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We show experimentally, and explain theoretically, what velocity is needed to break an
elongated droplet entering a microfluidic T-junction. Our experiments on short droplets
confirm previous experimental and theoretical work that shows that the critical velocity for
breakup scales with the inverse of the length of the droplet raised to the fifth power. For long
elongated droplets that have a length about thrice the channel width, we reveal a drastically
different scaling. Taking into account that a long droplet remains squeezed between the
channel walls when it enters a T-junction, such that the gutters in the corners of the channel
are the main route for the continuous phase to flow around the droplet, we developed a
model that explains that the critical velocity for breakup is inversely proportional to the
droplet length. This model for the transition between breaking and nonbreaking droplets is
in excellent agreement with our experiments.

DOI: 10.1103/PhysRevFluids.4.024203

I. INTRODUCTION

Bubbles and droplets of micrometer size are useful for applications in biotechnology, material
synthesis, energy conversion, optofluidics, and medicine [1–5]. They can, for instance, be used to
produce advanced materials such as contrast agents [6], tissue [7], (solid) foams [8], and capsules
for the delivery of pharmaceuticals, nutrients, or fragrances [9–14]. Another interesting application
area is the use of droplets as miniature reaction vessels for high-throughput screening [15–17] to
optimize conditions or biological strains in chemical and biotechnological applications [18–23]. For
almost all of these applications it is important that the behavior of bubbles or droplets in a network
of microchannels is well understood [24]. This paper focuses on the behavior of droplets arriving at
a branching channel, where they may break up.

In a seminal paper, Link et al. [25] addressed the question at what velocity a droplet of a given
length breaks when flowing into a branching channel. For confined systems, the velocity is generally
made dimensionless as the capillary number Ca = μcU/γ , with U the arrival velocity of the droplet,
μc the viscosity of the continuous phase, and γ the interfacial tension. Assuming breakup to occur
through a Rayleigh-Plateau instability, Link et al. [25] showed that, while breakup in unconfined
systems [26,27] is governed by the viscosity contrast λ and the capillary number Ca, breakup under
confinement also depends on the level of confinement characterized by the ratio between the initial
length l0 of the droplet and the width w of the channel. The critical capillary number Cacr at the
transition between breaking and nonbreaking droplets, hence, takes the form Cacr = f (l0/w, λ).
Link et al. [25] validated their theoretical prediction, Cacr = α(l0/πw)[(l0/πw)−2/3 − 1], with
experiments at moderate Ca values (4 × 10−3 � Ca � 0.3), and found good agreement for water
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FIG. 1. (a) Immobile nonwetting droplet trapped inside a T-junction, the incoming continuous phase flows
around the droplet through the gutters in the corners of the channels. (b) Sketch of the top view showing the
shape of a concave droplet; its central part assumes a circle characterized by the neck thickness ds, the radius
R, and the (apparent) angle θ between the droplet and the channel wall.

droplets in hexadecane (λ = 0.33) when using a viscosity-dependent fit constant α = 1. De Menech
[28] confirmed this transition using three-dimensional (3D) simulations in the range 0.03 � Ca �
0.2, and showed that α depends on the viscosity contrast. A crucial feature of the analysis based
on a Rayleigh-Plateau instability is that it predicts that droplets with initial length l0 � πw break,
even if the forces pulling on them become vanishingly small in the limit Ca → 0. This prediction
clearly is at odds, both with the experimental data by Jullien et al. [29] featuring droplets with an
initial length l0 ≈ 5w that do not break, and with what we know about stagnant confined droplets:
the Rayleigh-Plateau instability is suppressed when a droplet touches walls on all sides.

An alternative analysis was developed by Leshansky and Pismen [30], who considered short
quasistatic two-dimensional (2D) droplets, for which setting a Rayleigh-Plateau instability is not
operative. To predict the critical capillary number for breakup, they analyzed for which droplet
shapes the pressure drop over the droplet due to capillarity can be matched with the pressure drop
due to viscous flow of the continuous phase, around the droplet, through the narrow lubricating
film between the droplet and the channel wall. They found Cacr = (l0/aw)−b, with a = 1.3 and
b = 5. If one allows a to be a viscosity and channel-shape-dependent fitting parameter in applying
this 2D theory to 3D experiments, this functional form of the breakup criterion agrees well with
experimental data for short droplets and moderate values of Ca [29,31,32].

An important difference between the mechanisms governing the (steady) shape of short and long
droplets is that short droplets do not remain in contact with all four channel walls when deformed,
while long droplets do. For short droplets, the main path for the continuous phase to flow around
a droplet is the resulting gap between droplet and walls, while so-called “gutters” form the main
path in case of long droplets [see Fig. 1(a)]. To complement Leshansky’s model developed for short
droplets [30], Jullien et al. [29] developed a breakup criterion for long droplets. They postulated
that breakup is inevitable when a droplet maintains contact with all four walls during deformation,
resulting in a criterion that solely depends on λ, not on Ca. As pointed out by the authors, their
purely geometrical definition of breakup overlooks the possibility that the continuous phase may
flow around the droplet along the corners of the microchannel, a key notion to obtain long stable
droplets trapped in a T-junction without breaking. Although Jullien’s breakup criterion seems to
be in reasonable agreement for their limited data range at low Ca, we show in this paper that it is
essential to consider gutter flow, which is most relevant at low Ca [33–35], to capture the breakup-
nonbreakup transition for long droplets.

In this paper, we start by testing the hypothesis that, at sufficient low velocities, droplets get
trapped inside a T-junction while the carrier fluid continuously flows from the main channel, through
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the gutters around the droplet, into the two daughter channels. Although trapping of droplets has
been demonstrated in other types of geometries such as a backward-facing step [36] and so-called
ladders [37,38] and anchors [39], experimental evidence of droplets trapped for the situation shown
in Fig. 1 has so far not been presented. After showing experimental evidence of the existence of
stable, nonbreaking droplets trapped in microfluidic T-junctions, which highlights the importance of
gutter flow at low Ca, we present experiments that (1) confirm the previously found scaling Cacr ∼
(l0/w)−5 for short droplets, which break at moderate Ca, at which gutter flow is negligible, and
(2) reveal a drastically different scaling Cacr ∼ (l0/w)−1 for long droplets, for which the transition
between breaking and nonbreaking occurs at low Ca. In the last part of the paper, we explain this
observed scaling for long droplets with an experimentally validated semiempirical model.

II. EXPERIMENTAL SETUP

The design of our microfluidic device is shown in Fig. 2(a). The inlet channels of water and
oil are, respectively, 450 μm and 300 μm wide. They are connected by a small 100 μm wide and
100 μm long nozzle as shown in the close-up. All channels are 300 μm high, except for the 150 μm
high nozzle. This semi-3D nozzle is shown in the second close-up and enables the formation of
a single droplet, as explained later. The main channel of the T-junction and its side arms have
equal width and height: w = h = 300 μm. The bypass channel around the T-junction minimizes
asymmetries in flow in the two side arms that arise from small differences in dimensions; see Hoang
et al. [40] for a detailed explanation.

Fabrication of the microfluidic device is done using standard soft lithography techniques. In
short, we spin coat a 150 μm thick layer of photoresist (SU-8 2100) on a silicon wafer and expose
it through a transparency with the device design shown in Fig. 2(a). Before developing this layer,
we spin coat a second 150 μm thick layer of photoresist on top and expose it through a second
transparency. The only difference between the transparencies is that the small connection between
the water and oil inlet is nontransparent on the second one. After developing the wafer, all features
are 300 μm high, except for the connection between the water and oil channel, which is 150 μm high
and forms the nozzle. We create a PDMS device from this wafer using a standard PDMS replication
method and bond the device on a PDMS-coated glass slide. After bonding, we coat the channels by
injecting a commercial Aquapel® solution in the channels and incubating them for at least 1 min,
then rinsing them with FC-3823 oil, and drying them with pressurized air. After coating, oil fully
wets the walls, and we do not observe direct contact between the walls and the water droplet in the
form of dewetting patterns or contact lines as reported for partially wetting systems. We do note
that the coating deteriorates over time, and, hence, it is important to perform the experiments within
∼12 h.

The working fluids are milliQ water as the disperse phase and perfluorodecalin as the continuous
phase. The perfluorodecalin solution was stabilized using 10 wt% 1H,1H,2H,2H- perfluoro-1-
octanol, which reduces the interfacial tension and enhances wetting of the walls by the oil. This
solution has a viscosity of μc = 7.2 mPas such that the viscosity contrast λ = μd/μc = 0.14. The
oil-water interfacial tension is γ = 17.9 mN/m. As we perform a measurement series with one and
the same droplet, we note that it is important to presaturate the oil phase with water before use, to
make the decrease in droplet volume due to dissolution negligible.

Imaging is done using a Teledyne Dalsa Falcon 2 12M (4096 × 3072 pixels) camera in
combination with a Teledyne X64 Xcelera-CL+ PX8 Full camera link frame grabber. The camera is
mounted on an internally illuminated Zeiss Axiovert S100 microscope. The images taken with this
camera through a 5× microscope objective have a spatial resolution of 342 pixels over the 300 μm
wide channels, such that the droplet shape, characterized by the steady neck thickness ds and the
apparent contact angle θ , can be accurately measured. The angle is determined by fitting a circle
through the interface, which provides the radius R and the location where the circle intersects with
the channel wall [see Fig. 1(b)], from which θ is calculated.
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FIG. 2. (a) Device design showing two separate inlets for oil and water, the semi-3D nozzle used to form
a single droplet of a given length, a T-junction in which the droplet either breaks or deforms until it reaches a
steady shape, and a bypass surrounding the T-junction to minimize asymmetries in the flow in the two branches
of the T-junction. (b) Three frames illustrating the formation of a single droplet on demand. (c) Typical droplet
breakup experiment in which a droplet is pushed into the T-junction at relatively low velocity and reaches a
steady shape (bottom left), then is repeatedly withdrawn into the feed channel and pushed into the T-junction
at higher velocity, until the droplet breaks (bottom right).

Our setup differs from setups previously reported in literature [25,29,40–43] for droplet breakup
studies in an important way: we produce a single droplet and study how it breaks or reaches a steady
shape in the T-junction. We note that studying steady shapes might not be possible in systems that
produce a continuous stream of droplets, as a subsequent droplet can enter the T-junction before the
preceding droplet reaches its steady shape.

The formation of a single droplet on demand is done using a Fluigent MFCS-4C 25/1000 mbar
pressure flow controller with which the pressures at the oil and water inlet can be precisely
controlled and rapidly changed. The diameter of the tubing connecting the reservoirs to the chip
was chosen such that the pressure drop over the chip itself is negligible. The oil flow rate thus is
directly proportional to the pressure in the reservoir, with the hydrodynamic resistance of the tube as
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the proportionality constant. This design hence makes the results described in this work independent
of the fluid control system used (flow rate controlled versus pressure controlled).

The procedure to form a single water droplet is as follows: we adjust the pressure in the reservoir
containing the oil to a value such that the oil stops flowing, while the pressure in the reservoir
containing the water is adjusted such that the oil-water interface is pushed against the nozzle
[Fig. 2(b), left]. We then increase the pressure of the water reservoir for a specified time �t such
that the water flows into the main channel [Fig. 2(b), middle], after which we successively reduce
the pressure in the water reservoir and increase the pressure in the oil reservoir such that a droplet
pinches off in the main channel. The interface in the water inlet channel is then again at rest and
pushed against the nozzle [Fig. 2(b), right]. By varying the filling time �t , droplets of different
lengths can be produced. After their formation, their velocity is controlled by adjusting the pressure
in oil reservoir to the desired value. In this way, we can precisely and independently control the
length and velocity of the droplets.

A typical measurement series on droplet deformation and breakup is shown in Fig. 2(c). After
the formation of a single droplet, we begin by setting the pressure in the oil reservoir to a relatively
low value and shoot a movie of the droplet entering the T-junction at a low speed and reaching a
steady shape (bottom left). We then lower the pressure in the oil reservoir to withdraw the droplet
into the feed channel, and stop withdrawal when the droplet is back near the nozzle. Withdrawal is
possible with this system when placing the fluid reservoirs lower than the outflow of the microfluidic
device, such that setting the gauge pressure in the reservoirs to zero results in back flow due to the
hydrostatic head. We then increase the pressure in the oil reservoir, such that the droplet enters the T-
junction for a second time, now at a higher velocity. We confirm that the distance between nozzle and
T-junction is sufficient for the droplet to reach a steady velocity U before reentering the T-junction.
We use the velocity of the droplet as measured just before it enters the T-junction to calculate the
capillary number, because the the velocity difference between the droplet and the continuous phase
(qin/hw) that pushes it is just a few percent [44–46] for λ � 1, l0/w � 2, and the range of Ca studied
here, and hence can be ignored. Repeating this procedure, we measure the steady shapes of a droplet
of a given length at increasing values of Ca up to the value where the droplet breaks (bottom right).
After establishing the critical Ca (Cacr) for the first time, we repeat the procedure, now with smaller
increases in Ca to refine the critical Ca. We made use of the pressure control system that allows the
withdrawal of the droplet after breakup, such that the two daughter droplets can be merged, and the
same droplet can be used again.

III. SCALING OF THE CRITICAL CAPILLARY NUMBER AT LOW Ca

We start by highlighting the presence of gutter flows at low Ca. The images in the bottom
row of Fig. 2(c) show experimental evidence of a stable, nonbreaking water droplet trapped in
a T-junction. While this droplet seems to visually obstruct the channel on microscopy images,
the continuous phase continuously flows around it through the gutters without breaking it. This
observation immediately shows that the purely geometric breakup criterion postulated by Jullien
et al. [29] needs revision. Before addressing how the flow through the gutters leads to the scaling of
the transition between breaking and nonbreaking long droplets at low Ca, we first experimentally
confirm the previously found scaling Cacr ∼ (l0/w)−5 for moderate Ca, at which gutter flow is
negligible.

Figure 3 shows whether a droplet of given length and speed breaks, with nonbreaking droplets
in blue squares, and breaking droplets in red circles. We have done few experiments for short
droplets (l0/w < 3), only to reproduce what others have found: their breakup is well described
by the Cacr ∼ (l0/w)−5 scaling (solid line). For long droplets with the transition between breaking
and nonbreaking occurring at low Ca, however, the transition strongly deviates from this scaling.
The breakup map in Fig. 3 reveals that the scaling tends to Cacr ∼ (l0/w)−1 for low Ca, which is in
excellent agreement with the model [Eq. (9), dashed line] presented next.
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FIG. 3. Breakup map of Ca versus the dimensionless length l0/w showing nonbreaking droplets in blue
squares, and breaking droplets in red circles for a viscosity contrast λ = μd/μc = 0.14. For the shortest
droplets (l0/w < 3), the data set confirms Leshansky’s theory, l0/w = aCa−1/5

cr , with fitting constant a = 0.9.
For long droplets, the scaling of the transition line is significantly different and well captured by the model
developed here [Eq. (9), with constants c1 = 2 × 2.6 × 10−4 and c2 = 0.25]. The triangle shows that the
scaling predicted with Eq. (9) tends to Cacr ∼ (l0/w)−1 for the lowest values of Ca. The overlap between
breaking and nonbreaking data in the transition zone is attributed to fluctuations present in the experiments, for
example, in the pressure that drives the continuous phase.

IV. THEORETICAL BREAKUP CRITERION FOR LONG DROPLETS

A. Momentum balance over the gutters of a trapped droplet

We consider a nonwetting droplet trapped inside a T-junction [see Fig. 1(b)] and develop a model
for the quasistatic shape of long droplets using an approach similar in nature to the one developed
by Leshansky and Pismen [30] for short droplets. In our quasisteady-state analysis, the continuous
phase flows around the droplet through the gutters, and we ignore the much smaller flow through the
flat films between these gutters. The difference in curvature at the center and the fronts of the droplet
results in a pressure difference, p1 − p2. This difference due to capillarity balances the viscous
pressure drop over the gutters. Considering the interface of the droplet inside the T-junction, and
assuming an equilibrium shape with curvature κ , the pressure difference between the inside and
outside of the droplet is given by the Laplace law according to pd − p1 = γ κ . For T-junctions with
h � w, the interface is squeezed between the top and bottom wall such that the out-of-plane radius
of curvature approximately equals h/2. For a concave interface [Fig. 1(b)], the in-plane radius of
curvature equals −R. Hence, pd − p1 = γ (2/h − 1/R). The two fronts of the droplet are confined
by the top, bottom, and side walls such that the two radii of curvature are h/2 and w/2, hence
pd − p2 = γ (2/h + 2/w). We neglect viscous losses due to flow inside the droplet with respect to
viscous losses due to flow through the gutters, because the area for the flow of the more viscous
continuous phase through the gutters is much smaller than the area for the flow of the less viscous
dispersed phase inside the droplet [47]. The pressure inside the droplet is therefore taken uniform,
such that the pressure drop over the gutters becomes

p1 − p2 = γ

(
2

w
+ 1

R

)
. (1)
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The viscous pressure drop, p1 − p2, over the gutters can be described as [48]

p1 − p2 = Cμ

1 − π/4

L

R4
g

qin

4
(2)

with qin the volumetric flow rate of the continuous phase, Rg and L the radius and length of a
gutter [see Fig. 1(b)], and C a constant. For moderate deformations of the droplet, the droplet is
separated by the top and bottom wall by thin films such that the incoming continuous phase primarily
flows around the droplet through the four gutters that are in direct contact with the feed channel
[49]. Based on this finding, we approximate the flow rate through a single gutter as qin/4. For
static droplets in straight rectangular channels with an aspect ratio h/w � 1, Wong, Morris, and
Radke [50] showed that the radius Rg depends on the aspect ratio according to (Rg/h)−1 = f −1 =
1 + h/w + [(1 − h/w)2 + πh/w]1/2. In this work, we consider a square cross section, for which
f ≈ 0.27. We assume that the cross sectional area of a gutter, (1 − π/4)R2

g, does not vary along the
length of the gutter and that it is independent of the capillary number. This is in sharp contrast to the
cross-sectional area of the gap that forms when deforming a short droplet [30], which does depend
on the capillary number.

Balancing the pressure drops, and turning to dimensionless variables where all lengths are in
units of w (also in the figures to come), the momentum balance over the gutters of a trapped droplet
becomes

2 + 1/R = 4

c1
LCa (3)

with Ca = μqin/γ hw and c1 = 16(1 − π/4) f 4h3/C as a constant that characterizes the viscous
resistance in the gutters, which we determine next.

B. Friction factor for the gutters

We now relate the pressure gradient and the flux through the gutters to determine c1 using Eq. (3).
Although 1/R is small for most flow rates, we can omit this unknown term by considering exactly
that flow rate for which a droplet of given length appears undeformed [see Fig. 4(a), bottom left]
such that 1/R = 0 (and ds = 1). In that case, the gutter extends all the way from the junction to
the caps. Decomposing the tip-to-tip length l0 in (1) two curved fronts, each of length 1/2, (2) two
gutters, each of length L, and (3) the width of the feed channel, 1, we find L = l0/2 − 1. Hence,
Eq. (3) immediately gives

Ca0 = c1

2
(l0/2 − 1)−1 (4)

with Ca0 the capillary number for undeformed trapped droplets.
We performed experiments in which we measured the steady neck thickness for a wide range of

Ca and l0. Examples showing how the neck thickness changes with increasing Ca for a long droplet
(l0 = 10.0) are shown in Fig. 4(a). Plotting the neck thickness ds versus Ca and interpolating to
ds = 1 for which the droplet appears undeformed, as illustrated in Fig. 4(b), gives a precise estimate
of Ca0. Determining Ca0 for a wide range of droplet lengths (2.3 � l0 � 13.1) and plotting Ca0

versus (l0/2 − 1)−1, we find the expected linear relation as shown in Fig. 4(c), from which we
obtained the proportionality constant c1/2 = 2.6 × 10−4. We compare this experimental value with
the theoretical estimate c1/2 = (8 − 2π ) f 4h3/C = 9.1 × 10−5, using f = 0.27, h = 1 for square
channels, and C = 93.93 as calculated by Ransohoff and Radke [48]. This latter value was derived
for a no-shear boundary condition at the interface and hence may be higher in our liquid-liquid
experiments, but it certainly does not exceed a value of 248.48 derived for a no-slip boundary
condition. The here observed lower resistance is consistent with earlier observations [51]. The
theoretical value holds for gutters around static droplets, whereas under flowing conditions (1) a
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l 0

FIG. 4. (a) Steady droplet shapes for a long droplet (l0 = 10.0) at increasing values of the capillary number.
(b) Steady neck thickness as a function of Ca. The capillary number Ca0 corresponding to an undeformed
droplet was determined as illustrated. (c) Log-log plot showing the expected linear dependence of Ca0 on
(l0/2 − 1)−1.

lubricating film connects the gutters and (2) the fluid in those films drains towards the gutters, that
grow as a result [52]. Both phenomena increase the gutter size and lower the resistance to flow.

C. Equilibrium shape of concave droplets

For a concavely deformed droplet, we describe the 2D projection of the central part of the droplet
interface in the T-junction with a circular arc. This shape is fully characterized by two parameters,
for example, the radius R and the angle θ [Fig. 1(b)]. To predict the shape of the droplet using the
momentum balance [Eq. (3)], we, hence, need to establish additional relations between ds, L, θ ,
and R.

The circular description of the central part of the droplet directly relates R, θ , and ds through

R = (1 − ds)/(1 − cos θ ). (5)

An expression for the gutter length, L, follows from equating the volume of a droplet
trapped inside the T-junction to the volume of the droplet before it enters the T-junction. We
approximate the 2D projection of the droplet before it enters the T-junction with two half
circles with dimensionless radius 1/2, connected by a rectangular body of dimensionless length
l0 − 1, and then calculate the dimensionless volume V by extruding the dimensionless area
π/4 + (l0 − 1) over the dimensionless height of the channel. Hence, V = (π/4 + l0 − 1)h. This
simplified description of the volume is most accurate for long droplets (accurate within 10% for
L � 8) and accurate within 15% for the shortest droplets (L = 3) considered in this work [53].
Using a similar approach, we find V ≈ [π/4 + 2L + 2R sin θ − R2(θ − sin θ cos θ )]h for a concave
droplet inside the T-junction. Equating these two volumes results in an expression for the gutter

024203-8



BREAKUP OF ELONGATED DROPLETS IN MICROFLUIDIC …

FIG. 5. Inset: Apparent contact angle of equilibrium droplets as a function of the capillary number for
different droplet lengths. Main figure: All lines collapse in a plot of θ versus (Ca − Ca0)/Ca0.

length:

2L = (l0 − 1) − 2R sin θ + R2(θ − sin θ cos θ ). (6)

The remaining question that needs to be addressed, before we can predict the equilibrium shape
of a droplet entering the T-junction at a given speed and length, is how the angle θ depends on these
parameters. We obtained this relation experimentally by measuring the apparent contact angles and
plotting them against Ca for droplets of different lengths in the inset of Fig. 5. The data show that
θ = 0 for a finite value Ca = Ca0. Furthermore, the dependence of θ on Ca appears to be linear.
It should be noted, though, that the maximum observed angle is below 0.25, such that nonlinear
effects, when present, are hard to detect. Knowing that the angle equals zero for Ca = Ca0, the
angle likely depends on the difference Ca − Ca0. We indeed find that the data for different droplet
lengths collapse on a straight line when plotting θ versus the normalized difference (Ca − Ca0)/Ca0

as shown in the main graph of Fig. 5, although with a slight deviation for l0 = 10. Based on this
experimental data set, we use the empirical relation

θ = c2
Ca − Ca0

Ca0
(7)

with fitting constant c2 ≈ 0.25. The universality of this constant, together with the theoretical
foundation of this empirical relation, remains to be established in future work.

How the steady shape of a droplet depends on its speeds and initial length is now fully captured
by Eqs. (3)–(7). Solving this set (numerically) for ds, we find good agreement between experimental
data (symbols) and this model (solid lines) as shown in Fig. 6, where we used the values of c1 and
c2 as established before.

In the last part of the paper, we provide the theoretical foundation for the scaling of the
experimentally observed transition line Cacr ∝ l−1

0 . To this end, it is helpful to first introduce three
simplifications that enable us to analytically derive this relation from the full model [Eqs. (3)–(7)]
and to show the validity of these simplifications. The first simplification is to neglect the 1/R term
in Eq. (3), justified by the observation that in all our experiments with long droplets, we have seen
that 1/R � 2. This is not surprising: critical capillary numbers are much smaller for long droplets
than for short droplets, such that surface tension can better resist a change in curvature in the center.
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FIG. 6. The steady neck thickness of concave droplets of three different initial lengths as a function of
the capillary number. The experimental data (symbols) agree well with the full theoretical model [solid lines,
Eqs. (3)–(7)] and with the simplified model [dashed lines, Eq. (8)], c1 = 2 × 2.6 × 10−4, c2 = 0.25.

Two additional simplifications are based on the observation that angles are generally small (θ � 1)
such that (1) the term containing θ − sin θ cos θ = θ3 + O(θ5) in Eq. (6) can be neglected and
(2) the term (1 − cos θ )/2 sin θ [obtained after elimination of R by substitution of Eq. (5) in Eq. (6)
and rearranging the resulting equation to express ds in terms of the other variables] can be expanded
to θ/4 + O(θ3). Using these simplifications, and dropping the O(θ2) and higher order terms, the
full model reduces to

ds = 1 − c2

4c1
Ca(l0 − 2 − c1Ca−1)(l0 − 1 − c1Ca−1). (8)

This simplified model description is also plotted in Fig. 6 as the dashed lines and shows good
agreement with the full model, supporting the validity of the simplifications and Eq. (8).

D. Breakup transition

Being able to predict the equilibrium shape of concave droplets trapped in a T-junction for a given
combination of Ca and l0 using the full [Eqs. (3)–(7)] and simplified model [Eq. (8)], we are close
to predicting the transition between breaking and nonbreaking droplets. The remaining question is
what the maximum deformation is before a droplet breaks. As it turns out, there exists a critical
neck thickness, dsc, below which it is not possible to obtain a steady droplet shape. In contrast to
the finding that dsc = 0.5 for short 2D droplets [30], our experiments in a 3D T-junction with h = 1
show that the critical neck thickness is significantly larger. Based on the last data point in each data
set in Fig. 6, we see that the critical neck thickness is roughly independent of the initial droplet
length and equal to dsc ≈ 0.85. How much the neck of a droplet can be deformed in the junction
before it autonomously breaks is known to depend on the level of confinement [49], and we hence
expect the value of dsc to be different for junctions with other aspect ratios.

The transition between breaking and nonbreaking droplets can now be predicted. For a droplet
of a given length, l0, the neck thickness reaches the critical neck thickness at the critical capillary
number. Substituting ds = dsc and Ca = Cacr in Eq. (8) and rewriting it in the form l0 = f (Cacr ),
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FIG. 7. Steady neck thickness as a function of Ca, for two relatively short droplets. (a) A droplet with
length l0 = 3.6 fully spans the channel width up to the critical capillary number at which it breaks, with its
shape consistent with the one assumed in our model. (b) A shorter droplet with initial length l0 = 2.8 is no
longer fully squeezed between the walls; before reaching the critical capillary number for breakup, a “tunnel”
opens as shown in the right most picture; note that this picture is the only nonequilibrium shape, and the droplet
moved into in the right branch immediately after taking the image.

we find the transition line

l0 = 3

2
+ c1Ca−1

cr + 1

2

[
1 + 16

c2
c1Ca−1

cr (1 − dsc)

]1/2

≈ 3

2
+ c1Ca−1

cr +
[

4c1

c2
(1 − dsc)

]1/2

Ca−1/2
cr . (9)

This relation shows that for Ca � c1c2/4(1 − dsc) ≈ 10−4 the droplet length at the transition
between breaking and nonbreaking droplets scales as l0 ∝ Ca−1

cr , insensitive to the exact values of
dsc and c2. As shown in Fig. 3, this transition line (dashed) agrees well with the experimental data
for long droplets and low Ca and shows that the slope of the predicted transition line is already close
to −1 in the log-log plot for Ca = 10−4 and further approaches a slope of −1 for lower Ca. Good
agreement is observed for droplets longer than about l0 > 3. This is in line with the observation that
such droplets take the shape assumed in our model up to the critical capillary number, as shown
in Fig. 7(a). Shorter droplets close to the critical point have a shape that deviates from the model
shape, as their volume simply does not permit them to fully span the channel width during their
compression; see Fig. 7(b). Our model, hence, complements Leshansky’s model [30], for droplets
longer than roughly thrice the channel width.

We conclude this section by noting that this paper is entirely about the breakup-nonbreakup
transition. At this transition, long droplets, both breaking and nonbreaking, appear to visually
obstruct the channel on microscopy images and can thus be classified as “nonbreaking with
obstruction” and “breaking with obstruction.” Away from the transition, breaking droplets can be
further classified as “breaking with obstruction” and “breaking without obstruction.” The boundary
between these different types of breakup is beyond the scope of the present work and is described
by Jullien et al. [29] and Leshansky et al. [54] for moderate Ca.

V. CONCLUSIONS

For short droplets that break at moderate values of the capillary number, our experiments show
that the transition between breaking and nonbreaking droplets is well captured by Leshansky’s scal-
ing relation developed for short droplets [30]. Expressed in the two most important dimensionless
parameters, the nondimensional length l0 and speed Ca, this scaling relation reads l0 ∝ Ca−5

cr . For
long droplets where the transition takes place at much lower values of Ca, our experiments reveal
a drastically different scaling: l0 ∝ Ca−1

cr . This observed scaling is in excellent agreement with our
theoretical model, which takes into account that long droplets remain squeezed between the channel
walls when they enter a T-junction, such that the gutters in the corners of the channel are the main
route for the continuous phase to flow around the droplet. Experimental observations show that
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this assumption is satisfied for droplets longer than roughly thrice the width of the channel, which
explains why our model describes the experimentally found transition line well for l0 > 3.

The insights of this work may be useful in other fields of research as well, for instance, in
the design of multiphase flow distributors for aliquoting samples in analytical applications [55]
and for parallelizing microreactors [40,56]. While these distributors are typically based on simple
structures such as the T-junction as considered in this work, the insights into the critical velocity
to break droplets into smaller pieces may also be useful in applications featuring more complicated
geometries, such as the pore structures in which so-called ganglia may get trapped during enhanced
oil recovery.
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