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ABSTRACT 
 
Introduction: Recent research shows that resting-state fMRI data in combination 
with machine-learning techniques can be used to distinguish patients with 
neurodegenerative disease, like Alzheimer’s disease, from healthy control subjects. 
We aimed to explore the potential of an elastic net model to recognize Parkinson’s 
disease (PD) patients (at an individual level) using resting-state fMRI. 
 
Methods: We used resting-state fMRI scans from 114 PD patients and 58 age- and 
sex-matched healthy control subjects. We calculated functional connectivity 
matrices and dynamics for full and partial correlations, resulting in four feature 
types, which have been used separately as well as combined in a cross-validated 
elastic net regularized logistic regression. We calculated the area under the curve 
to determine classification performance.  
 
Results: The area under the curve values ranged between 0.752 and 0.858. Highest 
values were found for partial correlation functional connectivity dynamics. We also 
investigated whether particular clinical features contributed to the individual 
classification scores of PD patients and no associations were found.  
 
Conclusion: These results show that resting-state functional connectivity dynamics 
in an elastic net regression is a promising method to differentiate between 
PD patients and healthy control subjects at an individual level.  
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INTRODUCTION 
Parkinson’s disease (PD) is the most common neurodegenerative disorder after 
Alzheimer’s disease (AD), and its prevalence is growing (De Rijk et al., 2000; Dorsey 
et al., 2018). The clinical spectrum of PD comprises a broad range of motor and 
non-motor symptoms (Chaudhuri et al., 2006). Patients show conspicuous 
differences in the course or occurrence of symptoms, the severity of symptoms, as 
well as in the progression rate of the disease (Foltynie et al., 2002). The 
heterogeneity of PD can complicate diagnosis in clinical practice. Adding to the 
complexity of early diagnosis is the long pre-symptomatic phase of the disease, 
when neurodegeneration has commenced, but the (motor) symptoms are yet 
insufficient to define PD (Berg et al., 2015).  

Resting-state functional magnetic resonance imaging (fMRI) of the brain 
might have the potential to identify early PD or persons at risk, before overt 
expression of the disease. Resting-state fMRI data of PD patients have shown 
differences between PD patients and control subjects in functional connectivity (de 
Schipper et al., 2018). Furthermore, a recent study showed changes in PD patients 
in the variations of functional connectivity over a short time (dynamics) (Kim et al., 
2017). However, these results represent group-wise comparisons and are not 
applicable to individual patients with PD. In AD, resting-state fMRI research has 
shown promising results in distinguishing patients and control subjects at an 
individual level through classification approaches that enable the incorporation of 
numerous functional connectivity parameters as predictors into one model and 
automatically select the most relevant ones (de Vos et al., 2018; Schouten et al., 
2016).  

The aim of the present study is to investigate whether resting-state fMRI 
data can be used to classify PD patients and healthy control subjects. We calculated 
whole-brain functional connectivity using full and partial correlations, and 
calculated functional connectivity dynamics using a sliding window approach 
(Hutchison et al., 2013). These features were used as input for machine-learning 
techniques to calculate classification scores for each measure (full and partial 
functional connectivity matrices and dynamics) separately and all measures 
combined in order to determine the most accurate prediction model. We further 
investigated whether classification scores were correlated to clinical measures of 
PD.  
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METHODS 
Study design and participants 
The sample for the current study consists of 172 participants: 114 PD patients, of 
which 11 patients were diagnosed as PD with Lewy bodies (DLB) subtype, and 58 
healthy control subjects. In line with the most recent MDS-PD criteria, we qualified 
patients with DLB who met the clinical criteria for PD, as PD (Gibb and Lees, 1988; 
Postuma et al., 2015). Patients were recruited from the outpatient clinic for 
Movement Disorders of the Department of Neurology of the Leiden University 
Medical Center (LUMC; Leiden, the Netherlands) and nearby university and 
regional hospitals. PD patients fulfilled the United Kingdom Parkinson’s Disease 
Society Brain Bank criteria for idiopathic Parkinson’s disease (Gibb and Lees, 1988) 
and DLB patients the McKeith DLB diagnostic criteria for probable DLB (McKeith 
et al., 2005). Exclusion criteria were previous or other disorders of the central 
nervous system, peripheral nerve disorders influencing motor and/or autonomic 
functioning, and psychiatric comorbidity not related to PD. Control subjects were 
selected from the Leiden Longevity Study (Altmann-Schneider et al., 2013), 
matched at group level for age and gender with the PD patients. 
 
Clinical measures 
The Movement Disorder Society unified Parkinson’s disease rating scale (MDS-
UPDRS) motor scale (part III) was used to quantify the severity of motor symptoms 
(Goetz et al., 2008). Fluctuating cognition and recurrent visual hallucinations are 
two core features of DLB, besides spontaneous features of parkinsonism (McKeith 
et al., 2005). We therefore included measures of cognition and hallucinations to 
our examinations as well. The mini-mental state examination (MMSE) was used to 
assess cognitive performance (Folstein et al., 1975). We quantified hallucinations 
using the hallucination item of the SCOPA psychiatric complications (PC, range: 0 
-18) scale (Visser et al., 2007). We further used the severity of non-dopaminergic 
symptoms in Parkinson’s disease (SENS-PD) scale to measure symptoms that 
largely do not improve with dopaminergic medication (Goetz et al., 2008; van der 
Heeden et al., 2016). The SENS-PD is a composite score comprising three items 
with four response options (range: 0-3) from each of the following six domains: 
postural instability and gait difficulty, psychotic symptoms, excessive daytime 
sleepiness, autonomic dysfunction, cognitive impairment and depressive 
symptoms (total range: 0-54) (van der Heeden et al., 2016). These six domains 
represent a coherent complex of symptoms that may already be present in the 
early disease stages, and increases in severity when the disease advances (van der 
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Heeden et al., 2016). Higher scores reflect more severe impairment. The formula 
of Tomlinson et al. was used to calculate a levodopa equivalent dose (LDE) of daily 
levodopa (Tomlinson et al., 2010). 
 
fMRI acquisition 
Imaging was performed on a 3 Tesla MRI scanner (Philips Achieva, Best, the 
Netherlands). Participants were instructed not to fall asleep during the scan and to 
lie with their eyes closed without moving. The following parameters were used for 
the resting-state fMRI scans: repetition time = 2.2 s, echo time = 30 ms, flip angle 
= 80°, 37 slices, resulting in a voxel size of 2.75 × 2.75 × 2.72 mm, with a 10% 
interslice gap, 200 volumes, scan duration 7 min and 29 s. Three-dimensional T1-
weighted anatomical images were obtained with the following parameters: 
repetition time = 9.8 ms, echo time = 4.6 ms, flip angle = 8°, FOV 220 × 174 × 156 
mm, 130 slices with a slice thickness of 1.2 mm with no gap between slices, 
resulting in a voxel size of 1.15 × 1.15 × 1.20 mm. A 32-channel and an 8-channel 
head coil was used for the PD group and the control group respectively. 
 
Resting-state fMRI preprocessing  
Resting-state fMRI data was preprocessed applying: motion correction with the 
motion correction FMRIB's linear image registration tool (MCFLIRT) (Jenkinson et 
al., 2002a), brain extraction (Smith, 2002) and spatial smoothing using a Gaussian 
kernel with a full width at half maximum of 5 mm. Preprocessing further consisted 
of high-pass temporal filtering with a cutoff frequency 0.01 Hz and finally a non-
linear registration with boundary-based registration to the 2 mm isotropic Montreal 
Neurological Institute standard space image (MNI; Montreal, QC, Canada) and a 
10 mm warp resolution (Greve and Fischl, 2009), via the T1-weighted images, using 
high-resolution echo planar images for an additional registration step between 
functional images and T1-weighted images (Andersson et al., 2007; de Schipper et 
al., 2018). We further used independent component analysis based automatic 
removal of motion artifacts (ICA-AROMA) to identify and remove residual motion-
related artifacts data (Pruim et al., 2015a, 2015b). The resting-state fMRI scan was 
subsequently weighted by a gray matter probability map, because neuronal activity 
predominantly takes place in gray matter voxels. The Harvard-Oxford cortical 
structural atlas (as provided by FSL version 5.0) was used to separate the 
preprocessed scans into 48 different brain regions. Time courses for each of the 48 
brain regions were calculated for each subject, which were subsequently used in 
the functional connectivity analyses. 



Individual classification of PD patients | 6 
 

 86 

Functional connectivity matrices  
We used the time courses of the 48 brain regions to calculate functional 
connectivity matrices, using both full and sparse partial correlations. Whereas full 
correlations represent the total correlation between two brain regions, sparse 
partial correlations focus on the unique correlation between two regions (Peng et 
al., 2009). Sparse partial correlations were calculated using the graphical lasso 
algorithm implemented in R package “glasso” (Friedman et al., 2010). For each 
subject we calculated both full and sparse partial correlations between all pairs of 
brain regions, resulting in two functional connectivity matrices both consisting of  
(48	 • 	 (48	– 	1))/2		 = 1128 correlations.  
 
Functional connectivity dynamics  
The dynamics of the above described functional connectivity matrices were 
calculated, using a sliding window approach (Chang and Glover, 2010; Hutchison 
et al., 2013; Jones et al., 2012), in which functional connectivity is calculated within 
a limited time window. This window was shifted over the total length of the scan 
and the standard deviation over all these windows was calculated. The size of the 
window was set at 11 scan volumes, which equals 24.7 seconds, and was slided 
one volume at a time. Functional connectivity dynamics was calculated for both the 
full and sparse partial correlation matrices, resulting in two functional connectivity 
dynamics matrices both consisting of  (48	 • 	 (48	 − 	1))/2		 = 1128 correlations. 
 
Statistical analyses 
The full and partial functional connectivity and dynamical matrices were used as 
input for elastic net regularized logistic regression models in order to classify 
subjects as either control subject (0) or PD patient (1). Elastic net regularized 
logistic regression has been commonly used for neuroimaging classifications 
studies (de Vos et al., 2018; Schouten et al., 2016; Teipel et al., 2017, 2015). We 
performed elastic net regularized logistic regression with all feature types 
separately as input, as well as with all feature types combined. In elastic net 
regression, only the most relevant predictors will enter the regression model 
(Friedman et al., 2010; Zou and Hastie, 2005). Elastic net regression uses a 
combination of an L1-regularisation (lasso) (Tibshirani, 1996) and an L2-
regularisation (ridge) (Hoerl and Kennard, 1970) and compromises between the 
two (Zou and Hastie, 2005). R package “glmnet” was used for the elastic net 
analyses (Friedman et al., 2010).  
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We used nested cross-validation to ensure that we were not overfitting the 
classification model. The inner cross validation loop was used to tune the sizes of 
the L1 and L2 penalties, and the ratio between those two penalties. The outer cross 
validation loop was used to train and evaluate the classification model. For both 
the inner and outer cross validation loop we used tenfold cross-validation, where 
the data was split repeatedly into ten percent test set and ninety percent training 
set, making sure each part of the data had been used as test set once. The training 
set in the outer cross validation loop was used for the inner cross validation loop 
(figure 1). The whole cross validation procedure was repeated ten times in order 
to reduce the variability resulting from the random partitioning of subjects into 
training and test folds. 
 

 
Figure 1. Cross-validation approach. Repeated, nested, tenfold cross-validation represent-
ted schematically. Green bars represent the test set, blue bars represent the training set. In 
reality, it was randomly chosen in which fold each of the subjects was part of the test or 
training set, making sure each of the subjects was only part of the test set once. For the 
purpose of the figure, however, the test and training set are portrayed as fixed blocks. 
 
As the current study has an unbalanced design, we used receiver operator 
characteristic (ROC) curves to measure classification performance, as this method 
controls for unbalanced groups. The ROC curve was first computed and 
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subsequently the area under the curve (AUC) was calculated using the R-package 
“auc” (Balling & Van den Poel, 2013). Since there was no clear preference for a 
lower number of false positive diagnoses or a lower number of false negative 
diagnoses, the cut-off value to calculate the sensitivity and specificity was 
determined for each feature type individually, and was based on the Youden Index. 
This index reflects the value at which the sum of the sensitivity and the specificity 
is the highest (Fluss et al., 2005). The classification accuracy, sensitivity, and 
specificity were calculated for all features separately and combined.  

Within the group of PD patients, we investigated the relationship between 
clinical variables (disease duration, MDS-UPDRS motor, SENS-PD and MMSE 
scores, hallucinations) and classification scores of the most accurate classification 
model using linear regression models (IBM SPSS Statistics for Mac, Version 23.0. 
Armonk, NY: IBM Corp.). The relationship between classification scores of the most 
accurate classification model and total LDE was investigated within the group of 
PD patients on dopaminergic medication. We also investigated group differences 
in classification scores of the most accurate classification model between drug-
naïve patients and patients on dopaminergic medication using an independent-
samples t-test. Bonferroni correction was applied in all cases. 
 
RESULTS 
Demographic data of the PD patients and healthy control subjects and clinical data 
of the PD patients are shown in table 1. Gender and age did not significantly differ 
between the patient and control group. 
 
Classification accuracy 
In table 2 the average AUC values over all cross-validation repetitions per feature 
type are shown. Combining all types resulted in an average classification accuracy 
of 0.818. Using the types of features separately resulted in a higher average 
classification accuracy for both partial correlation features, that is 0.832 for partial 
correlation functional connectivity and 0.858 for partial correlation functional 
connectivity dynamics, which is the highest AUC value obtained in the current 
study. Combining all types of features did not yield a higher AUC value than using 
all types of features separately. The individual predictions of the subjects are 
plotted in figure 2. 
 
 
 



Individual classification of PD patients | 6 

 89 

 
Table 1. Main characteristics of participants 
 Patients Control subjects 
N 114 58 
Men/women 74/40 (64.9) 31/27 (53.4) 
Age, years 65.3 (7.0) 65.2 (7.5) 
Disease duration, years 8.8 (4.7) n/a 
MDS-UPDRS motor score (0-132) 32.9 (15.3) n/a 
SENS-PD (0-54) 14.2 (6.4) n/a 
MMSE 28.0 (2.6) n/a 
SCOPA PC hallucination item (0-3) 4a n/a 
Total LDE, mg/dayb 954.9 (570.9) n/a 
Drug-naïve patients 20 n/a 
Values are means (standard deviation) for continuous variables and numbers for gender (% men). 
For all measurement instruments, the score range is presented in parentheses. MDS-UPDRS: 
Movement Disorder Society unified Parkinson’s disease rating scale; SENS-PD: severity of non-
dopaminergic symptoms in Parkinson’s disease; MMSE: mini-mental state examination; LDE: 
Levodopa dosage equivalent; n/a: not applicable.  
a 4 Patients had a score > 1, range: 0–3; b N = 94 (20 patients were drug-naïve). 

 

 
Correlations with clinical scores 
We investigated the relationship between individual elastic net partial correlation 
functional connectivity dynamics classification scores of the PD patients and clinical 
variables, but after correction for multiple comparisons, no statistically significant 
associations were found. The mean classification scores between drug-naïve 
patients (0.77) and patients on dopaminergic medication (0.83) did not significantly 
differ between groups (p = 0.205). 
 
 
 
 
 
 

Table 2. Mean AUC, sensitivity and specificity 

 FFC PFC FFD PFD All 

AUC 0.752  0.832  0.753  0.858 0.818 

Sensitivity 0.655 0.828 0.709 0.809 0.831 
Specificity  0.781 0.778 0.744 0.822 0.705 

AUC: area under the curve; FFC: full correlation functional connectivity; PFC: partial correlation 
functional connectivity; FFD: full correlation functional connectivity dynamics; PFD: partial 
correlation functional connectivity dynamics; All: FFC, PFC, FFD and PFD combined. 
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Figure 2. Classifications per feature type against diagnosis. FFC = full correlation functional 
connectivity, PFC = partial correlation functional connectivity, FFD = full correlation func-
tional connectivity dynamics, PFD = partial correlation functional connectivity dynamics, ALL 
= FFC, PFC, FFD and PFD combined. 
 
DISCUSSION 
We studied the accuracy of different resting-state fMRI measures in combination 
with machine-learning techniques for the (individual) classification of PD patients. 
Full and partial functional connectivity matrices and dynamics were computed and 
used as input in an elastic net regression to discriminate PD patients from healthy 
control subjects. For both the functional connectivity matrices and dynamics, 
partial correlations resulted in higher classification accuracy than full correlations. 
The functional connectivity dynamics resulted in a (slightly) higher classification 
accuracy than the functional connectivity matrices. Combining multiple feature 
types did not improve the classification accuracy compared to using the features 
separately.  

The partial functional connectivity dynamics model resulted in an AUC of 
0.86. Previous MRI studies that investigated machine learning techniques in PD, 
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have used T1-weighted MRI data for differentiation of PD from control subjects, 
patients with progressive supranuclear palsy or subjects with scans without 
evidence of dopaminergic deficit (SWEDD) (Sakai and Yamada, 2018). Previous 
studies using grey and white matter volumes of regions of interest for 
differentiation of PD and control subjects reported an overall accuracy 0.82 (Adeli 
et al., 2016) and 0.71 (Liu et al., 2016). Another study used T1-weighted MRI data 
alone as well, but incorporated structural connectivity between brain regions, and 
found an overall accuracy of 0.86 (Peng et al., 2017). A proposed approach for 
early diagnosis of PD that combined T1-weighted MRI markers with clinical scores 
typical of prodromal PD even reached an AUC value of 0.97 (Amoroso et al., 2018). 
Overall, the findings of these studies combined with our results, suggest that a 
combination of structural and functional imaging combined with machine learning 
approaches are a promising classification method for PD diagnosis, and in time 
possibly early or prodromal PD. The integration of other imaging modalities, such 
as diffusion tensor imaging (DTI), may further improve classification performances. 

The dynamic changes of functional connectivity, which is relatively new in 
the field of PD, resulted in the highest classification accuracy. In a recent study, 
functional connectivity dynamics suggested two distinct connectivity states: a more 
frequent, sparsely connected within-network state and a less frequent, more 
strongly interconnected between-network state (Kim et al., 2017). Their results 
show that PD patients spent less time in the sparsely connected state, while they 
spent more time in the more strongly interconnected state (Kim et al., 2017). This 
suggests that the connectivity state that is characterized by increased interactions 
between cerebral networks predominates in PD, at the expense of the more 
sparsely within-network state (Kim et al., 2017). Our findings stressing the 
relevance of dynamic changes in classifying patients with PD are in line with those 
from previous studies in AD (de Vos et al., 2018; Jones et al., 2012). Functional 
dynamics may reflect aspects of functional capacity of neural systems (Deco et al., 
2011; Kucyi et al., 2017), and are suggested as possible biomarkers of disease (Kim 
et al., 2017). 

For both the functional connectivity matrices and dynamics, partial 
correlations resulted in higher classification accuracy than full correlations. As 
partial correlations are controlled for the potential effect of other brain regions on 
that relation (Peng et al., 2009), they provide unique information of the relationship 
between two brain regions and functional connectivity measures based on partial 
correlations therefore likely provide a better estimation of functional connectivity 
than full correlations (Smith et al., 2011). 
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Although the AUC value obtained for the functional connectivity dynamics 
model based on partial correlations in the current study was quite high, no 
associations with clinical variables were found. This may be attributed to the fact 
that the model was trained to differentiate PD patients from healthy control 
subjects, using a combined set of predictors selected from correlations between 
multiple brain regions, and classification scores. In turn, this approach renders the 
occurrence of correlations between partial functional connectivity dynamics and 
individual symptoms or clinical domains less likely.   

This is the first study using resting-state fMRI data in combination with 
elastic net regression analysis for (individual) classification of PD patients, resulting 
in moderate to good PD classification. Machine-learning methods could be of use 
for early diagnosis of PD, or possibly detect brain changes in persons at risk for 
developing PD. However, the patient group used to train and test the prediction 
models in this study included few de novo PD patients, had a moderate mean 
disease severity and a mean disease duration of approximately nine years. A 
population comprising a larger number of de novo patients is possibly more 
suitable for the purpose of early diagnosis of PD. Further, 92 patients in this study 
were scanned while taking their usual dopaminergic medications, while 20 patients 
were drug-naïve. The acute effect of dopaminergic medication may normalize 
functional connectivity in PD (Tahmasian et al., 2015), and its chronic use may alter 
brain organization (Anderson and Nutt, 2011; Kaasinen et al., 2003). Dopaminergic 
medication was not related to the classifications scores of our partial functional 
connectivity dynamics model, and mean classification scores did not differ between 
patients on dopaminergic medication and those who were not, but we cannot rule 
out a potential modulatory role of dopaminergic medication. A potential limitation 
of our study could be that the MRI acquisition of our two cohorts (control persons 
and patients with PD) were performed with a different type of head coil (8-channel 
versus 32-channel, respectively) (Panman et al., 2019), which might have affected 
our classification score, although another study comparing resting-state fMRI data 
using an 8- and 32-channel head coil on a 3 Tesla MRI scanner did not find 
significant differences between the two head coils (Paolini et al., 2015). Of note is 
that the scans in this study last 7 minutes and 29 seconds, and a timeframe of 24.7 
seconds was taken as one window in the sliding-window approach, which is quite 
short to calculate functional connectivity dynamics (Hindriks et al., 2016). There 
exists an arbitrary trade-off between the number of measurement moments in one 
window and the number of different windows that can be used for calculation of 
functional connectivity dynamics. In the current study, using a higher number of 
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different windows was preferred over using more measurements in one window. 
However, using larger windows may yield even better classification accuracies than 
the ones that we found in the current study (Shirer et al., 2012).  
 
Conclusion 
We showed that it is possible to achieve moderate to good PD classification using 
elastic net regularized logistic regression combined with resting-state fMRI data, in 
particular with partial functional connectivity dynamics. This approach has potential 
as a suitable method for use in future PD classification studies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


