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In this thesis, the consequences of PD were studied using advanced approaches in 
neuroimaging, including structural as well as functional connectivity networks, 
examination of the role of aging in white matter degeneration in PD, and the use 
of machine learning classification models. Our main findings are summarized and 
discussed in the next paragraphs of this chapter, followed by possible directions 
for future research. 
 
Summary 
Chapter 1 is the introduction to this thesis. In chapter 2, we investigated the 
integrity of nine standardized structural covariance networks (SCNs) in relation to 
clinical severity of PD (Hafkemeijer et al., 2014). An SCN is based on 
interdependent regions of grey matter density. We found that two out of nine 
networks showed atrophy and a loss of integrity. We identified atrophy and loss of 
integrity in the anterior and posterior cingulate networks in PD patients. 
Abnormalities of both networks were associated with predominantly non-
dopaminergic features, specifically cognition and excessive daytime sleepiness. 
Our findings suggest that (components of) the cingulate networks display a specific 
vulnerability to the pathobiology of PD and may operate as interfaces between 
networks involved in cognition and alertness.   
 
DLB and PD are considered subtypes of the alpha-synucleinopathy spectrum that 
show similar and dissimilar clinical and morphological features. In chapter 3, we 
used the same technique as in chapter 2 (SCNs) to further our understanding of 
brain grey matter abnormalities that might differentiate PD and DLB more clearly, 
combined with voxel-based morphometry, volumetric measures and vertex-based 
shape analysis. This study showed atrophy of the hippocampus and 
parahippocampal gyrus in DLB compared with PD patients, with a differential 
involvement of the head and body of the hippocampus. Moreover, integrity of the 
posterior cingulate network, which also comprises (para)hippocampal regions, was 
significantly lower in DLB. The findings of this study show that regional 
hippocampal differences between DLB and PD may be important in the distinction 
between the two disorders.  
 
As we identified a loss of integrity and atrophy beyond the strong effects of aging 
in two SNCs (see chapter 2 for explanation), we hypothesized that there may be an 
interaction effect of age and disease presence on white matter integrity in PD and 
this was addressed in chapter 4. White matter is especially prone to the effects of 
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aging, and it is increasingly recognized that white matter is already affected in early 
stages of PD. We found a similar age-related decline of white matter integrity for 
PD patients and healthy control subjects in this study, but PD patients had more 
white matter hyperintensities (WMHs) than expected for their age. The excess of 
WMHs was partly located in periventricular and deep frontal white matter of PD 
patients, and was, besides age, related to visuospatial functioning and postural 
instability and gait difficulty. Global microstructural integrity of the normal 
appearing white matter did not differ between patients and healthy control 
subjects, suggesting that PD-specific changes do not exceed normal age-
associated change in white matter without lesions. 
 
In chapter 5, we studied PD-related changes of the brain with network approaches 
again, but with a different method. We used a novel graph analytic approach in 
functional imaging (eigenvector centrality mapping; ECM), to examine changes in 
functional brain connectivity architecture on a whole brain network level in patients 
with PD. We found that frontoparietal regions display a stronger connectivity to 
the whole-brain network function in PD patients compared with healthy control 
subjects, while a decreased connectivity was found for frontal and occipital areas 
of the brain. Additionally, we used eight standardized resting-state subnetworks of 
the brain, which pointed at predominantly increased functional connectivity within 
the sensorimotor system and visual networks. Comparing both approaches 
highlighted altered functional connectivity in highly connected (hub) regions, 
particularly in the posterior cingulate cortex and precuneus, which may account for 
the distributed abnormalities across the whole brain network architecture in PD 
patients. The regional altered functional connectivity was not related to clinical 
measures in this study, indicating that changes on the level of functional 
connectivity architecture of the brain are not necessarily associated with clinical 
measures.  
 
In chapter 6, we explored the use of machine learning techniques in combination 
with resting-state fMRI data to differentiate between PD patients and 
healthy control subjects at an individual level. We computed functional connectivity 
matrices and dynamics for full and partial correlations, resulting in four feature 
types, which have been used separately as well as combined in a cross-validated 
elastic net regularized logistic regression. We calculated the area under the curve 
(AUC) to determine classification performance. The AUC values ranged between 
0.752 and 0.858. The highest values were found for partial correlation functional 
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connectivity dynamics. We also investigated whether particular clinical features 
contributed to the individual classification scores of PD patients and no 
associations were found. We showed that it is possible to achieve moderate to 
good PD classification using elastic net regularized logistic regression combined 
with resting-state fMRI data, in particular with the use of functional connectivity 
dynamics. 
 
Concluding remarks 
Structural and functional connectivity 
Chapter 2, 3 and 5 in this thesis showed that network approaches provide valuable 
insights in the structural and functional brain architecture of patients with PD. It is 
hypothesized that neurodegenerative diseases show a selective, network-driven 
neuronal vulnerability (Seeley et al., 2009). The findings in chapter 2 and 3 showed 
specific structural network degeneration in PD and DLB, namely degeneration of 
the anterior and posterior cingulate network. The anterior cingulate network shows 
spatial overlap with a network described in a previous study that identified a 
structural network that was also degenerated in PD (Zeighami et al., 2015). The 
cortical regions in this network included the anterior cingulate cortex as well 
(Zeighami et al., 2015). Another study used this network in their analysis of 
subtypes with “mild motor-predominant”, “diffuse malignant” and “intermediate” 
PD. This study showed more pronounced atrophy in the anterior cingulate cortex 
in “diffuse malignant” PD patients compared with the other two subtypes 
(Fereshtehnejad et al., 2017). These findings indicate that the cingulate cortex is 
particularly vulnerable in PD, and that the changes in the networks in which the 
cingulate cortex is involved, relate to disease progression in PD.  
 
Further we found regionally altered functional connectivity in the precuneus and 
posterior cingulate cortex, which are important regions of the posterior cingulate 
structural connectivity network (chapter 5). The precuneus and posterior cingulate 
cortex are key nodes in the default mode network, which is a functional connectivity 
network that is frequently described to be disrupted in PD, and is possibly 
associated to cognitive deficits in PD (Baggio et al., 2014). These structures are 
considered as central and highly connected brain regions (Hagmann et al., 2008; 
van den Heuvel and Hulshoff Pol, 2010), and are suggested to be part of a set of 
posterior medial and parietal cortical regions that form a structural core of the brain 
(Hagmann et al., 2008). The structural core may have a central role in integrating 
information across structurally segregated and functionally specialized brain 
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regions (Hagmann et al., 2008). Changes in the structural core may therefore have 
widespread changes across the brain network architecture. Combined, these 
findings point out an important role of these highly connected (hub) regions in 
structural and functional covariance in PD, and connectional variability of the 
precuneus and posterior cingulate cortex may relate to specific subsets or 
characteristics of PD patients, such as our finding in chapter 2 that loss of integrity 
of the posterior cingulate network related to predominantly non-dopaminergic 
features. 
 
Age 
Several studies suggested that age is an important modulating factor in the disease 
progression and phenotype expression of PD. For example, advancing age is 
associated with a more rapid decline in motor function and more severe cognitive 
impairment in patients with PD (Alves et al., 2005; Levy, 2007). The exact role of 
aging in PD, however, and changes that underlie the relationship between age and 
PD, are unclear. Numerous neuroimaging studies have shown an age-related 
decline in MRI parameters of brain structure and function (Ferreira and Busatto, 
2013; Good et al., 2001; Hafkemeijer et al., 2012; Jernigan et al., 2001; Raz et al., 
2005; Resnick et al., 2003). Our results showed grey matter atrophy in DLB and PD 
patients compared with age-matched healthy control subjects in regions that 
explicitly show age-dependent decreased grey matter volume, such as the 
hippocampus and cingulate cortex (Good et al., 2001; Jernigan et al., 2001; Raz et 
al., 2005; Resnick et al., 2003). Further, regional altered functional connectivity was 
mainly expressed in the precuneus and posterior cingulate cortex, which are also 
regions that are associated with functional disruption at high age (Ferreira and 
Busatto, 2013; Hafkemeijer et al., 2012). These findings suggests that the 
pathobiology of PD has a preferential susceptibility for regions that are already 
affected by the aging process, or that the age-effect is possibly influenced by 
disease in a region dependent manner (Claassen et al., 2016). Our results of 
chapter 4, combined with the results of previous studies, suggest a similar age-
related decline of global white matter integrity in PD and healthy control subjects. 
The results of chapter 4 further showed that WMHs in PD may already be present 
in an early phase of the disease. This is in line with other studies suggesting that 
white matter may be affected in the very early stages of PD (Dadar et al., 2018; 
Duncan et al., 2016; Veselý and Rektor, 2016). A possible explanation could be that 
PD patients show a non-linear trajectory of an early accelerated age-related 
decline, which stabilizes with advancing age (Claassen et al., 2016).This explanation 
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is supported by the absence of any relation between disease duration and WMHs 
in chapter 4. 
 
Dopaminergic medication 
Except for a group of drug-naïve patients, the patients in the studies described in 
this thesis were scanned while taking their usual medications. MRI scanning of PD 
patients without dopaminergic treatment is problematic, as tremor may result in 
motion-related artifacts (Tahmasian et al., 2015) and participation may be 
jeopardized when patients have to travel from home during the off-state. Resting-
state fMRI is particularly prone to noise due to motion, and the effects of head 
motion should be considered when it differs between groups (van Dijk et al., 2012). 
The reduction of motor symptoms through dopaminergic treatment may reduce 
the effects of excessive involuntary head motion, in addition to the other 
approaches used in this thesis for motion artifact removal (Jenkinson et al., 2002b; 
Pruim et al., 2015a, 2015b; Tahmasian et al., 2015). However, scanning PD patients 
in the “on-medication state” may also hamper the interpretation of data since 
functional connectivity changes secondary to dopaminergic therapy may occur in 
PD patients (Tahmasian et al., 2017). fMRI studies have reported a normalizing 
effect of dopaminergic medication on abnormal functional connectivity associated 
with PD, which might suggest that our findings would have been more pronounced 
if patients were scanned in the “off-medication-state” (Tahmasian et al., 2015). The 
results of other studies suggest that dopaminergic medication may also alter the 
functional connectivity between brain regions that are not necessarily involved in 
the improvement of symptoms of PD (Ng et al., 2017). However, there is evidence 
that these effects of dopaminergic medication are small, in particular in the well-
established resting-state networks that we used in chapter 5 (Flodin et al., 2012). 
Moreover, scanning PD patients in the “off-medication-state” may result in group 
functional connectivity differences secondary to dopaminergic treatment as well, 
due to changed brain organization caused by the long-term use of dopaminergic 
medication (Kaasinen et al., 2003; Kurani et al., 2015). De novo patients are 
therefore the only population to study pathophysiology independent of 
dopaminergic therapy. In PD populations using dopaminergic treatment the 
dopaminergic state of PD patients should be considered when interpreting or 
comparing results of MRI studies. 
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Study population 
The research presented in this thesis was performed in a cross-sectional setting in 
PD and DLB patients. Some studies described in this thesis required the use of a 
control group. These control subjects were selected from the Leiden Longevity 
Study (Altmann-Schneider et al., 2013), which comprises a large pool of healthy 
subjects from which matched controls can be selected. It should be considered 
that there were some slight differences in some of the variables collected and the 
methods of data collection between patients and control subjects. The MRI 
acquisition in our control group and PD group was performed with a different type 
of head coil (8-channel versus 32-channel, respectively), which may have influenced 
our findings, although we used MRI approaches relatively insensitive to a potential 
coil effect (Geng et al., 2012; Panman et al., 2019; Paolini et al., 2015). However, 
the use of different head coils may hamper the analysis of MRI data and 
standardization of head coils across groups of interest is recommended in future 
study designs (Panman et al., 2019). Patients and control subjects were matched 
for age and gender, two known confounders of particular importance in MRI 
studies (Barnes et al., 2009). A critical consideration related to the control group 
selected for the study presented in chapter 4 is that control subjects were not 
matched for cardiovascular risk profile, in addition to age and gender, although it 
should be noted that patients and control subjects did not differ in those 
cardiovascular risk factors that were assessed in both the PROPARK and Leiden 
Longevity study. 
 
Future perspectives 
Multimodal neuroimaging studies 
We studied brain MRI in PD and DLB patients with five different MRI sequences in 
this thesis, which, amongst other things, highlighted a spatial overlap of altered 
structural and functional connectivity, in particular of the cingulate cortex. 
Structural and functional MRI are increasingly combined to provide more 
informative insights into both structural as well as functional connectivity in 
neurodegenerative diseases (Arbabshirani et al., 2017; Seeley et al., 2009). 
Combining data of different imaging modalities, such as MRI, Positron-Emission 
Tomography (PET), magnetoencephalography (MEG) or electroencephalography 
(EEG), may yield even more insights into the relationships between function and 
structure (Arbabshirani et al., 2017; Calhoun and Sui, 2016). In schizophrenia, 
several studies combined MRI data with EEG or MEG data (Calhoun and Sui, 2016). 
One study showed considerable spatial consistency between function (MEG) and 
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structure (white matter integrity), with regional reduced MEG amplitude and FA in 
a posterior visual network, which was related to cognitive performance (Stephen 
et al., 2013). There is increasing knowledge on the integrated analysis of 
multimodal data. The combination of deep learning and multimodal data or 
multimodal classification may reveal unique information that cannot be obtained 
when using one modality (Arbabshirani et al., 2017; Calhoun and Sui, 2016). Several 
combinations of PET and MRI results have been applied in PD and DLB, indicating 
striatal dopamine modulation of functional connectivity networks (Baik et al., 2014; 
Lebedev et al., 2014; Weingarten et al., 2015), and showing that combined data 
distinguished DLB from Alzheimer’s disease better than measurements from one 
modality (Kantarci et al., 2012; Weingarten et al., 2015). 
 
Artificial intelligence and big data 
We used machine learning in chapter 6, which is a current application of artificial 
intelligence based on algorithms that can learn from data and subsequently 
construct a model in order to make predictions or decisions without being explicitly 
programmed. Machine learning approaches are increasingly applied to MRI data 
to study neurodegenerative diseases. A promising unsupervised machine learning 
method that allows for the exploration of previously unidentified disease subtypes 
based on neuroimaging, is cluster-wise ICA (C-ICA) (Durieux, 2015). C-ICA aims to 
cluster subjects in a data-driven fashion into homogeneous groups based on 
similarities and differences in the functional connectivity patterns that characterize 
them. The functional connectivity patterns that are associated with these 
subgroups could further provide information about neurodegenerative diseases 
such as PD. Components of a thus identified cluster may serve as a marker for the 
differentiation of subtypes with differing patterns of abnormal functional 
connectivity and potentially distinct clinical symptom profiles. Possible extensions 
of the C-ICA model include applications to other types of data as EEG data 
(Durieux, 2015).  
 
Despite promising results of some studies, the use of machine learning in PD is still 
in its early stage. This is likely caused by the limited sample sizes (Arbabshirani et 
al., 2017). However, a unique international, multicenter clinical, imaging and 
biologic specimens dataset of PD patients has been collected, managed and made 
available by the Parkinson’s Progression Markers Initiative (PPMI) (Marek et al., 
2011). A recent study using PPMI data investigated strategies to handle challenges 
of large datasets, such as heterogeneity or missing data, and subsequently 
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produced models for PD classification and prediction (Dinov et al., 2016). Future 
studies can possibly provide additional insights on how to address availability, 
integration and analytics of big data to advance the usability of MRI of PD in clinical 
practice. 
 
Individual classification 
Advanced neuroimaging approaches are of special interest for their potential to 
characterize unique morphological characteristics and connectivity patterns of 
neurodegenerative diseases (Agosta et al., 2017). For example, due to the high 
availability of 3 Tesla MRI scanners, the analysis of hippocampal subfields has 
gained increasing attention (Agosta et al., 2017). We showed that regional 
hippocampal differences between DLB and PD may be important in the distinction 
between the two disorders in chapter 3. However, except for the model that was 
built to identify PD patients at an individual level in chapter 6, the results in this 
thesis cannot be applied to individual patients. Neuroimaging studies in PD have 
largely provided average estimates at a group level. Although these studies are 
valuable for the discovery of relevant disease markers, the discriminative ability at 
the individual level of these neuroimaging measures is typically not evaluated. 
Neuroimaging-based single-subject prediction of neurodegenerative diseases has 
gained attention in recent years. In PD, a study using machine learning for the 
analysis of resting-state fMRI data showed that it was possible to predict motor 
scores (Movement Disorder Society unified Parkinson's disease rating scale; MDS-
UPDRS - part III) on an individual patient level (correlation = 0.35, p = 0.001; mean 
sum of squares = 222.17, p = 0.002) (Hou et al., 2016). Another study showed that 
machine learning in combination with multimodal MRI data for the differentiation 
of PD patients with a non-postural instability and gait difficulty subtype from 
patients with a postural instability and gait difficulty subtype resulted an accuracy 
of 92.3% (specificity = 97.0%, sensitivity = 84.2% and AUC = 0.96) (Gu et al., 2016). 
These findings provide preliminary evidence that neuroimaging-based inference in 
the individual heterogeneity in clinical features, disease course, and treatment 
response of PD might be possible. 
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