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Abstract

Quantum annealing devices such as the ones produced by D-Wave systems

are typically used for solving optimization and sampling tasks [1–15], and in

both academia and industry the characterization of their usefulness is subject

to active research. Any problem that can naturally be described as a weighted,

undirected graph may be a particularly interesting candidate [16,17], since such

a problem may be formulated a as quadratic unconstrained binary optimization

(QUBO) instance, which is solvable on D-Wave’s Chimera graph architecture.

In this paper, we introduce a quantum-assisted finite-element method for design

optimization. We show that we can minimize a shape-specific quantity, in our

case a ray approximation of sound pressure at a specific position around an

object, by manipulating the shape of this object. Our algorithm belongs to the

class of quantum-assisted algorithms, as the optimization task runs iteratively

on a D-Wave 2000Q quantum processing unit (QPU), whereby the evaluation

and interpretation of the results happens classically. Our first and foremost aim

is to explain how to represent and solve parts of these problems with the help

of a QPU, and not to prove supremacy over existing classical finite-element

algorithms for design optimization.

Keywords: quantum computing, quantum physics, finite-element, design

optimization, QUBO
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1 Introduction

According to the laws of quantum mechanics, a quantum mechanical system, which

is in the ground state (state of minimal energy) of a time-independent system, also

remains in the ground state if a change to it happens only slowly, i.e. adiabatically.

This is known as the adiabatic theorem. The idea of adiabatic quantum computing

is to construct a system having a ground state that is still unknown at that time,

which corresponds to solving a particular problem, and another one whose ground

state is easy to prepare experimentally. Subsequently, the easy-to-prepare system

is adiabatically transferred to the system whose ground state one is interested in,

and then measured. If the transition is slow enough, one can obtain a minimum-

energy solution to the problem. D-Wave’s QPUs deploy a system described by the

two-dimensional Ising spin hamiltonian [16,17]:

Hh,J(s) =

n∑
i=1

hisi +
∑
〈i,j〉

Jijsisj . (1)

Here, s is a vector of n spins, si ∈ {−1, 1}, which carry an individual energy weight

hi and are interconnected through 2-local couplings Jij . The sum in the second

term of the hamiltonian runs over only those spin pairs which are connected, as

Jij = 0 for uncoupled spin pairs. As such, the hamiltonian is characterised by the

linear weight vector h and the coupling matrix J. The search for the minimum spin

configuration smin for the Ising hamiltonian is known to be NP-hard [15,18].

It is generally preferable for a computational application to work with {0, 1}-
valued bits of information as opposed to spins, which can be achieved through the

transformation xi = 1
2(si + 1). This formulation of the Ising spin problem, which is

polynomially reducible to the original form and vice versa, is known as a quadratic

unconstrained binary optimization problem, or QUBO for short, and can be solved

by the QPU in the same fashion as a conventional Ising model. The equivalence

between the two problem classes implies that any problem to be solved with the

D-Wave QPU may be formulated either as a QUBO instance or directly as an Ising

model. The objective quantity that the QPU minimizes in the QUBO case is given

by the quadratic form [16,17]

ObjQ(x) = x>Qx, (2)

where x is an N -sized vector of {0, 1}-valued variables, and Q is an N×N real-valued

upper triangular matrix containing the (adjusted) linear weights in the diagonal,

and the couplings in the off-diagonal entries.

D-Wave’s QPU physically implements an undirected graph in which the qubits,
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representing the binary variables, are the nodes, and the couplings the edges. The

initial configuration is set up such that all qubits are in uniform superposition,

|xi〉 = 1√
2
(|0〉+ |1〉). During the annealing cycle, the state is evolved according to

the energy landscape described by Q. Eventually, when the system reaches the

ground state, a minimum solution to the QUBO problem is found.

In this work, we demonstrate a method for using the QPU as an optimizer for a

finite-element design problem. That is, we seek to optimize the shape of a 3D body

defined by a finite number of elements against certain physical circumstances, by

expressing the physical interaction of the elements in a QUBO form, and having

the QPU find the minimum-energy configuration corresponding to a (sub)optimal

shape. The next sections describe and discuss the problem in the framework of

finite-element methods, as well as our approach to the problem and the observed

results.

This paper is structured as follows. Sections 2 and 3 briefly discuss the research

field of finite-element methods, the problem we address and its context in vehicle

engineering, and how the two relate in our work. Section 4 outlines our method for

solving the problem, including a detailed description of the QUBO formulation and

the procedure that our proposed algorithm follows. Section 5 showcases the results

in terms of shape optimization that we obtained by executing the algorithm, and

examines a number of features and limitations of the algorithm that appear from

these results. Lastly, we present our conclusions in section 6 and give an outlook on

possible future work in section 7.

2 Finite-element methods

Finite-element methods (FEM) are a general group of numerical methods used

in various physical tasks. Most well-known is the application of FEM in the

investigation of the strength and deformation of solids with a geometrically complex

shape, because here the use of classical methods, e.g. beam theory, proves to be

too time-consuming or impossible. Logically, the FEM is based on the numerical

solution of a complex system of differential equations. The computation domain,

e.g. the solid, is divided into finitely many subdivisions of a simple form, creating

a mesh of the original solid using a finite number of corner points (‘vertices’) and

faces (‘elements’ or ‘simplices’). The physical behaviour of this meshed solid can be

more easily calculated with well-known elementary functions due to its simplified

geometry. The physical behaviour of the whole body is modelled in the transition

from one element to the next, through very specific problem-dependent continuity

conditions that must be fulfilled by the elementary functions. These functions

contain parameters that usually have a physical meaning, such as the shift of a
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certain point in the component at a given time. The search for the motion function is

thus returned to the search for the values functions’ parameters. By using more and

more parameters such as more and/or smaller elements and higher order functions,

the accuracy of the approximate solution can be improved. The development of

the FEM was possible in essential stages only by the development of powerful

computers, since it requires considerable computing power. Therefore, this method

was formulated from the outset to be processed on computers. Further information

can be found in the work by Pepper et al. [19].

3 Quantum-assisted finite-element method for design

optimization

With the algorithm we introduce in the following sections, we are able to find designs

based on a quantity that we minimize. One practical example concerns minimizing

the wind noises on an external mirror of a vehicle, and another one is minimizing

the noises through vibrations caused by the engine or different road conditions in

a vehicle. The areas to optimize are commonly obtained with a complex finite-

element simulation, and evolutionary algorithms have proven to be very valuable

for searching the design space [20–23]. As one part of the wind noise prediction

simulation chain, we can compute acoustic sources on the mirror surface. This is an

instance of a so-called acoustic scattering problem, which has to be solved in order

to extract only those sources which are most relevant (noise-causing) at the position

of the passengers. Solving the scattering problem is very time-consuming, especially

in real vehicle applications, where the number of elements can be in the order

Figure 1. Acoustic monopole emitting a spherical wave scattered by a rigid sphere.
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of millions. Even for relatively few, a direct solver implementing straightforward

matrix inversion quickly runs into memory and computation time limits. Thus,

we are after finding an algorithm that scales better with an increasing number of

elements. The present state of quantum computing does not allow us to compete

with classical algorithms in terms of number of elements or speed, as the currently

newest version of the QPU, containing approximately 2048 qubits, can only reliably

find minor embeddings for shapes with up to 50 elements. Of course, we can split a

QUBO instance with more than 50 elements and process problems of arbitrary size,

but this significantly increases the required computation time.

In the introduced algorithm, we start with an initial shape and intend to find

a shape that deflects sound waves emitted by an acoustic monopole source such

that the sound pressure within an area at another position around the shape is

minimized. In the same instance, our algorithm must be form-preserving, as in the

end the shape should still resemble the initial design. In the scenario we describe,

the initial shape is a spherical mesh with finitely many triangular surface elements

(simplices), which is hit by sound waves emitted from an acoustic monopole (see

fig. 1). Fig. 1 shows microphones positioned around the shape, and the objec-

tive is to minimize the sound pressure at any position of choice, by altering the

sphere’s shape. As the size of the current D-Wave QPU is limited to 2048 qubits

and each qubit bears only 6 connections to neighboring qubits, we make a num-

ber of assumptions and approximations in order to make this problem feasible

for submission to the QPU with a reasonable number of elements. More com-

plex formulations however are possible, but adding more interactions would require

more qubits, allowing processing of fewer elements within reasonable execution time.

4 Approach

In the definition of the sound scattering problem, we make one major simplification

to ensure that the resulting formulation is a finite-element method that is well-

suited for the QPU, which is to approximate sound waves as rays (i.e. straight

lines in 3D space). That is, propagation of sound waves is treated similarly to

the propagation of light as done in graphical raytracing [24, 25], ignoring wave

effects and interference altogether. The most important reason for this is that

it allows us to consider each element separately in terms of its contribution to

the measured sound pressure, as it avoids the necessity to construct a wave-based

model harbouring high degrees of interaction between elements through sound wave

interference. After all, the multitude of incident and scattered sound waves creates
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a highly complex situation that cannot be described without distant (i.e. non-

neighbouring) element-element coupling. Since we seek to devise a QPU-assisted

finite-element method for optimising a shape, finding a way to describe a ‘first-order

approximation’ with only neighbour couplings is more important than figuring out a

very accurate scattering solution. Since we know that sound waves in reality reflect

linearly off a surface identically to light rays, we use this as the approximation to

base our quantum-assisted algorithm on.

The algorithm is a 3D search routine, which iteratively considers different

candidate positions for each vertex in the shape (not to be confused with a qubit node

in the QPU graph), and then lets the QPU decide which vertex arrangement causes

the least number of rays to be reflected towards a microphone. This microphone is

represented by a rectangularly bounded plane positioned next to the shape (see fig.

2). In each iteration, the routine assigns to each vertex K ‘mutations’, which are

small random deviations from the original vertex position; that is, for each vertex

vi in the set V of vertices, it considers vi + dvi1, · · · ,vi + dviK with dvij small.

Each vertex is encoded by K qubits, and the |1〉 state of the j-th corresponding

qubit indicates that mutation j was assigned to this vertex (if the state is |0〉, this

particular mutation was not assigned). For each simplex, the partial loss `, being

the amount of pressure received from this simplex, is computed separately for each

of the K3 simplex configurations created from the vertex mutations (i.e. three

vertices per simplex, and K mutations for each vertex). The QUBO matrix Q is

then constructed so that it contains, for each vertex, the loss information associated

with the simplices neighbouring the vertex. Based on this information, the QPU

will choose the minimal loss vertex configuration among the ones supplied, and

use these as the input for the next iteration. This continues for a given number of

iterations, or until convergence is observed.

A more detailed description of the QUBO formulation is provided in the next

section.

4.1 QUBO problem formulation

Define S as the set of all simplices s determining the shape, N = |V | and C as the

set of all configurations c over the entire shape, where c is a list of vertex mutation

assignments {(i, j)}, with i ∈ {1, . . . , N} and j ∈ {1, . . . ,K}, indicating assignment

of mutation j to vertex i (i.e. vi 7→ vi + dvij). Each configuration is a complete list,

in that every vertex is assigned a mutation. Define a loss function L(S, c), which

maps a configuration c to a loss value, to be the total of the partial losses `(s, c) of
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Figure 2. A rigid sphere, which serves as the initial shape, and a rectangular area
at which the sound pressure must be minimized. The mere purpose of the colour
scheme is visual aid.

simplices s ∈ S for configuration c,

L(S, c) =
∑
s∈S

`(s, c), (3)

and a loss partition function Z(S,C), the sum of the loss function over all configu-

rations:

Z(S,C) =
∑
c∈C
L(S, c) =

∑
c∈C

∑
s∈S

`(s, c). (4)

In this form, Z is a function of KN configurations. Now, we observe that this sum

can be rewritten by visiting all edges (v,w) in the edge set E, and considering for

each edge the two simplices adjacent to that edge. Since each simplex has three

edges, this means each simplex is counted thrice, so we divide this new total by 3,

to obtain:

Z(S,C) =
1

3

∑
c∈C

∑
(v,w)∈E

∑
s∈S(v,w)

`(s, c), (5)

where S(v,w) is the set of the two simplices adjacent to edge (v,w).

Now notice that there are KN−3 configurations which fix a triple of mutations

for three vertices of a simplex s, and are thus equivalent for this particular simplex.

As such, instead of counting each configuration separately, we consider only K3
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configurations that are nonequivalent with respect to this simplex to sum over

(represented by the set Cs), and multiply the result by KN−3:

Z(S,C) =
KN−3

3

∑
(v,w)∈E

∑
s∈S(v,w)

∑
c∈Cs

`(s, c). (6)

This representation of the partition function now gives us an intuitive way to define

a QUBO matrix Q for this problem. This instance is to be minimized by a {0, 1}-
valued vector x representing a configuration c(x), whose entry corresponding to the

mutation assignment (i, j) is 1 if vi is assigned mutation j and 0 otherwise, as stated

before. That is, we view each entry xij as representing whether mutation (i, j) is

included in the configuration list of c(x) (in which case xij = 1) or not (implying

xij = 0). The edge pairs naturally correspond to the off-diagonal terms of this

matrix: for any edge pair (vi1 ,vi2) with mutations (i1, j1) and (i2, j2) respectively,

we only need to sum over the partial loss values for all possible configurations

regarding the two neighbouring simplices. If we define ˆ̀(s, j1, j2, k) to be the partial

loss from a simplex s adjacent to edge (vi1 ,vi2) (that is, s ∈ S(vi1 ,vi2 )) when its

third, off-edge vertex is assigned mutation k (while vi1 is assigned mutation j1 and

vi2 is assigned mutation j2), we thus obtain the following matrix form:

Qi1j1i2j2
= α

∑
s∈S

(vi1 ,vi2 )

K∑
k=1

ˆ̀(s, j1, j2, k). (7)

Here, α is an energy scaling factor that absorbs the KN−3/3 in front of the sum in

eq. 7 (in practice, this KN−3 will turn out to be huge, so adjustment is necessary).

In this form of Q, each entry fixes an edge, and a configuration for both vertices

of this edge. Since Q contains K rows and K columns for each vertex, it is an

NK ×NK matrix.

Lastly, it is important to make sure the QPU returns a result vector x such that

each vertex is being assigned only one mutation in the corresponding configuration

c(x). Since x is binary, this is equivalent to requiring

∀i : 0 =

( K∑
j=1

xij − 1

)2

= −
K∑
j=1

xij + 2
K∑
j=1

K∑
j′>j

xijxij′ + 1. (8)

A straightforward way to enforce this requirement is by adding it as a penalty term

to the loss function with some large constant penalty coefficient λ, as proposed in a
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recent paper on QPU traffic flow optimization [15]:

L̃(S,x) = L(S, c(x)) + λ
∑
i

( K∑
j=1

xij − 1

)2

. (9)

In the QUBO matrix, this directly translates to adding −λ to the diagonal elements

Qijij and adding 2λ to the off-diagonal elements Qijij′ (j′ > j) corresponding to

vertex vi. Provided λ is large enough, this measure guarantees the QPU sets

exactly one of the bits xi1, . . . , xiK to 1, as any infeasible assignment would cause

an increase in loss that would be higher than any possible gain from selecting a

different configuration.

4.2 Algorithm

With an overview of the procedure in our approach, and an explanation of the

QUBO formulation, we can now turn to the algorithm itself. This iterative algorithm

executes the following steps.

1. First, we generate the low-resolution mesh of an initial spherical shape. The

vertices of this shape are conveniently represented as rectangular lattice points

in the (θ, φ) space of spherical coordinates (the radius r may be chosen equal

to unity without loss of generality). The edges of the mesh can then by

found by Delaunay tessellation of this lattice. With the method of Delaunay

triangulation, points in the R2 plane are transformed into triangles so that

there are no other points within the circumscribed circle of each triangle. The

A B

Figure 3. Initial setup for the first experiment with the monopole at (2.5, 0, 0). (A)
Scattering of 300 incoming rays, casted from the monopole, off the spherical surface.
(B) A significant number of rays is reflected backwards, intersecting the microphone.
The rays crossing the microphone in the centre are considered incoming rays and
are not counted towards the recorded sound pressure.
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method is used, for example, to optimize calculation networks for many finite-

element methods. As a result, the triangles of the edge set have the largest

possible internal angles; mathematically speaking, the smallest interior angle

over all triangles is maximized. This feature is very desirable in computer

graphics because it minimizes rounding errors. The algorithm responsible for

computing Delaunay tessellations is explained in detail by Dobkin et al. [26].

Given the vertices and edges in spherical coordinate space, a 3D spherical

shape is constructed by the coordinate map xi = sin θi cosφi, yi = sin θi sinφi,

zi = cos θi. The convex hull of this shape is created around these 3D dots by

drawing a face for all triangles, and the outward normal for each triangle is

calculated. After this initial setup, the sequence of iterations starts.

2. As the first step in each iteration, K vertex mutations are computed for each

vertex. The mutations are chosen probabilistically such that dvij is within a

sphere of decreasing radius Ri = βρit
−µ, with t the current iteration and µ

a constant. That is, each dvij is picked with (uniformly) random tangential

and azimuthal angles, and uniformly random radius in the interval [0, Ri).

Here, ρi is a shape-dependent bound for each vertex, whose purpose is to

prevent the shape from becoming chaotic1. The factor β acts as a control

parameter setting the step size of the algorithm. Furthermore, in addition

to this (1,K)-like search method (in analogy to (1, λ) search in evolutionary

strategies, with selection occuring in step 5), we implement an option for

(1 + [K − 1]) search by allowing dvi1 = 0 for all vertices i.

3. For each simplex s, we compute the K3 partial loss values ˆ̀(s, i, j, k). These

are determined by casting a set number of rays towards that simplex when its

first vertex is in mutation i, its second in mutation j and its third in mutation

k, and counting the fraction of rays that hits the rectangular microphone

plane.

4. From these partial loss values, the NK×NK-size QUBO matrix Q is computed

as defined in the previous section. This matrix is then submitted to the QPU.

5. The QPU returns an NK-size bitstring x containing the preferred mutations

of each vertex that yield minimal loss among all configurations. As mentioned

in section 4.1, this bitstring is of the form [x11, x12, . . . , x1K ; x21, . . . x2K ; . . . ;

xN1, . . . , xNK ], where for each vertex i, only one of the bits xi1, . . . , xiK is 1,

1By chaotic we mean the shape having too sharp corners, vertices extruding too far from the
shape, edges intersecting other simplices etc., as well as the shape generally containing too many
or too deep concavities. In practice, ρi is determined by a soft convexity constraint which ensures
that, as long as β ≤ 1, moving a vertex vi by a distance Ri in any direction will approximately
retain the convexity of the shape. Since preserval of the convexity from the viewpoint of one vertex
depends only on its neighbour vertices (and itself), ρi is defined precisely by the position of vi and
the position of its neighbours.
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indicating the chosen preferred mutation for this vertex, and the others are 0.

The shape is subsequently adapted according to this bitstring.

6. Steps 2–5 are repeated as often as necessary.

In the following, we show and discuss some of the resulting shapes that we have

obtained from running this algorithm.

5 Experimental results and discussion

In our first experiment, we consider the situation with the monopole source sitting at

(2.5, 0, 0). The microphone is at x ≈ 2 and is approximately bounded by y ∈ [−2, 2],

z ∈ [−1.15, 1.15]. See figure 3. We run the algorithm with K = 3, β = 0.7 and

µ = 0.18. At this point, we conduct (1,K) search by having the routine choose

dvi0 randomly, as described in section 4.2. For the computation of the partial loss

values associated with the triangles, we sample 50 rays casted toward each triangle.

It must be noted that often either all or none of the rays end up intersecting the

microphone plane; however sampling more rays reduces potential variance in the

partial loss calculations, making the algorithm more robust.

The resulting shape as determined by the algorithm is shown in figure 4. As one

can see, the algorithm is successful in achieving its goal of minimizing the sound

pressure, expressed in the amount of sound rays, at the microphone. It has found

a way to adjust the front triangles such that each ray will either scatter in the

A B

Figure 4. Result after running the algorithm with the monopole at (2.5, 0, 0) (see
figure 3). (A) The resulting shape. Again, rainbow colours are used for visual
support. The shape displays a sharp edge at the front, giving it a streamlined
structure. (B) Rays scattering off the new shape. All rays are directed around
the microphone plane in one way or another, as can be seen from the fact that no
outgoing ray intersects the microphone plane.
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negative x direction or, if scattered backwards in the positive x direction, travels

around the microphone plane. This is clearly a consequence of the sharp tip the

shape has obtained, which was absent in the case of the sphere.

It is worth noting that the rear of the sphere, at the far away end from the

microphone, was deformed into a seemingly random structure. This is caused by the

fact that no rays would hit this side in the first place; as such the quantum algorithm

has no information about it (meaning the quadratic QUBO entries corresponding

to those triangles are zero) and will choose a random vertex in each iteration. As

such, it would make sense, in a further version of this algorithm, to prune these

} Flattened

Extruding

A B

C D

Figure 5. Results and comparison after executing the algorithm with the monopole
at (0, 3, 2) with a lower step size. (A) At first, before shape adjustment, rays intersect
the microphone at three positions: at the upper left, at the upper right and slightly
to the left of the centre. (B) The shape returned by the optimisation algorithm
now reflects the rays, which would initially hit the corners of the microphone, away
from it. However, the centre rays seem to remain in place. (C) Partial loss shading
of the initial sphere. Dark green triangles reflect no rays towards the microphone,
while a darker shade of red indicates higher partial loss. Shade is normalised to
the maximum partial loss of any triangle. (D) The final shape. One can see that
the right side of the shape has been flattened, having an extruded point, which
contributes to reflection away from the microphone.
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triangles in order to allow processing of more detailed shapes (containing more

elements) on the QPU. In this work, however, we chose not to do this as our wish

was to investigate the effect of the algorithm on the entire shape. After all, our

problem was inspired by external vehicle mirror design, which does not allow for

cut shapes. The values for β and µ were chosen by trial-and-error search, by testing

a small set of combinations covering β ∈ [0.3, 1.0] and µ ∈ [0.15, 0.20]. We noticed

that a too low step size renders the algorithm incapable of sufficiently adapting

the shape within the given number of iterations, as it usually gets stuck in a local,

suboptimal point, which cannot be optimized any further. This seems to occur in

particular with (1 + [K − 1]) search. On the other hand, a too high step size usually

(especially in the case of (1,K) search) produces a too irregular shape. A good

example showing the consequence of choosing a too low step size can be seen in

figure 5. Here, we moved the monopole to (0, 3, 2) and chose a step size control

β = 0.3. We observe that although two sources of loss have been eliminated, one

seems to be persistent. The result in figure 5(d) with only two triangles having

nonzero partial loss (which, even though not shown in the figure, is lower than

that of the sphere in fig. 5(c)) is most likely considered as a local optimum by the

algorithm, meaning it chooses not to depart from there.

6 Conclusions

In this work, we have presented a finite-element method for optimizing a three-

dimensional shape under given physical criteria. By formulating an approximation

of this finite-element problem in a QUBO form, and by embedding the corresponding

matrix on the QPU as specified, we have been able to show that it is possible to

successfully carry out finite-element design optimization on a D-Wave QPU. We

have shown that by supplying an initial shape we can optimize the geometry to

minimize a specified quantity, such as sound pressure, at a target area around the

shape or the vibration of single elements, and in the same instance partially preserve

the geometry. This is important, as if we supply the design of an outside mirror

of a vehicle and intend to minimize the noise at the passenger’s positions, we still

want to end up with a design that captures all the properties a mirror must have.

Furthermore, we have demonstrated how to usefully combine the computing

power of a classical computer with that of a quantum computer. That is, we

calculate the sound pressure on an initial geometry classically and have the QPU

solve the problem prepared on the classical computer. It is this combination of

CPU and QPU efforts that in the end yields the desired solution.
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7 Future work

For the next version of the algorithm, we intend to find a formulation that will

incorporate additional constraints on the final shape. In addition, we would like

to add wave behaviour corrections to increase the degree of realism in the model,

or alternatively, discard the ray-casting approximation and find a way to model

sound waves directly. Additionally, we wish to explore scalability of the algorithm,

as we should be able to process shapes with more elements by splitting the QUBO

matrix with the qbsolv decomposing solver tool [27], instead of having the D-Wave

software find minor embeddings for shapes with few elements. This will be of use in

the future, when we expect new D-Wave QPU generations. With these new chips

having more couplers between the qubits, we will be able to embed shapes with

more elements and hopefully determine smoother geometries. We will continue to

focus on laying the foundation for solving practically relevant problems by means of

quantum computing, quantum simulation, and quantum optimization [16,17,28–33].

Acknowledgments

Thanks go to VW Group CIO Martin Hofmann and VW Group Region Americas

CIO Abdallah Shanti, who enable our research.

References

[1] Marcello Benedetti, John Realpe-Gómez, Rupak Biswas, and Alejandro
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