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8
D I S C U S S I O N

This thesis dealt with the discovery of the underlying structure of temporal
processes. The underlying structure of a process can be captured by different
mathematical representations, depending on which aspects one wishes to focus
on. Yet, the task of choosing suitable models to represent a particular real-world
problem is challenging.

In this work, we advocate that the proposed methods based on probabilistic
graphical models are advantageous when solving several real-world problems.
Just as PGMs, the methods introduced in this work can work well under situations
of varied data scarcity and are often interpretable. One advantage of being
interpretable is that insight can often be obtained from such models without a lot
of barriers. Although models such as deep neural networks have been recently
very successful at tasks such as supervised learning, they tend to require higher
amounts of data, large amounts of computational resources (e.g., computing time)
and are considerably less interpretable, characteristics which go in an opposite
direction to PGMs.

8.1 contributions

The central theme covered in this work is the different viewpoints on dynamics
of temporal processes, which we summarize in the following sections.

8.1.1 Asymmetry in models

Hidden Markov models have been used for providing a viewpoint of processes
based on latent variables. In order to increase the problem insight and model fit
that one can obtain from HMMs, we proposed asymmetric HMMs (HMM-As, for
short) in Chapter 3.

HMM-As allow for more expressive representation of observations by capturing
distribution asymmetries (also known as local structure). As a result, HMM-As
often need fewer latent states to achieve model fit at least as good as that of other
HMM models. The parsimonious representation of HMM-As is also valuable in
model interpretation. Due to the large number of variations of existing HMMs, it
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144 discussion

is often difficult to decide which model class would be suitable for the problem
at hand. The flexibility of the HMM-A representation reduces the need for
deciding which class of symmetric and other asymmetric HMMs one should use.
In Chapter 3, we demonstrated the aforementioned advantages of HMM-As by
means of simulated and real-world data from several domains.

8.1.2 Generation of hypotheses on processes

We proposed in Chapter 4 a method that helps the selection of hypotheses
to further investigate about disease processes. This method is semi-automatic
and is based on structured HMMs, particularly with the goal of generating
insight on disease processes. The formulation of outcomes is aided by means
of state reachability that one can build by looking at model aspects such as state
probabilities at different time points. The state reachability notion was shown to
help understanding patient trajectories in a compact way.

A case study of psychotic depression was considered in Chapter 4, for which
hypotheses were generated. One of the main results discussed is that patients
undergoing psychotic depression treatment showed to be sensitive to treatment
based on their initial psychotic symptoms. By using this methodology, new
knowledge about this mental disorder was acquired, which potentially helps
doctors to prescribe more efficient medication in the future.

8.1.3 Capturing hidden (non-observed) aspects of processes

Besides the independence structure of processes given by asymmetric HMMs
(Chapter 3), we investigated in Chapter 5 how to gain insight in health care data
by means of latent-variable modeling. In this chapter we introduced the notion
of cluster of hidden states based on hidden Markov models. Clusters of states
can be learned from datasets with a single event produced at each instant.

Based on health care data from Dutch practices, clusters of latent states were
learned. The clusters were shown to provide additional characterization to the
latent states by suggesting that states from each cluster are correlated to different
patient severity. Ultimately, the results of Chapter 5 also allow for gaining insight
on multimorbidity by analyzing the clusters of states learned for different disease
codes.

8.1.4 Taking into account the size of datasets

Learning insightful models from small datasets is known to be a challenging
problem. In this work, we proposed new methodologies and model classes that
showed to be useful in real-world situations of the limited availability of data. In
Chapter 6, we proposed partitioned dynamic Bayesian networks for representing
dynamic Bayesian networks with regime change over time. A heuristic was
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proposed for identifying regime cut-offs of PDBNs in a parsimonious way, which
favors the situation of small datasets.

Experiments based on simulations showed that PDBNs learned by the pro-
posed heuristic search dealt well with different situations, in particular with
small datasets generated by different underlying models. PDBNs learned from
psychotic depression treatment data provided a better model fit than DBNs and
more insight on the interaction between psychotic and depressive features. Dif-
ferent viewpoints on disease dynamics for psychotic depression treatment were
provided in Chapters 4 and 6 by investigating different variables and problem
aspects.

8.1.5 Temporal subgroups

A new problem called temporal exceptional model mining (TEMM, for short) was
defined in Chapter 7. TEMM aims to discover exceptional behavior associated to
subsets of the data that can be described by a configuration of variables.

We proposed a method that allows for the discovery of exceptional dynamic
Bayesian networks by means of a distance measure and a search algorithm.
The proposed temporal representation allows for more accurate retrieval of
exceptional subgroups than that based on simpler temporal models such as
Markov chains. The method for identifying exceptional DBNs was evaluated
based on real-world process data and was able to discover exceptional subgroups
in a principled fashion. The results were validated in comparison to previous
research, based on different techniques.

8.2 future work

In this section, we discuss limitations and directions for future work that we
believe might be relevant. We also discuss potential approaches that could be
relevant for achieving these goals.

8.2.1 Asymmetry in models

The number of states of HMM-As was selected by a trial and error approach. It
is worthwhile to investigate more principled ways to make this selection. One
alternative is to use infinite HMMs [8] to automatically determine the number of
hidden states. Another alternative is to predict the number of states by means of
Bayesian optimization [156], where the performance (e.g. the goodness of fit) of
each state could be seen as a complex black-box function.

8.2.2 Generation of hypotheses on processes

We would like to apply the hypothesis generation methodology proposed in
Chapter 4 in a more automatic fashion. This means automatizing the selection of
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baseline and target states, the computation of state reachabilities, and so on. This
is already possible given the proposed method, which would likely result in a set
of candidate hypotheses to further investigate.

By applying the method of Chapter 4 to other datasets, it would be possible to
evaluate the effectiveness of automatic generation of hypothesis. The advantage
of using multiple datasets is a more effective evaluation of the effect of different
definitions for selecting baseline and target states, including those definitions
proposed in Chapter 4.

One new challenge that would likely arise by automatizing hypothesis genera-
tion is how to properly assess different hypotheses that would be generated. To
that end, one could benefit from currently available electronic health records [30,
142], which might lead to additional sources of information, such as clinical notes
written by medical doctors (often in natural language). Such data could perhaps
give direction to which hypotheses could be promising to be investigated, e.g., by
assigning some kind of utility to the generated hypothesis.

8.2.3 Capturing hidden (non-observed) aspects of processes

In Chapter 5, the analysis of clusters based on a medical outcome (in this case,
disease counts) was carried out after the clusters of states were identified. We
would like to integrate medical outcomes as part of the models, so that the
relationship with the clusters of states and outcome measure could be direct and
more general, which would allow one to look at such relationship by different
angles. One could consider doing this by integrating such outcomes during
model learning, e.g., by means of covariates along the lines of Input-Output
HMMs [11].

A small number of diagnosis variables was considered when learning clusters
of states based on the case study of Chapter 5. It would be interesting to look at a
larger set of variables and the resulting clusters, which seems a natural extension
to the presented method since health care data often have hundreds or more
diagnosis codes.

To make multimorbidity analysis more effective, we would like to consider
data representations where multiple diseases occur at the same time. This
would, however, result in a significant departure from the modeling assumptions
considered of Chapter 5, as the observation space would likely have several active
variables, which could create the need for a different notion of cluster of states.
The advantage, however, is that multimorbidity could be analyzed in a more
direct way.

8.2.4 Taking into account the size of datasets

We would like to extend PDBNs to make it possible to model recurrent regimes
over time, such that the identified regimes could be seen as states similarly to
HMM states. This could make PDBNs more compact and more explainable
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models. Related research that considers recurrent regimes includes, e.g., gated
networks [10] and DBNs with an HMM-based dependence structure [78].

We also would like to broaden the evaluation of PDBNs by comparing them to
other non-homogeneous models, which are usually based on different assump-
tions. This would allow for evaluating different classes of models under different
assumptions and how they perform when some (or all) assumptions are not met.

8.2.5 Temporal subgroups

In TEMM, no relationship between discovered subgroups is explicitly computed.
Nevertheless, one can argue that some kind of relationship between the discov-
ered exceptional subgroups might exist. One simple example is when multiple
subgroups represent (approximately) the same exceptional behavior, i.e., they
deviate from the population in (approximately) the same way.

By identifying subgroups that are exceptional and yet similar, not only redun-
dancies could be reduced, but also more insight about the problem would be
obtained as to how exceptional behavior might occur. Redundancies could be
eliminated by rejecting specialized subgroups that are similar to more general
subgroups (see, e.g., [112]). Instead of rejecting subgroups, an alternative is to
introduce merge and split operations in the search algorithm. In that case, the lan-
guage for expressing subgroups could be extended to represent other description
patterns beyond pairs of attribute-value, which could allow for a more general
understanding between description patterns and exceptional behavior.

Another research direction that might be worthwhile to explore in TEMM is
what makes a model an exceptional model. While this might be more or less
evident when one deals with exceptional models based on just a few variables
(as in standard subgroup discovery, for example), this is no longer the case
for more complex models such as dynamic Bayesian networks. For DBNs, one
could be interested in knowing whether particular pieces of the model structure
or particular parameters are relevant for explaining why a DBN is considered
as exceptional. Sensitivity analysis [34, 72] might be of help for pursuing this
research direction.

The computation of distributions of false discoveries based on DBNs is expen-
sive. We would like to investigate whether further optimizations can be used
to reduce these computations. One idea is to try to predict new distributions
of false discoveries based on previously computed ones, e.g., by predicting its
parameters such as the mean and standard deviation. One method that might
help is Bayesian optimization [156, 160], as obtaining the distributions of false
discoveries can be seen as evaluating an expensive black-box function.




