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Chapter 1

Adaptive immunity

We are in constant battle against pathogens, and throughout evolution our bodies 
have developed sophisticated mechanisms to protect us. Our immune system 
consists of two branches to prevent, cure and suppress infection1,2. As immediate 
defense, the non-specific innate immune system recognizes and responds to 
pathogens in a generic fashion. Recognition of danger- or pathogen-associated 
molecular patterns (DAMPs or PAMPs) induces inflammation, membrane attack 
and phagocytosis of pathogens3. Common PAMPs that trigger innate immunity 
are motifs not found in vertebrates, such as dsRNA, glycans, lipopolysaccharides 
or endotoxins. DAMPs can be host-derived constituents, such as DNA or RNA, 
that are normally contained in the nucleus or cytosol. The second branch of 
the immune system, adaptive immunity, is acquired throughout life4. This highly 
specialized response is the main focus of this dissertation. Its key mediators 
are B (bursa-derived) and T (thymus-derived) lymphocytes, which are typically 
activated by specific antigens5. In contrast to the immediate and short-lived 
innate immune response, the adaptive response results in long-term protection 
by creating immunological memory following the initial infection6. 

To evoke potent adaptive responses against pathogens without inducing 
auto-immunity T cells must be able to distinguish between ‘self’ and ‘non-self’ 
antigens. The first step in the generation of functional T cells is positive selection 
by matching cell surface receptors, such as CD4 and CD87. Those that match 
undergo a second round of (negative) selection: self-reactive T cells are deleted, 
thus preventing autoimmunity and establishing central tolerance8. Stringent 
selection assures that only cells with functional T cell receptors (TCRs) that are not 
auto-reactive will leave the thymus. But before doing so, they downregulate one 
of the two coreceptors, maturing into either CD4+ (T helper) or CD8+ (cytotoxic) T 
cells9. Aberrations in T cell selection mechanisms can result in immune deficiency 
or autoimmunity, often causing severe disease. 

Cell-mediated immunity
In adaptive immunity two pathways are distinguished: cell-mediated and 
humoral. The first adaptive immune pathway allows the immune system to catch 
a glimpse inside most cells for signs of infection or mutation and to take action 
if needed. The pathway is mediated by major histocompatibility complex (MHCI) 
class I molecules that present peptides derived from intracellular proteins on the 
surface of all nucleated cells (Fig. 1, left panel)10. CD8+ T cells scan the repertoire of 
peptide-MHCI (pMHCI) complexes and, when they recognize peptides originating 
from viral or mutated (onco)proteins, set a cytotoxic response in motion11-13. 
The majority of peptides presented by MHCI are the product of proteasomal 
degradation of proteins that have fulfilled their function and are no longer 
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needed, but about 30% of newly synthesized proteins is degraded immediately 
after synthesis, as a result of defects in protein transcription, translation or 
folding14-16. Presentation of fragments derived from these proteins, collectively 
termed defective ribosomal products (DRiPs), allows processing and display of 
even long-lived proteins to CD8+ T cells as soon as 1.5 hours post infection, thus 
accelerating the detection rate of infection17. A more recently discovered source 
of T cell epitopes is protein splicing: protease-mediated transpeptidation by the 
proteasome18,19. This ligation of peptide fragments broadens the repertoire of 
presented peptides by extending past the expressed peptidome20,21.

Peptide fragments generated by the proteasome are transported into 
the endoplasmic reticulum (ER) by the transporter associated with antigen 
processing (TAP), where MHCI molecules await to be loaded22. Peptide receptive 
MHCI is assembled in the ER as a heterodimeric complex unstable in the absence 
of peptide and thus requires stabilization by chaperones23. Upon loading of a 
cognate peptide, typically comprised of 8-10 amino acids, MHCI acquires enough 
stability to be released from the ER and transported to the cell surface, where 
it can present its peptide to CD8+ cells. When a naïve CD8+ T cell encounters a 
non-self antigen, it becomes activated, resulting in proliferation of the antigen-
specific T cell and lysis of the antigen-presenting cell. After an infection is 
cleared, most mature CD8+ T cells undergo apoptosis, but a few remain in the 
form of memory T cells6. In general, the initial response is slow, while the one 
initiated from memory progresses much quicker. Hence, in case of challenge with 
a previously-encountered virus or pathogen, the infection is likely to be cleared 
even before symptoms occur. 

Humoral immunity
The second adaptive immune pathway protects the extracellular space (body 
fluid – humor) and is mediated by MHC class II complexes (MHCII). These present 
antigens derived from extracellular proteins on the surface of professional antigen-
presenting cells (APCs), such as dendritic cells (DCs), B cells and macrophages 
(Fig. 1, right panel)16. APCS can internalize proteins in various ways, including 
receptor-mediated endocytosis (B cells), phagocytosis (DCs) or macropinocytosis 
(macrophages)24. In lysosomes the proteins are cleaved into peptides, generally 15-
24 amino acids in size, which can bind to major histocompatibility complex class 
II (MHCII) molecules in late endosomes25. Endosomes carrying peptide-loaded 
MHCII complexes are then transported back to the cell surface for presentation 
to CD4+ T cells. Upon binding of non-self antigens, CD4+ T cells become activated, 
inducing the release of cytokines that stimulate clonal expansion of B cells, thus 
promoting antibody production. Antibodies are subsequently released into the 
plasma, where they can bind cognate antigens. By doing so, antibodies are able 
to confer protection through three main modes of action: inhibiting infectivity 
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or toxicity by binding proteins on the pathogen’s cell surface to neutralize 
them; marking a pathogen for phagocytosis; or activating the innate classical 
complement pathway.

The pathways described above are not strictly distinct: certain APCs can also 
process and present extracellular peptides on MHCI in a process referred to as 
cross-presentation. This is particularly useful for protection against pathogens 
that have developed strategies to evade immune detection26. For example, some 
herpes viruses produce specific proteins to interfere with host protein synthesis, 
mainly targeting those involved in MHCI antigen presentation and thus escaping 
detection by CD8+ T cells27. Through cross-presentation of endocytosed antigen 
fragments on MHCI (that would normally be presented on MHCII) CD8+ T cells 
can still get activated. It is apparent that primarily DCs are capable of cross-
presenting, but the exact mechanisms by which cross-presentation occurs are still 
under debate28. Various mechanisms have proposed, yet many questions remain 
unanswered.

Immune response in three signals
TCR activation by recognition of an antigenic peptide on MHCs is only the first of 
three signals required for mounting a full-blown immune response29. Whether or 
not a peptide is presented to its matching T cell depends on a number of factors. 
Firstly, peptides processed by the proteasome and downstream peptidases 
need to be of compatible size. Peptides presented by MHCI are typically nine 
amino acids long, while the proteasome generates peptides of various lengths. 
Peptides, which are too short (less than seven amino acids), will not interact with 
TAP and will therefore not be translocated to the ER lumen30. On the other hand, 
long peptides (more than sixteen amino acids) will require further trimming 
by peptidases to enable efficient loading onto MHCI31,32. Secondly, the peptide 
sequence needs to match one of the expressed MHCI allotypes23. Lastly, the 
affinity of the peptide for its cognate MHC allele should be sufficient to sustain 

Figure 1. Schematic representation of major histocompatibility complex (MHC) class I and 
class II-mediated antigen presentation.
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presentation at the cell surface and prevent exchange for exogenous peptides33. 
The frequency of a specific T cell clone in circulation is generally low prior to 
encounter with its cognate peptide, so it could take a while before a presented 
antigen comes in contact with the right CD8+ T cell. Once a peptide manages to 
reach the cell surface—on average a chance of 1:200—the pMHC is ready to be 
scrutinized by passing T cells34. TCRs interact not only with the exposed residues 
of the peptide, but also with the residues on top of the two α helices, which make 
up the MHC’s binding groove. This interaction is highly selective: a TCR will only 
be potently activated by a specific combination of peptide and allele33,35. This 
feature is referred to as MHC restriction, which is essential for mounting an 
appropriate immune response, while maintaining self-tolerance36. 

Researchers only learned in the late 1980s of a second immune signal, 
provided by costimulation predominantly through the B7-1/B7-2:CD28 pathway37. 
The CD28 receptor is expressed on 95% of CD4+ T cells and 50% of CD8+ T cells, 
and constitutively on naïve T cells in humans38. Engagement by costimulatory 
ligands B7-1 (CD80) or B7-2 (CD86) on APCs provides the signals needed for T 
cell activation and survival, including production of the master regulator of T cell 
activation, IL (interleukin)-239-42. A second costimulatory factor in the B7:CD28 
family is CD28 homologue ICOS (inducible costimulator) and its ligand ICOS-L 
(B7h), a homolog of B7-1 and B7-243,44. ICOS is expressed on TCR-activated CD4+ and 
CD8+ T cells and upregulates expression of helper T cell (Th)1- and Th2-polarizing 
cytokines, but in contrast to CD28, it does not activate IL-2 production43,45. ICOS 
and CD28 seem to work synergistically to regulate CD4+ T cells40. In absence of 
costimulation, T cells activated by pMHCI will become anergic, although in some 
cases, when the interaction between pMHCI and TCR is very strong, T cells may 
remain activated, resulting in peripheral tolerance46,47. 

Although proliferation of naïve T cells can be initiated when TCR and CD28 
signals are present, a productive response will only be established once specific 
cytokines are produced48. Cytokines that provide this third immune signal, 
required for proper development of CD8+ T cell effector and memory functions, 
are IL-12 and type I interferons (IFNs)29,49. For CD4+ T cells, IL-1 can be considered 
a general third signal, in addition to cytokines that prompt differentiation into 
one of the Th subsets, such as polarization towards Th1 or Th2 by IL-12 and IL-4, 
respectively50-52. 

MHC structure and function

The functions of the two classes of MHC are similar: presentation of peptides to 
the immune system, but what peptides they present, in which tissues and to which 
cells differs between the classes. In short, MHCI presents peptide fragments 
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derived from intracellular proteins to CD8+ T cells, resulting in a cytotoxic 
response against cells expressing an immunogenic antigen. MHCII, on the other 
hand, is only found on dedicated antigen-presenting cells and can activate 
CD4+ T cells, leading to a B cell response. MHCI and MHCII both consist of two 
immunoglobulin (Ig)-like domains topped by two α helices53-55. MHCI consists of 
one long heavy chain, the α-chain, that forms an Ig-like transmembrane domain, 
α3, and the α1 and α2 domains that comprise the peptide-binding groove. The 
second Ig-like domain is provided by the light chain β2m, which associates non-
covalently with the heavy chain. In MHCII, heavy chains α and β combine to form 
the α-helices of the peptide-binding groove. Both chains harbor Ig-like domains 
(α2 and β2) that anchor the complex in the membrane. The groove of MHCI is 
closed at both ends wherein only short peptides of 8-11 amino acids can fit, 
whereas MHCII has an open groove able to accommodate peptides in the range 
of 15-24 amino acids56-58. These structural features dictate binding of certain sized 
peptides in general, but exact sequences depends on other factors described in 
more detail below.

MHC polymorphisms
The three major groups of human MHC genes, referred to as HLA (human 
leukocyte antigens) class I, II and III, are located on chromosome 6, together with 
many more immunity-associated genes59. Unlike the HLA class I and II regions, 
the gene-dense HLA class III region has been poorly defined60. The HLA class I 
gene region contains three loci coding for the classical HLAI proteins involved 
in antigen presentation, HLA-A, HLA-B and HLA-C61-64. Classical HLA class II 
proteins HLA-DR, HLA-DP and HLA-DQ are also expressed from three loci. The 
loci coding for the HLAI heavy chains are among the most polymorphic in the 
human genome, meaning that they contain many variations in their sequence, 
generated by mutation, recombination and gene conversion65,66. Different 
allotypes have evolved with selection pressure, yielding a distinct distribution of 
allele frequencies across the globe67-69. Individuals can carry three to six different 
MHCI allotypes and three to twelve different MHCII allotypes, depending on the 
inheritance of their parents33. The majority of single nucleotide polymorphisms 
and deletion/insertion polymorphisms are found in the regions that code for 
the peptide-binding groove, resulting in differences in nature and location of 
binding pockets, and consequently preferred peptide motifs per allele65,70-72. 
Since only peptides with a matching motif get presented, expressing multiple 
allotypes allows presentation of more fragments derived from the same protein 
and hence provides widespread protection against numerous pathogens. There is 
an obvious heterozygote advantage, explaining why expression of MHC genes is 
even suggested to play a role in mate selection73-75. 

Over the years, vastness of information on MHC ligands and motifs has been 
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gathered in online databases, with SYFPEITHI and the IEDB (Immune Epitope 
Database) containing the largest collections76,77. The discovery of new alleles 
has greatly advanced since the development of Next-Generation Sequencing, 
resulting in the identification of over 15,000 subtypes registered in international 
databases64,78,79. These data are extremely valuable for immunogenicity research 
and the transplantation community80,81. For instance, using the data available, 
HLA types of donors and patients can be matched to increase survival rates of 
hematopoietic stem cell transplant recipients82,83. This is important because 
mismatch of only a single nucleotide polymorphism could affect the outcome of 
a transplant. 

Peptide affinity and T cell activity
Which peptides can stably associate with the MHCI heavy chain depends on 
the interactions of the binding groove residues with the peptide backbone and 
occupation of defined binding pockets by the peptide side chains84-86. HLA-A, -B 
and -C heavy chains form six binding pockets, named A-F, that can accommodate 
a peptide’s amino acid side chains87,88. Generally two amino acids, referred to 
as the anchor residues, position the peptide by docking in the pockets. Because 
theoretically any peptide with a matching motif will fit a certain allotype, 
predicting which peptides will strongly bind is extremely challenging. 

The use of algorithms to predict peptide affinity in silico, such as those used 
by SYFPEITHI, IEDB and NetMHC, facilitates epitope prediction76,89,90. Although 
they provide an indication of binding strength, computational tools alone often 
fail to accurately predict immunogenicity. For a long time it was assumed that 
a high peptide affinity results in prolonged presentation to T cells, and hence 
in increased immunogenicity. Gradually, however, it became clear that binding 
affinity of a peptide to an MHC is not the only determinant for immunogenicity91-93. 
This is illustrated by a study by Speiser et al., who directly compared vaccination 
with wild-type melanoma antigen EAAGIGILTV or a higher-affinity altered peptide 
ligand (APL), ELAGIGILTV94. They found that, although more T cells were induced 
by vaccination with the APL, quality of the response in terms of tumor reactivity 
and T cell activation in vivo was higher after vaccination with the wild-type 
ligand. A similar observation was made by McMahan et al, who investigated T cell 
responses in mice with CT26 colon cancer95. When comparing vaccination with 
tumor-associated antigens or APLs, they observed proliferation of tumor antigen-
specific T cells and elevated IFN-γ in response to the high-affinity APLs, but this 
did not correlate with anti-tumor immunity. Although a certain affinity is required 
for efficient loading in the ER, other factors, such as stability, conformational 
flexibility and formation of the immunological synapse, are also important 
determinants for T cell activation92,93,96-99. More recent epitope prediction tools 
therefore also include pMHC stability as an extra parameter100,101. 
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Passing T cells may sample various antigens, but will only respond to ligands 
with a certain affinity102,103. The TCR-pMHC contact should last long enough to 
induce signaling, but short enough to allow serial engagement and activation 
of multiple T cells104. Because infected or mutated cells do not always express 
many copies of an antigen, for example due to downregulation of MHCI or other 
proteins involved in antigen presentation, sometimes only a few peptides survive 
the journey to the cell surface. Activation of multiple T cells by one pMHC-
complex amplifies the immune stimulus, thus ensuring high sensitivity needed 
to respond to low-frequency peptides. Of course this can only be accomplished 
if the association and dissociation kinetics of the TCR-pMHC interaction occur at 
a reasonable rate. This is in line with the observation that TCR affinity for pMHC 
is generally low, in the micromolar range105. Serial engagement becomes less 
important when density of a certain pMHC is high, thus an optimal half-life seems 
to only be required for low-density pMHCs106. 

MHC and disease 
Predisposition to certain infectious, inflammatory or autoimmune diseases is 
known to have a genetic origin, in many cases located in the MHC genes107-112. An 
estimated 5% of the population suffers from autoimmune diseases, which include 
the well-known type I diabetes, multiple sclerosis and rheumatoid arthritis, all 
diseases that have been extensively studied in relation to MHC113-118. In the past few 
decades increasing numbers of HLA subtypes have been reported in concurrence 
with other autoimmune diseases not initially linked to MHC, such as celiac 
disease, systemic lupus erythematosus, ulcerative colitis, Crohn’s disease and 
ankylosing spondylitis119-123. The latter example is associated with expression of 
HLA-B*27:05124,125. It was discovered as early as 1973 that this subtype is expressed 
in 85-90% of ankylosing spondylitis patients, but how it relates to development 
of the rheumatoid disorder is still unknown124-126. Strikingly, individuals expressing 
the closely related HLA-B*27:09 do not develop the disease, although the two 
subtypes only differ in residue 116 found at the bottom of the F pocket (Asp 
in HLA-B*27:05 and His in HLA-B*27:09)127. Crystal structures of the two alleles 
complexed with the same peptide are virtually indistinguishable, however, 
molecular dynamics simulations show that the flexibility of peptide-bound 
HLA-B*27:09 is much higher than that of HLA-B*27:05128. This implies that peptide 
dynamics may play an important role in the activation of T cells, and molecular 
dynamics studies should therefore be included in the experimental data used to 
build prediction algorithms129,130.

In some cases, combinations of MHCI and MHCII alleles convey a predisposition, 
such as the additional effect of HLA-A*3 on the HLA-DR15-associated susceptibility 
to multiple sclerosis120. Often, even though a genetic association is established, the 
mechanism by which a given HLA allotype confers protection or causes disease 
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is unknown. Understanding the basis of these associations can help advance 
personalized disease prevention and treatment131. 

A few relevant mechanisms can be envisioned, of which undesirable 
presentation of self-peptides or altered self-peptides is perhaps the most obvious. 
Alternatively, the association may have nothing to do with peptide presentation, 
but instead may affect the T cell repertoire, including regulatory T cells. Or there 
could be no effect at all, but the allotype could just be in linkage disequilibrium 
with another disease-causing gene and therefore act as a marker. 

Altered self-peptides may arise from mutated proteins, but can also be derived 
from post-translationally modified proteins132,133. The latter appears to be the 
case with type 1 diabetes, where a number of modifications present on peptides 
have been found to trigger autoimmune responses134-136. In addition, citrullination, 
a post-translational deiminaton of arginine to form citrulline, is the hypothesized 
culprit in development and progression of rheumatoid arthritis137,138. Specifically, 
evidence points to dysregulation of protein citrullination in the rheumatoid 
joint, resulting in hypercitrullination and concurrent loss of tolerance139. Anti-
citrullinated protein antibodies are detectable in early stages of the disease 
and hence provide valuable diagnostic and prognostic markers for rheumatoid 
arthritis140,141. 

Certain MHC alleles are not directly associated with disease, but with 
susceptibility to adverse drug effects, ranging from mild skin reactions, fever 
and nausea to even fatal reactions upon re-exposure142,143. Patients are often 
genotyped for risk alleles prior to starting treatment with a drug known to have 
an association144. One of the best known HLA-related adverse drug effects is T 
cell-mediated hypersensitivity to treatment with abacavir, a nucleoside analog 
reverse-transcriptase inhibitor used to treat HIV145. Treatment with abacavir 
induces high frequencies of reactive CD8+ T cells in individuals expressing 
HLA-B*57:01, but not in those expressing any of the closely related allotypes 
HLA-B*57:02/03 or HLA-B*58:01, which only differ from HLA-B*57:01 in three or 
four amino acids, respectively146. A crystal structure of HLA-B*57:01 complexed 
with abacavir and an immunogenic peptide shows that abacavir binds specifically 
in the F pocket of HLA-B*57:01 and may alter the specificity of the MHC to allow 
binding and presentation of self peptides147-149. 

Cancer immunotherapy

According to its definition, i.e. ‘treatment designed to produce immunity to a 
disease or enhance the resistance of the immune system to an active disease 
process’, immunotherapy has been around for centuries, with first evidence of 
inoculation with smallpox dating from tenth century China150. Examples of 
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modern day immune-activating therapies are vaccination or immunization, 
whereas immune suppression is used to treat autoimmune diseases or prevent 
transplant rejection. A role for the immune system in the clearance of cancer has 
been studied for decades, and this has led to the perception that primary tumor 
development, especially of cancers that are virus-induced, is suppressed by the 
immune system151-155. As long as the ‘cancer immunity cycle’ proposed by Chen 
and Mellman functions properly, even distant tumor cells are eradicated156. Those 
sporadic tumors which escape, likely develop mechanisms to induce tolerance, 
for example by promoting expansion of anergic CD8+ T cells or induction of 
CD4+ T cells157-161. Immunotherapy may then restore the cycle and concurrently 
reestablish anti-cancer immunity. 

The advance of DNA and RNA sequencing techniques has made it possible to 
identify tumor-associated mutations or aberrations, and to target these to cure 
disease. Several therapeutic strategies targeting T cell immunity are described in 
the next sections and in more detail in Chapters 2, 3 and 4. 

Peptide vaccines
The majority of cancer immunotherapy efforts involve vaccination, which is not 
surprising in light of historical achievements of vaccination to prevent or cure 
disease162. Despite this potential, only minor successes have been accomplished 
using preventive or therapeutic vaccines as anti-cancer strategy163,164. Preventive 
vaccines are designed to induce humoral immunity through engendering a pool 
of memory B cells and antipathogenic antibodies. On the other hand, therapeutic 
vaccines are designed to treat an established disease by activating cellular 
immunity through T cells. Preventive vaccines are primarily employed against 
cancers caused by viruses, such as in the case of the human papilloma virus vaccine 
used to prevent cervical cancer165. The first generation of therapeutic vaccines, 
consisting of adjuvants or microbial or tumor preparations, was not particularly 
specific and chiefly aimed at establishing an inflammatory environment166. 
Current anti-cancer vaccines are more specific, comprising antigens released by 
tumors often complemented with adjuvants167. Vaccination with epitope-based 
peptides to specifically induce relevant T cells targeted to infected or mutated 
cells potentially provides effective prevention or treatment of infection or cancer. 
Peptide vaccines are usually aimed at activation of CD8+ T cells, because of 
their cytolytic activity directly targeting cells that present the antigen, also at 
distant sites. Antigenic peptides can be self or non-self when cancer is caused 
by viruses168-170. Self-antigens can originate from highly upregulated proteins 
necessary for tumor growth and formation, peptide splicing by the proteasome 
or tumor-associated antigens such as melanoma-associated antigen (MAGE) or 
cancer testis antigen 1 (CTAG1, also known as NY-ESO-1)169-174. In many cases the 
TCR affinity for these self-antigens is low, which is why they could escape negative 
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selection175,176. Vaccination with such self-antigens supports T cell activation, 
augmenting anti-tumor responses.

Neoantigens are mutated self-antigens that arise from tumor-specific 
somatic DNA mutations177. Because neoantigens are not expressed in healthy 
tissue, vaccination induces only tumor-specific responses178. It is not difficult to 
imagine that for this reason neoantigens are hot targets in the development 
of cancer immunotherapeutics179,180. Spontaneous immune recognition of 
neoantigens is inefficient, for tumors are poor antigen-presenting cells, but anti-
tumor immunity can be greatly enhanced by neoantigen-based vaccination181. 
Many pharmaceutical companies endeavor to discover neoantigens that can 
be exploited for treatment options182,183. Multiple modes of neoantigen-focused 
treatment have been successfully demonstrated, including vaccination with 
peptides or neoantigen mRNA, or adoptive transfer of neoantigen-specific  
T cells184,185. Since neoantigens are patient-specific, their identification needs 
to be performed on an individual basis. Somatic mutations can be discovered 
through sequencing and comparison of expression profiles between healthy 
and tumor tissues. Using binding algorithms, transcribed neoantigens may be 
matched to MHCI or MHCII to predict presented neoantigens186-188. Only a few of 
these predicted neoantigens will actually be expressed and presented on MHCs 
and even fewer will be immunogenic189,190. Therefore, screening of T cells using 
neoantigen-loaded MHC multimers, as described in Chapter 7 of this thesis, or 
validation by peptide elution, is necessary to reveal true neoantigens191,192. 

Despite 20 years of peptide vaccine studies and numerous clinical trials, 
none have made it to the clinic yet193,194. Peptides alone are poorly immunogenic 
and consequently improving the immunogenicity of known MHCI antigens 
by altering amino acid sequences has been the central focus in the field195-198. 
Substitutions are primarily introduced in the anchor positions, to increase the 
number and quality of the interactions in the binding pockets, while the central 
amino acids are kept unaltered. Mutating the central amino acids can result 
in hyperstimulation of T cells with the risk of inducing a pool of T cells that is 
reactive against the altered peptide, but not the wild-type epitope199. This off-
target activation can even be caused by modifying only the anchor residues, since 
they can induce conformational changes in both MHC and peptide, thus altering 
T cell reactivity130. Design of APLs that contain not only the 20 proteogenic amino 
acids, but also amino acids with chemically-modified side chains is elaborated 
upon in Chapters 2 and 3.

One of the reasons for low efficiency of peptide vaccines is the absence of the 
second signal required for immune activation; namely, costimulation. Peptides 
presented by MHCI are usually derived from cytosolic or nuclear proteins and 
undergo trimming and loading in the ER. Circulating peptides are internalized 
in endosomes: the archetypal MHC class II compartments. How exactly peptide 
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vaccines administered in the blood eventually end up in class I MHCs on the cell 
surface is not completely understood, but this presumably takes place through 
cross-presentation, exchange on the cell surface or simply by cytosolic uptake 
of cell-permeable peptides200-203. These mechanisms bypass processing by 
professional APCs, such as DCs, and as a result, costimulatory signals necessary 
for activation of T cells are insufficiently provided, which may ultimately lead 
to tolerance47,204,205. Additional immune stimulation can be provided by CD4+ T 
cells. Accordingly, the most successful peptide vaccines to date encompass 
long peptides that contain both MHCI and MHCII epitopes, thus triggering both 
cytotoxic (CD8+) and helper (CD4+) T cell responses204. Long peptides are processed 
by professional APCs and have been found to induce more competent anti-viral 
responses in multiple studies, with anti-human papilloma virus vaccines to prevent 
recurrent vulvar intraepithelial dysplasia as the greatest success story206-209. These 
long peptides ideally contain multiple potential epitopes able to bind various 
MHC allotypes, providing intrinsically broader application. Herein lies also the 
risk of off-target effects, since allotypes differ per individual and therefore the 
epitopes within a vaccine can unfavorably activate T cells in different individuals.

Cell-based therapies
By directly administering autologous T cells, the peptide vaccination step can 
be skipped. Tumor-specific CD8+ T cells can be isolated from peripheral blood 
mononuclear cells or tumor tissue, stimulated and expanded ex vivo, and then 
readministered to specifically attack the tumor210,211. Especially in the treatment 
of melanoma, adoptive transfer of tumor-infiltrating lymphocytes has shown 
remarkable reponses212-215. To further enhance efficacy and tumor specificity, T 
cells can be genetically engineered through lentiviral or retroviral transduction 
or transfection with DNA or RNA to express novel tumor-specific TCRs or chimeric 
antigen-receptors216-218. 

Another cell type that has been successfully used in cancer treatment are  
DCs219-221. They are at the center of antigen processing and presentation 
and activate both CD4+ and CD8+ T cells, providing both activation and 
costimulation222,223. DCs can be used in various ways, but the most successful 
strategies include vaccination with antigens coupled to DC-antibodies (e.g. DEC-
205) or DCs loaded with antigens ex vivo220,224-228. The first therapeutic anti-cancer 
vaccine to get approval from the US Food and Drug Administration (FDA, in 2010) 
is such a DC-based vaccine: Provenge®, also called Sipuleucel-T (Dendreon, Inc.), 
for treatment of prostate cancer229,230. This vaccine contains DCs that are activated 
ex vivo with a prostate cancer-specific antigen, prostatic acid phosphatase, to 
stimulate tumor-specific CD8+ T cells231-233. Especially in these cases it is of the 
utmost importance that antigens are only expressed on tumors to avoid off-tumor 
effects217,234. 
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Checkpoint inhibition
Widespread success and fame of cancer immunotherapy came with the 
discovery of checkpoint inhibition. Inhibitory receptors on T cells, such as 
cytotoxic T-lymphocyte-associated antigen (CTLA)-4 and programmed death 
(PD)-1, are negative regulators of the costimulatory signal necessary for T 
cell activation235-238. The balance between inhibitory and stimulatory immune 
checkpoints ensures optimal immune protection, while maintaining self-
tolerance and preventing autoimmunity239. By blocking inhibitory pathways, the 
brakes on immune responses are released, resulting in a boost of preexisting 
anti-tumor responses240-242. Checkpoint inhibition offers great opportunities, 
especially when treating cancers harboring high mutational burden and thus 
likely to express higher frequencies of neoantigens243-246. For their roles in this 
discovery James P. Allison and Tasuku Honjo were awarded the 2018 Nobel Prize 
for Physiology or Medicine247. The group of Allison was the first to demonstrate 
increased antitumor activity in vivo using antibodies blocking CTLA-4 in murine 
colorectal carcinoma and one year later in murine prostate cancer240,248.  
CTLA-4 is a homologue of CD28 and binds both B7-1 and B7-2, with a higher affinity 
than CD28249. This negative regulation results in inhibition of IL-2 production and 
blocking of cell cycle progression, thus functioning as an immune checkpoint 
to control lymphocyte homeostasis250-252. A quick search for clinical trials shows 
roughly 50 active and 150 recruiting/enrolling trials targeting CTLA-4 as a single 
or combination therapy253. Ipilimumab, a blocking antibody against CTLA-4, has 
demonstrated durable clinical responses and was approved for treatment of 
metastatic melanoma by the FDA and the European Medicines Agency (EMA) in 
2011254,255. 

A wide range of tumors express PD-L1, the ligand for immune checkpoint 
receptor PD-1, thus creating an immunosuppressive environment and escaping 
immune surveillance256-258. Blocking the PD-L1/PD-1 interaction is therefore 
even more effective against cancer than anti-CTLA-4. Indeed, as a monotherapy, 
antibodies against PD-1 cause a remarkable reduction of tumor metastasis spread 
in mice, owing to enhanced recruitment of effector T cells259,260. Their efficacy is 
reflected in the high number of clinical trials targeting PD-1 (almost 200 active 
and over 800 recruiting/enrolling trials) or PD-L1 (almost 200 active and over 500 
recruiting/enrolling)253. Two PD-1 antibodies, nivolumab and pembrolizumab, 
have shown durable clinical responses in various cancer types and have been 
approved by the FDA and EMA261,262. Currently, one PD-L1 antibody, atezolizumab, 
has been approved by the FDA and EMA for treatment of urothelial cancer and 
non-small cell lung carcinoma263. Since PD-1 and CTLA-4 function in different 
stages of immune activation, combination of therapies targeting both pathways 
leads to additive anti-tumor effects264,265. 

CTLA-4 and PD-1 were the first of many targets for immunotherapy and the 
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list is expanding immensely, as depicted in Figure 2. Both negative and positive 
regulators of the immune system are promising targets for cancer immunotherapy 
and autoimmune treatment and are actively pursued by pharmaceutical 
companies266. Combination with other treatment modalities has also led to 
synergistic effects, and consequently many ongoing clinical trials focus on 
combination therapies. Our perspective on the future of cancer immunotherapy 
is elaborately described in Chapter 4.

T cell detection through pMHCI multimers

The study of T cell interactions and specificities has immensely benefited from the 
development of pMHCI tetramers267,268. These tetramers conventionally consist of 

Figure 2. Overview of checkpoint molecules and a selection of current preclinical and 
clinical therapeutics. Green indicates stimulatory- and red inhibitory checkpoint molecules. 
Antibody therapies are depicted in orange; small molecules in dark blue; T cell therapies 
in grey. Arrows represent stimulation and T-bars represent inhibition. Arrow thickness 
corresponds to relative affinity compared to other ligands.
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MHCI monomers that are folded with a specific antigenic peptide, enzymatically 
biotinylated and subsequently multimerized on streptavidin. It is imperative that 
pMHC complexes are multimerized so that they can bind multiple TCRs on their 
corresponding CD8+ T cell, to reduce typically high monomeric dissociation rates 
and remain attached to the T cell during further experimental analysis269. When 
labelled with a fluorophore these tetramers can be used to directly visualize (by 
flow cytometry) T cells specific for the bound antigen in a cell suspension, as 
depicted in Figure 3. Using this technology T cell responses can be quantified, 
characterized and monitored, providing invaluable information on an individual’s 
immune status and responses to treatment270,271. One of the main advantages 
over traditional assays, such as ELISpot (enzyme-linked immune absorbent spot), 
cytokine staining or single-cell PCR, is that cells can even be sorted using FACS for 
further studies272. Besides diagnostics, pMHCI tetramers are widely used to study 
basic principles of ligand specificity, kinetics and dynamics of immune responses 
and employed in epitope mapping273-276. Although MHCII multimer technology is 
improving, considerable efforts are required to reach the same standards as those 
of MHCI multimers277. Progress is hampered by the difficulty to generate stable 
soluble forms of biotinylated MHCII, low frequency of CD4+ T cells in circulation 
and generally low affinities of MHCII peptides272.

Since first reports in 1996 MHCI tetramer technology has markedly improved267. 
A major step towards high-throughput analysis was made by the advance of 
technologies to exchange peptides on MHCI. Because MHCI molecules require 
a peptide (or chaperones) for stability, every specific pMHCI had to be folded 
with the desired peptide, and production of tetramers was therefore laborious 
and costly278. Where at first production of one or a few tetramers would take 
more than a week of work, the development of exchange technologies now 
allows generation of numerous MHCI tetramer variants in parallel. This approach 
involves folding of a large batch of MHCI monomers with a peptide that upon 

Figure 3. Visualization and isolation of antigen-specific T cells using pMHCI tetramers. 
Peptide-major histocompatibility complex class I (pMHCI) monomers are loaded with 
antigenic peptides and multimerized on fluorescently-labeled streptavidin. These reagents 
are widely used for the detection, isolation and characterization of antigen-specific CD8+ 
T cells using flow cytometry. 
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applying a trigger exchanges for a peptide of interest. Various techniques 
have been investigated, utilizing dipeptides or chemicals, such as dithionite or 
periodate, as stoichiometric reagents279-282. One of the most successful exchange 
technologies was developed in a collaboration between the Ovaa and the 
Schumacher labs, and employs UV radiation as a trigger283,284. The peptide used 
for folding contains a central photocleavable amino acid, which becomes cleaved 
upon UV irradiation, resulting in dissociation of peptide remnants and liberation 
of the binding groove for association with a peptide of choice. This approach 
was easily extended to other alleles by incorporating the UV-cleavable amino 
acid in allele-specific epitopes285. More recently, I have developed an exchange 
technology based on temperature, which is described in detail in Chapters 5 
and 6286,287. Unlike UV, which damages proteins and bleaches fluorophores, 
this exchange can be performed on already multimerized pMHCI. Exchange is 
induced by simply warming up the multimers, without the need for chemicals or 
specific lab equipment, and is therefore the easiest and most flexible exchange 
technology available to date. 

In flow cytometry, the maximum number of detectable T cell specificities 
is limited by the number of available fluorochromes. Since sample volumes 
are often small, it is preferred to stain for as many specificities as possible 
in one sample. With development of combinatorial coding the number of 
simultaneously detectable reactivities increased from eight single stains to 28 
dual combinations288. Adopting more complex coding strategies using six colors 
raises the number of detected specificities to 63, but also adds to the complexity 
of spectral overlap289. The most recently published strategy to scale up detection 
uses DNA labels instead of fluorophores290, where pMHCI multimers are 
conjugated to a dextran backbone carrying a unique 25-oligonucleotide barcode 
sequence and a common fluorochrome. After assembly, different multimers are 
mixed and used to stain T cells in a similar fashion to conventional tetramer 
staining. Consequently, fluorophore-labelled T cells are isolated by FACS and 
their associated DNA is amplified and sequenced. This approach allows detection 
of over 1000 specificities in one sample in a high-throughput fashion and can 
be used for screening of epitopes in small sample volumes. First steps towards 
creating thermally-exchangeable DNA-labeled pMHCI multimers are described 
in Chapter 7.
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Scope of this dissertation

The work described in this dissertation highlights how the adaptive immune 
system can be used to our advantage, either from a therapeutic or diagnostic 
perspective. In a therapeutic setting tumor- or pathogen-specific T cells can be 
activated to eliminate mutated or infected cells. Chapter 2 describes the design 
and use of chemically enhanced altered peptide ligands as therapeutic vaccines. 
By modifying their anchoring residues, the affinity of wild-type epitopes to their 
corresponding MHC, HLA-A*02:01, could be markedly increased with the goal 
of improving pMHCI stability and prolonging recognition by antigen-specific T 
cells. The study described in Chapter 3 then sets out to chemically enhance three 
HLA-A*02:01- and three HLA-A*03:01-presented influenza A epitopes, of varying 
affinity and immunodominance, to serve as a preventive vaccine. In vitro and in 
vivo assays demonstrate that affinity and immunogenicity of HLA-A*02:01 epitopes 
could be improved by modifying the anchoring residues, but that immunogenicity 
did not directly correlate with affinity. Peptide vaccines alone may not induce 
full anti-tumor responses, but they efficiently initiate T cell activation, thus 
supporting other immunotherapies. Our opinion on the potential contribution of 
small-molecule drugs is detailed in Chapter 4.

The classic reagents for studying antigen-specific T cell responses are pMHCI 
multimers. Chapter 5 summarizes the development of a novel technique to 
exchange peptides on MHCI multimers. This method, described in a step-by-step 
protocol in Chapter 6, allows the generation of large panels of pMHCI multimers 
in parallel. Implementation of DNA barcoding increases the scale of detectable 
specificities. Such high-throughput approaches may prove particularly useful in 
neoantigen identification, as described in Chapter 7. 

The findings of the research described in this dissertation are recapitulated in 
the final chapter, where we also provide suggestions for future directions.
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