neuron r works in this graph is given by Equations (2.2),
(2.3) and (2.4) (For details please see Section 2.2.1.1).

In a neural network, the neurons are organized in the form of layers. In the simplest
form of a neural network, we have an input layer of input signals that projects onto an
output layer of neurons. We call this neural network the single-layer neural network.
Here "single-layer" refers to the output layer of the network. We do not count the
input layer of this network because there is no computation performed in the input
layer. Figure 2.4 shows an example of a single-layer neural network. In this example,
this single-layer neural network has four input signals and has one output layer of two
neurons that produce outputs.

Typically, a neural network has more than one layer. Compared with a single-
layer neural network, a neural network with more complex architecture has several
layers of neurons. Such network is called a multi-layer neural network. In addition to
the output layer and the input signals, a multi-layer neural network has one or more
hidden layer of neurons. The function of the hidden layer of neurons is to intervene
between the external input signals and the outputs of the network. By adding one
or more hidden layers for the network, the network is enabled to extract higher-order
features related to the input signals. The ability of extracting higher-order features by
the hidden layers of neurons is particularly valuable when the size of the input layer is
large. Figure 2.5 shows an example of a multi-layer neural network with one hidden
layer and one output layer. In this example, this multi-layer neural network has 4 input
signals, one hidden layer with 3 neurons, and the output layer with 2 neurons. The
input signals are the input to the hidden layer of this network. The output signals of
this hidden layer are the input to the output layer of the network. Typically, the input
to the neurons in each layer of a multi-layer neural network is the output signals of its

20

CHAPTER 2. BACKGROUND

preceding layer only. The neural network shown in Figure 2.5 is also called a fully-
connected neural network in the sense that every node in each layer of the network is
connected to every other node in the adjacent forward layer. Here a node denotes an
input signal or a neuron in the graph shown in this figure.

Figure 2.4: An example of a single-layer neural network.

Figure 2.5: An example of a multi-layer neural network with one hidden layer and one
output layer.

21

CHAPTER 2. BACKGROUND

2.2.3 Learning Process of a Neural Network

As discussed in Section 2.1, when we use a neural network as a machine learning
model, we need to use a learning algorithm to find a set of parameters, i.e., the weights
and biases of all neurons in the neural network, that make this neural network be able
to map input X to label y in the training dataset. However, the learning algorithm is
not able to calculate the perfect weights and biases for a neural network. Instead, the
learning process of a neural network is regarded as an optimization problem, where
the learning algorithm is used to explore the space of possible sets of weights and
biases for the neural network. We use a function to evaluate a candidate solution (i.e.
a set of weights and biases for the neural network). This function is called a cost
function or a loss function. For example, we can define a cost function as given in
Equation (2.9). In this equation, X denotes the input vector in the training dataset
and X is the ith input feature vector in the training dataset. y denotes the desired
output of the network and 39 is the desired output of the network when the input to the
network is X). fxx(-) denotes the neural network. 1V denotes all the weights in the
neural network. B denotes all the biases in the network. F' denotes the total number of
input feature vectors. This loss function is called the Mean Squared Error (MSE) cost
function. From this cost function, we can see that C'(W, B) is non-negative. When
the cost C'(W, B) becomes very small, i.e., C(W, B) is close to 0, fyn (X, W, B) is
approximately equal to y. This means that the learning algorithm has found very good
weights W and biases B such that the neural network with these weights and biases
approximately maps the input of this network X to the desired output of the network
y. In contrast, when the cost C'(W, B) is large, this means that fx (X, W, B) is not
equal to y, showing that our neural network with the weights W and the biases B
cannot map well the input of this network X to the output of the network y. Now, the
cost function that is commonly-used for a neural network is called the cross-entropy
cost function. The cross-entropy cost function is given in Equation (2.10). In this
equation, £ denotes that there are E neurons in the output layer of a neural network.

(%

Y;) denotes the desired output of the jth neuron in the output layer of a neural network

when the input to the network is X . fy N; (X @) W, B) denotes the actual output of

the jth neuron in the output layer of a neural network when the input to the network
is X (),

F
Z — fvn (X9, W, B)|I? (2.9)

E
C(W,B) = Z Dog(fan, (XD, W, B)) + (1= y{)log(1 — fru, (XD, W, B))] (2.10)

ol
HM@

22

CHAPTER 2. BACKGROUND

From the aforementioned description, we can see that the objective of the learning
algorithm is to minimize the cost C'(W, B). More specifically, we seek to find a set
of weights W and biases B that minimize this cost as much as possible. For better
readability, we use C'(v) to denote a cost function. C'(v) can be a function of many
parameters such as v = vy, vo, ..., vp. Suppose C' is a function of just two parame-
ters vy, vo. Figure 2.6 shows an example of function C' with v; and v3. Our object
is to find v1, vo where C achieves its minimum. For the simple function shown in
Figure 2.6, we can use calculus to try to find the minimum analytically. We could
compute derivatives and then try using them to find places where C is an extremum.
However, the cost function of a neural network can have many more parameters and
be much more complex because a neural network contains much more parameters,
i.e., the weights and biases of all neurons in the network. For example, very large
neural networks have cost functions that depend on billions of weights and biases. It
is impossible to use calculus to minimize the cost function.

Figure 2.6: An example of a cost function C with two parameters v; and vs.

To solve the aforementioned minimization problem, we can use a method, called
gradient descent. We use an analogy to explain how the gradient descent method
works to solve this minimization problem. This analogy is shown in Figure 2.7. As
shown in this figure, we can think of our cost function as a kind of a valley and imagine
a ball rolling down the slope of the valley. When the ball reaches the bottom of this
valley, this means we find the minimum of the cost function. Then, the problem comes
to how we make a rule that makes the ball roll down to the bottom of the valley. We
can use the calculus to describe the move of a ball with a small amount Awv; in the vq

23

CHAPTER 2. BACKGROUND

direction and a small amount Aws in the v9 direction by using Equation (2.11). We
need to find Av; and Awv; that make AC negative (negative AC means that the ball is
rolling down into the valley). We define that Av is equal to (Avy, Avg)T as shown in
Equation (2.12), where T’ is the transpose operation that turns row vectors into column
vectors in a matrix. We define that the gradient of C, denoted by s7C, is equal to the
vector of partial derivatives (376;7 g—g)T, as shown in Equation (2.13). With these
definitions, Equation (2.11) can be rewritten to be Equation (2.14). In order to make
AC negative, we can make Av to be equal to —n 57 C as shown in Equation (2.15),
where 7 is a small, positive parameter, called the learning rate. Then, by combing
Equation (2.14) and Equation (2.15), AC = -7 C - vC = —1|| v C||*. Because
|7 C||? > 0and > 0, AC < 0. This means that C will always decrease and never
increase. Thus, we use Equation (2.15) to define the rule of how to move the ball in
the gradient descent algorithm. This means that we use Equation (2.15) to compute a
value Av and then move the position of the ball v to a new position v’ by the amount
of Awv, as shown in Equation (2.16). Then we will use updated rule again to make
another movement of the ball. By keeping doing this, we can decrease C' until we
reach the (approximate) minimum of the cost function C'

\s&:é. "?Zf e

&‘s .

Figure 2.7: The analogy of using gradient descent to minimize a cost function.

AC%8£A01+8£AU2 2.11)
87)1 81)2

24

CHAPTER 2. BACKGROUND

Av = (Avy, Dug)T (2.12)
= (gi, SZ)T (2.13)

AC ~ C - Av (2.14)
Mo=-nyC (2.15)
v—=v=v-nyC (2.16)

The aforementioned discussion describes how the gradient descent method works
when the cost function C has two parameters. When C is a function of h parameters,
i.e., vy, va, ..., Uy, \YC is calculated using Equation (2.17). We repeatedly apply the
rule shown in Equation (2.18) until we reach the (approximate) minimum of the cost
function C.

_9c oc oC

=(=—,—,.. 2.17
87)1’81)2’ 7(91)h ()

vC

v=v=v-nyC (2.18)

In fact, for a neural network, v is constituted by all weights W=wy, wa, ..., wg and
all biases B=b1, bo, ..., by. Therefore, to update the weights of a neural network, we re-
peatedly apply the rule shown in Equation (2.20) to reach the (approximate) minimum
of the cost function C'. In Equation (2.20), sy Cyy is calculated using Equation (2.19).
Also, to update the biases of a neural network, we repeatedly apply the rule shown
in Equation (2.22) to reach the (approximate) minimum of the cost function C'. In
Equation (2.22), \yCp is calculated using Equation (2.21).

25

CHAPTER 2. BACKGROUND

oc aCc aC

= 2.1
W W =W —-nv Cw (2.20)
_,0C oC oC
vCp = (8761’ by’ 8769) (2.21)
B—B =B-nvy(Cp (2.22)

Now, researchers often use the gradient descent method with momentum, which
is called the momentum-based gradient descent method. The momentum technique
modifies the gradient descent method in two ways. Firstly, the momentum technique
introduces a notion of “velocity” for the parameters we optimize. The gradient descent
method changes the “velocity” of the parameters, not (directly) the “position” of the
parameters, and only indirectly affects the “position” of the parameters. Secondly,
the momentum technique introduces a friction term, which can gradually reduce the
“velocity” of the parameters. In mathematical terms, the momentum-based gradient
descent method replaces the updating rule for W (given in Equation (2.20) used in
the gradient descent method without momentum) with a new updating rule given in
Equation (2.23), and (2.24), where V,,, denotes the aforementioned “velocity” for W,
and p denotes the aforementioned friction term and is called the momentum param-
eter. Also, the momentum-based gradient descent method replaces the updating rule
for B (given in Equation (2.22) used in the gradient descent method without momen-
tum) with a new updating rule given in Equation (2.25), and (2.26), where V}, denotes
the aforementioned “velocity” for B.

Vi = Vi = Vo =V Cwr (2.23)
W W =W+V, (2.24)
Vo = Vy =uVy —n v Cp (2.25)

26

CHAPTER 2. BACKGROUND

B— B =B+V, (2.26)

One problem of the learning process of a neural network is called overfitting.
Overfitting happens when a neural network learns the details of the training data to
the extent that it negatively impacts the performance of this neural network on new
data. This means that random fluctuations in the training data is learned by the neural
network. Unfortunately, the learned random fluctuations cannot apply on new data,
thereby negatively impacting the generalizing ability of the network.

In order to reduce the overfitting, one commonly-used technique, called weight
decay, is utilized. The weigh decay technique modifies the updating rule for weights
W and does not change the updating rule for biases B in the gradient descent method.
The gradient descent method with weight decay replace the updating rule for W (given
in Equation (2.20) used in the gradient descent method without weight decay) with
a new updating rule given in Equation (2.27). In Equation (2.27), A is called the
weight decay parameter; F' denotes the total number of input feature vectors and 7 is
the learning rate. The updating rule for B used in the gradient descent method with
weight decay is the same as the updating rule for B (given in Equation (2.22)) used
in the gradient descent method without weight decay.

A
W%W’:(l—%)W—nvCW (2.27)

2.3 Convolutional Neural Network

Convolutional Neural Network (CNN) is a specific kind of neural network. In re-
cent years, CNNs have been the most commonly-used neural networks to recognize
images.

When using a fully-connected neural network (introduced in Section 2.2.2) to rec-
ognize images, the fully-connected neural network has the problem that it uses a large
number of parameters to recognize images. Before introducing this problem, let us
first describe how to use a neural network to recognize images. We take the hand-
written digit recognition as an example of image recognition. The handwritten digit
recognition is to recognize what digit (e.g., 1,3, 6,...) is for an image of a handwritten
digit. From the discussion in Section 2.1 and Section 2.2.3, we can see that when using
the machine learning method to recognize a handwritten digit, we need to develop a
machine learning model. Here, we use a neural network, denoted by fyn (X, W, B),
as a machine learning model, where fy denotes a neural network; W denotes all
the weights in the neural network; B denotes all the biases in the network. X is called

27

CHAPTER 2. BACKGROUND

a tensor and denotes the inputs to the neural network. For example, if X is an image
with 640 x 480 pixels, we call X a (640 x 480) tensor. We train this neural network
fnn(+) with the training dataset that consists of handwritten digits with their corre-
sponding labels (e.g., 1, 3, 6). As introduced in Section 2.2.3, the gradient descent is
used to find the weights TV and biases B that make the neural network fnn (X, W, B)
build the (approximate) mapping from the handwritten digits to the labels. Then, for
a new handwritten digit, the trained neural network can predict a label for this new
handwritten digit.

Up to this point, we have known how to use a neural network to recognize images
of handwritten digits. Now let us introduce the reason of why the fully-connected
neural network has the problem of using a large number of parameters to recognize
images. In the aforementioned example of the handwritten digit recognition, the input
is an image of a handwritten digit. This image is 28 x 28 pixel image. This means that
the number of the input signals in the input layer of a fully-connected neural network
is 784 = 28 x 28. Suppose a simple fully-connected neural network which architec-
ture is a 2-layer network with one hidden layers and one output layer. We suppose
that each hidden layer has 10 neurons and the output layer of this neural network has
10 neurons. The number of parameters (i.e., all weights and biases) of this neural
network is (784 x 10+10) + (10 x 10 + 10) = 7960. Unfortunately, such simple fully-
connected neural network cannot work well to recognize handwritten digits. Suppose
a more complex fully-connected neural network which architecture is a 3-layer net-
work with two hidden layers and one output layer. Each hidden layer of this network
has 50 neurons, and the output layer still has 10 neurons. The number of parameters
of this network is 42290. From this example, we can see that with the increase of
the number of hidden neurons and hidden layers, the number of the parameters of a
fully-connected layer is dramatically increased. This means that when we design a
fully-connected neural network that can be useful for image recognition, the number
of the parameters of such network will be large. The large number of parameters dra-
matically increases the time of training such fully-connected neural network because
in the training process, the gradient descent algorithm will need quite a long time to
find a large number of parameters that make this network (approximately) maps the
handwritten digits to the labels (For details of the training process of a neural network,
please see Section 2.2.3).

To address the aforementioned problem of the fully-connected neural network,
Convolutional Neural Network is proposed to recognize images. The name "Convo-
lutional Neural Network" indicates that this neural network utilizes a mathematical
operation called convolution. We will introduce what the convolution operation is
in Section 2.3.1. Then, we introduce the characteristics of a CNN in Section 2.3.2.
Finally, we introduce the architecture of a CNN in Section 2.3.3.

28

CHAPTER 2. BACKGROUND

2.3.1 The Convolution Operation

The convolution operation is an important operation in analytical mathematics. In this
section, we introduce the 2-dimension convolution operation because the 2-dimension
convolution operation is widely used for image recognition and also used in our pro-
posed CNN-based methods for P300-based BCls in this dissertation.

The 2-dimension convolution operation is defined by Equation (2.28), where ®
denotes the convolution operation. Z, X, and K are 2-dimension matrices. X denotes
the input matrix to the convolution operation; Z denotes the outputs of the convolution
operation; K is called the kernel of the convolution operation. (k1, ko) is called the
kernel size. (s1, s2) is called the stride. In Equation (2.28), Z (4, j) denotes the datum
in the 7th row and the jth column of the matrix Z; X (i, j) denotes the datum in the
ith row and the jth column of the matrix X; and K (m,n) denotes the datum in the
mth row and the nth column of the matrix K.

Z(i,j) = (X @ K)(i,)
k1—1ka—1
- Z Z X((@E—1Ds1+14+m,(j —1)so+14+n)K(m,n) (2.28)

m=0 n=0

2.3.2 The Characteristics of Convolutional Neural Network

A CNN has three characteristics, i.e., the receptive field, the parameter sharing, and
the pooling layers. We introduce these three characteristics in turn with the following.

1) Receptive Field. Firstly, we introduce what a receptive field in a CNN is. We
still take the handwritten digit recognition as an example to describe the receptive
field. When using a CNN to recognize the handwritten digits, the input to a CNN is
a 28 x 28 pixel image. Let us take this input as a 28 x 28 square of input neurons.
The value of each input neuron is the value of the corresponding pixel in the image.
We take a small region of the input neurons to connect each hidden neuron in the first
hidden layer of the CNN. For example, we can take a 5 x 5 region, containing 25 input
neurons that corresponding to 25 input pixels, to connect to each hidden neuron in the
hidden layer of the CNN. The region, which contains several neurons in a layer and is
connected to a neuron in the next layer, is called the receptive field. Each connection
which connects the receptive field with the hidden neuron represents a weight. One
hidden neuron uses one bias. In this way, a hidden neuron is used to learn the features
from a receptive field of input neurons. We then slide the receptive field across the
entire input image. For example, first, the receptive field in the top-left corner of the
input image is connected to the top-left hidden neuron in the first hidden layer. Then,
we slide the receptive field over by one pixel (i.e., by one input neuron) to the right

29

CHAPTER 2. BACKGROUND

to connect to the second hidden neuron in the first hidden layer. For each receptive
field, there is a corresponding hidden neuron connected with this receptive field in
the hidden layer. In this way, we build a hidden layer, and this hidden layer is called a
feature map.

2) Parameter Sharing. Secondly, we introduce the parameter sharing in the
CNN. Here, the parameter denotes the weights and biases used in a CNN. As described
above, each hidden neuron in the hidden layer uses one biases and some wights that
are connected to the corresponding receptive field. The parameter sharing means that
all the neurons in a hidden layer of a CNN use the same weights and bias. The char-
acteristic of parameter sharing in CNN is able to significantly reduce the number of
parameters. Thus, the parameter sharing can solve the problem in the fully-connected
neural networks, i.e., the fully-connected neural networks use a large number of pa-
rameters when used to recognize a image.

3) Pooling Layers. Finally, we introduce the pooling layers in the CNN. Pooling
layers are often used after the convolution layers. The pooling operation in a pooling
layer converts each feature map from the convolution layer into a condensed feature
map by summarizing a region of neurons in the feature map. For example, the pooling
operation, called max-pooling, takes the maximum in a region of neurons as a unit
in the pooling layer. A CNN often uses more than one feature map, and the pooling
operation is applied to each feature map, separately. Thus, if there are 5 feature maps,
the pooling layer will output 5 condensed feature maps.

2.3.3 The Architecture of Convolutional Neural Network

After introducing the characteristics of the CNN, we describe the architecture of a
CNN. The architecture of a CNN consists of three kinds of layers, i.e., convolution
layers, pooling layers and fully-connected layers. A convolution layer performs the
convolution operation introduced in Section 2.3.1. A pooling layer performs the pool-
ing operation described in Section 2.3.2. A fully-connected layer performs the fully-
connected operation shown in Section 2.2.2. Figure 2.8 shows an example of the
architecture of a CNN used to recognize the handwritten digits. In this example, the
input to the CNN is a 28 x 28 pixel image of a handwritten digit. The CNN has one
convolution layer, one pooling layer, and one fully-connected layer. The input to the
convolution layer is 28 x 28 input neurons. The convolution layer outputs 3 feature
maps. These three feature maps are the input to the pooling layer. The pooling layer
apply the pooling operation and outputs 3 condensed feature maps. These condensed
feature maps are the input to the fully-connected layer. This fully-connected layer
has 10 neurons that correspond to the 10 possible labels (e.g., 0, 1, 2, 3, ..., 9) of the
handwritten digits. This fully-connected layer connects each of the 10 neuron with
the condensed feature maps generated from the pooling layer.

30

CHAPTER 2. BACKGROUND

3 Condensed

3 Feature Maps Feature Maps

28 x 28
Input Neurons 10 Neurons
Input Convolution Pooling Fully-Connected
Layer Layer Layer

Figure 2.8: An example of the architecture of a CNN used for the handwritten digit
recognition.

2.4 P300-based Brain Computer Interface

In this dissertation, we focus on P300-based BClIs. The P300 signal is the target sig-
nal used in a P300-based BCI and the P300 speller is the benchmark and the most
commonly-used application of a P300-based BCI. First, we introduce some back-
ground information on the P300 signal and the P300 speller in Section 2.4.1 and Sec-
tion 2.4.2, respectively. Then, we describe the metrics to assess the performance of
the P300 speller in Section 2.4.3.

2.4.1 P300 Signal

Chapman and Bragdon first discovered the P300 signal in 1964 [CB64]. The P300
signal is a kind of an event-related potential (ERP). The P300 signal, recorded in EEG,
occurs with a positive deflection in voltage at a latency about 300ms after a rare stim-
ulus, as shown in Figure 2.9. The P300 signal is also called P3 wave because it is the
third major positive peak in the late sensory and the late positive component [Pic92].

The P300 signal is an endogenous evoked potential because the evoking of a P300
signal does not have any relationship with the physical attributes of a stimulus, but has
a relationship with a subject’s (person’s) reaction to the stimulus. The P300 signal is
usually elicited using the oddball paradigm. In this paradigm, the target stimulus
appears in low probability while the non-target stimulus appears in high probability.

31

CHAPTER 2. BACKGROUND

ol | === P300 Signal | ",
A — NonP300 A
=
o
o
D
£ -10
o}
=

-15}

0 100 200 300 400
Milliseconds After Stimulus

Figure 2.9: P300 signal.

The subject in this paradigm is detecting a rare target stimulus among the non-target
stimuli. The P300 signal is only able to be evoked in the subject’s brain when this
subject detects the rare target stimulus.

The P300 signal is typically measured most strongly by the electrodes covering
the parietal lobe. The amplitude of a P300 signal varies with the rareness of the target
stimulus. The latency of a P300 signal varies with the difficulty of discriminating
the target stimulus from the non-target stimuli. For example, the typical latency of
a P300 signal evoked in a young healthy adult is about 300ms while the latency of
a P300 signal evoked in subjects (persons) with decreased cognitive ability is longer
than 300ms. Due to its reproducibility and ubiquity, the P300 signal is a common
choice for psychological tests in both the clinic and laboratory.

From the aforementioned description of the P300 signal, we can infer when the
subject detects a target stimulus by detecting the evoked P300 signal in the subject’s
brain signals. The detection of P300 signals from brain signals can be considered as
a binary classification problem. There are two classes in this classification problem:
one class corresponds to the presence of a P300 signal within a certain time period
while the second class corresponds to the absence of a P300 signal within the time
period. If we use E to denote a classifier (e.g., a CNN as introduced in Section 2.3) to
classify the P300 signal, and X to denote the subject’s brain signals within a certain
time period, the P300 signal detection process can be expressed as Equation (2.29).
In this equation, P! denotes the probability, predicted by this classifier, of having a
P300 signal in this time period, P° denotes the probability, predicted by this classifier,

32

CHAPTER 2. BACKGROUND

of not having a P300 signal in this time period.

1 if P'>PY

B(X) = { 0 otherwise (2.29)

2.4.2 P300 Speller

Farwell and Donchin developed the first P300-based BCI character speller in 1988
[FD88]. The subject in the experiment is presented with a 6 by 6 character matrix
(see Figure 2.10) and he focuses his attention on a target character he wants to spell.
All rows and columns in this matrix are intensified successively and randomly but
separately. Each row or column intensification lasts for time period ¢;, followed by
a blank time period of the matrix ¢3. Two out of twelve intensifications contain the
target character, i.e., one target row and one target column. As a result, the target
row/column intensification becomes a rare stimulus to the subject. A P300 signal is
then evoked by this rare stimulus. By detecting the P300 signal, we can infer which
row or column the subject is focused on. By combing the row and column positions,
we can infer the target character position. After the inference of one character, the
matrix is blank for time period ¢3 to inform the subject that the current character is
completed and to focus on the next character.

Figure 2.10: P300 speller character matrix.

Assume that one epoch includes 12 intensifications, in which there exist one tar-
get row intensification and one target column intensification. Then, in theory, one
epoch is sufficient to infer one target character. However, in practice, since the P300
signal has a very low Signal to Noise Ratio (SNR) and is also influenced by arti-
facts, one epoch can hardly be sufficient to infer one target character correctly. As a

33

CHAPTER 2. BACKGROUND

result, in practice, experimenters use many epochs to help the subject spell one char-
acter. The detailed calculation for determining the position of the target character is
given in Equations (2.30), (2.31), and (2.32), where P(lz.,j) denotes the probability of
the presence of a P300 signal in the jth intensification and the ith epoch, Sum,;
denotes the sum of the probabilities for the jth intensification when using k epochs,
index ., denotes the column index of the target character in the matrix in Figure 2.10,
and index,q, denotes the row index of the target character. When j € [1,6], j de-
notes a column intensification. When j € [7,12], j denotes a row intensification.
Equation (2.30) cumulates the probabilities of having a P300 signal evoked by inten-
sification j over k epochs. In Equation (2.31), we assign the index of the maximum
Sumy;) to index., when j € [1,6]. This equation finds the index of the column
intensification, with the maximum sum of probabilities, to have evoked a P300 sig-
nal. This index is the column position of the target character when using & epochs.
In Equation (2.32), the row position of the target character when using k epochs is
calculated in the same way as in Equation (2.31). The position of the target character
in the matrix in Figure 2.10 is the coordinate formed by the target row position and
the target column position.

k
1
Sumy =Y P (2.30)
i=1
index.o; = argmaz {Sum;
= argma {Sum;} (2.31)
ndex,ow = argmazx {Sum;
rgma {Sum;)} (2.32)

2.4.3 Performance Assessment of P300 Speller

As indicated in Chapter 1, in this dissertation, we use the P300 speller as the bench-
mark application of a P300-based BCI. As the benchmark application of a P300-based
BCI, we need metrics to assess the performance of the P300 speller. More specifically,
we need metrics to assess the communication accuracy and the communication speed
of the P300 speller. As typically done in related research works for the P300 speller,
we use the character spelling accuracy to assess the communication accuracy of the
P300 speller as well as we use the Information Transfer Rate (ITR) to assess the com-
munication speed of the P300 speller.

To calculate the character spelling accuracy of the P300 speller, we use Equa-
tion (2.33). In this equation, accepqr (1) denotes the character spelling accuracy when
using k epochs for each character (see Section 2.4.2), N denotes the number of

34

CHAPTER 2. BACKGROUND

correctly inferred characters when using k epochs for each character, and S, denotes
the number of all characters.

Nie
ACCchar(k) = ;(k) (2.33)

In addition to using the character spelling accuracy to assess the communication
accuracy of the P300 speller, we also use the Information Transfer Rate (ITR) for
the assessment of the communication speed of the P300 speller. ITR has been the
most commonly applied metric to assess the communication speed of P300-based
BCIs [WW12, LWG16, NRS17, IKV18]. ITR has been introduced by Shannon and
Weaver [SW49]. It is calculated by Equation (2.34) [WRMP98], where acc pqr (1) is
calculated using Equation (2.33) and IV, is the number of classes. Here, we have 36
characters to spell (see Figure 2.10), so N, =36. T}, denotes the time needed to spell
a character when using k epochs. T} is calculated using Equation (2.35), where t1,
t2, and t3 are the time periods described in the first paragraph of Section 2.4.2. For
more detailed explanation of Equation (2.34), please refer to [WRMP9S].

17 char!
60(a(:(56har(k) lOgQ (a’ccch(zr(k)) + (1 - a’ccchar(k)) 10g2(%) + IOgZ(Ncld)) (234)
Ty

ITR;, =

Tk:t3+12><(t1—|—t2)><k 1<k<15 (2.35)

Here, we calculate the theoretical maximum ITR when the datasets described in
Section 2.5 are used in this dissertation because we want to compare the ITR achieved
by our methods with the theoretical maximum ITR. When using the datasets described
in Section 2.5, N;,=36, t1=100ms, t2=75ms, and t3=2.5s (for details please refer to
Section 2.5). The theoretical maximum ITR is achieved when we use the least time
to spell a character and achieve the highest spelling accuracy. The least time to spell
a character means that we use only one epoch to spell a character. i.e., k=1. Thus, the
least time we use to spell a character is T1= 2.5s + 12 x (0.1s+0.075s) = 4.6s. The
highest spelling accuracy is 100% (i.e., accepar(1) = 1) As a result, the theoretical

maximum ITR when using the datasets described in Section 2.5 is %ﬁs(%) bits/min
= 67.43 bits/min.

2.5 Datasets

This dissertation uses three benchmark datasets, namely, BCI Competition II - Data
set IIb [Bla03] as well as BCI Competition III - Data set II Subject A and Subject

35

CHAPTER 2. BACKGROUND

B [Bla08]. Since many methods for P300-based BCIs use these three benchmark
datasets, we can fairly compare the character spelling accuracy and ITR, introduced
in Section 2.4.3, achieved by our CNN-based P300 speller with the character spelling
accuracy and ITR achieved by other state-of-the-art methods for the P300 speller.
Here, we give a short description of the three datasets.

BCI Competition II - Data set IIb and BCI Competition III - Data set II Subject
A and Subject B are provided by the Wadsworth Center, NYS Department of Health.
They are recorded with the BCI2000 platform [SMH™'04], using the P300 speller
described in Section 2.4.2. EEG signals are collected from 64 sensors at a sampling
frequency of 240Hz. One intensification lasts for time period ¢1=100ms, followed by
a blank time period of the matrix ¢2=75ms. The experiment uses 15 epochs for each
character. Each character epoch is represented by 12 sets of signal samples. One set
of signal samples, as shown in Figure 2.11, is a (/V, C) matrix. In this matrix, each
row has N = T, x F (F is the signal sampling frequency) signal samples in the time
period between 0 and T posterior to the beginning of each intensification, and each
column has the signals samples taken at the same time from all C' sensors used in the
EEG headset. After each sequence of 15 epochs, the matrix is blank for time period
t3=2.5s to inform the subject that the current character is completed and to focus on
the next character.

EEG Signals A set of signal samples

N R N X X2 s Xy357 75 Xy

o AN A A AR A A x21 ’ x22 D) x23 PR sz

crce MAAMAAAY AN AA S

e \AAAANANAARN NP ANAS AN -
. NVVAAANAAA~ANS

~ALAANNAN NN

UNTE S}

PNSAANAAAAAAS

7 N A A A

) - XersXeasXess s Xew v

T. time period < >

N=T xF

Figure 2.11: An example of a set of signal samples, where F is the signal sampling
frequency

In BCI Competition II - Data set IIb, there is one subject with separate training
and test datasets. The training dataset has 42 characters and the test dataset has 31
characters. In each character epoch, represented by 12 sets of signal samples, 2 sets
have a P300 signal and 10 sets do not have a P300 signal. So, the training dataset has
42 x 15 x 2 =1260 sets of signal samples labelled “P300”, and there are 42 x 15 x

36

CHAPTER 2. BACKGROUND

10 = 6300 sets labelled “non-P300”. The test dataset has 930 sets of signal samples
labelled “P300 and 4650 sets labelled “non-P300”.

In BCI Competition III - Data set 11, there are two subjects. We call them Subject
A and Subject B. For each subject, the training dataset has 85 characters and the test
dataset has 100 characters. So, the training dataset has 2550 sets of signal samples
labelled “P300” and 12750 sets labelled “non-P300”. The test dataset has 3000 sets
of signal samples labelled “P300” and 15000 sets labelled “non-P300”.

Table 2.1 shows the number of P300s/non-P300s for each dataset. II denotes BCI
Competition II - Data set IIb, III-A denotes BCI Competition III - Data set II Subject
A, and III-B denotes BCI Competition III - Data set II Subject B.

Table 2.1: Number of P300s/non-P300s for each dataset.

Dataset Train Test

P300 non-P300 | P300 non-P300
II 1260 6300 930 4650

II-A | 2550 12750 3000 15000

II1I-B 2550 12750 3000 15000

37

CHAPTER 2. BACKGROUND

38

