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7
E X C E P T I O N A L M O D E L M I N I N G U S I N G D Y N A M I C
B AY E S I A N N E T W O R K S

The discovery of subsets of data that are characterized by models that differ significantly
from the entire dataset, is the goal of exceptional model mining. This task has clear
relevance nowadays, facing the current need for interpretable AI models. In this chapter,
we introduce temporal exceptional model mining to capture not only multiple targets,
but also complex temporal relationships among the targets. Temporal exceptional model
mining opens new avenues for discovering groups that deviate from the crowd, in domains
such as medical treatments and industrial processes, where repeated measurements of a
set of variables might be available. The contributions of this chapter are three-fold: (i)
a new definition of the task of temporal exceptional model mining is provided; (ii) we
characterize the discovery of exceptional dynamic Bayesian networks by means of a new
interestingness score, and (iii) the practical value of the proposed method is demonstrated
based on process data of funding applications and by comparisons with previous EMM
approaches.

7.1 introduction

Subgroup discovery (SD, for short) is the task of identifying subsets of a dataset
that have unusual distributions with respect to a target variable [87]. Subgroup
discovery and clustering have different goals [181] as clustering seeks subsets
of data that are internally homogeneous, while in SD the models that allow
for interpreting differences are sought, as they support explaining why an object
belongs to a subgroup. Interpretability is essential in artificial intelligence, even
with successful, yet less interpretable models as deep neural networks [88, 114],
which justifies the relevance of SD research.

In many real-world applications one has to deal with multiple and complex
targets. This has led to the generalization of subgroup discovery known as
exceptional model mining (EMM, for short) [110]. EMM aims to identify subgroups
with models fitted on the targets that are unusual compared to a reference model
(typically the model fitted on the whole dataset).

The computational burden of SD lies in subgroup search [87], as determining
whether a subgroup is unusual is often straightforward. In EMM, however,
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124 exceptional model mining using dynamic bayesian networks

models over multiple variables are fitted on subgroup data, which results in a
two-fold challenge: (i) the choice of suitable model classes, as model learning
is now an integral part of the framework, and (ii) how to determine whether a
subgroup model is exceptional. This increased complexity has been compensated
by the discovery of useful exceptional models, e.g., based on linear regression
[110], Bayesian networks [57], subgraph mining [9, 100], social networks [4] and
preferences [149].

Remarkably, little research has been done in exploiting temporal submodels for
EMM. Submodels based on Markov chains (MCs, for short) have been investigated
[112], as well as latent variable-modeling by means of hidden Markov models
[161]. In this chapter, we introduce the discovery of temporal submodels by
means of the temporal exceptional model mining task (TEMM, for short), which
is demonstrated by means of dynamic Bayesian networks (DBNs, for short)
as model class. We argue that using DBNs allows for a general and intuitive
representation of subgroups obtained from multiple and temporal observations.
The DBN representation allows for extra, qualitative information that can be
gleaned from the model structure.

The contributions of this chapter are as follows. First, the novel task of temporal
exceptional model mining is defined, which can be seen as a generalization of
previous research in EMM. Then we introduce the usage of DBNs for TEMM by
proposing an interestingness score for identifying exceptional DBNs. Finally, the
proposed methods are demonstrated by analyzing data of funding applications.

This chapter is organized as follows. In Section 7.2, we discuss the related
work. In Section 7.3, we define the task of TEMM. In Section 7.4, we introduce
a distance measure for exceptional DBNs. In Section 7.5 we present a search
approach for exceptional DBNs. The experiments based on simulations and real
data are discussed in Sections 7.6 and 7.7. The conclusions and future work are
discussed in Section 7.8.

7.1.1 Motivating example

We describe next a running example which is also used in experiments with real-
world data. In the European Union, farmers can apply for direct payments [56],
which provide them additional income and incentives for sustainable production.
A funding application is described by Land Area, Young Farmer (yes/no), and
Small Farmer (yes/no). An application is submitted in a Year and is checked for
eligibility by a Department. The work flow of an application is a sequence of
events described by Activity and Doc Type.

We would like to know whether there are applications whose work flow
(i.e. the dynamics of Activity and Doc Type) deviates considerably from the
work flow of the whole population of applications. It could be the case that
applications handled by a certain department take much longer than the average,
or that applications submitted in a particular year have a specific work flow. By
automatically discovering these subgroups, we could learn more about the process,
which could e.g. help the organization to improve the process quality.
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7.2 related work

As a generalization of SD, exceptional model mining [58] is an active area of
research and has been applied to different target variable representations. Earlier
research includes the discovery of exceptional linear regression models [110]
and the discovery of subgroups with Bayesian networks that have significant
structural differences [57]. A more specialized application of EMM is tailored at
sequential problems, yet over a single target, where discrete Markov chains with
significantly different transition patterns have been investigated [112].

The aforementioned EMM research can be seen as parameter-based approaches,
because subgroups are characterized based on the unusualness of some of the
model parameters, e.g. regression slope, network structure, etc. On the other
hand, model-based subgroup discovery [161] is an evaluation-driven approach that
compares the distribution of subgroups by means of proper scoring rules.

Some body of research has dealt with subgroup search, whose aims include
making the search more efficient, reducing the number of redundant subgroups,
etc. Research has been done on providing bounds for some interestingness scores
in the context of numerical targets that can be used for search pruning [111].
Subgroup search has also been formulated in terms of game theory [18], which
allows for guiding the search toward the interestingness of subgroups while
improving the lack of diversity that search might face.

Other extensions to SD and EMM operate on data other than the common
attribute-value data. The approach in [113] is tailored for relational data and can
extract very general structured patterns of subgroups. More recently, exceptional
graph mining [9, 100] has been proposed to allow for the discovery of graph
neighborhoods that are similar internally but exceptional to the general attributed
graph (i.e. graphs with non-trivial vertices such as a list of attribute-value pairs)
[9]. Research has been done on the discovery of exceptional social behavior from
spatio-temporal [98], which helps understand networked interactions (e.g. as in
how people interact in a neighborhood). Recently, EMM has been applied to
finding subsets of data related to exceptional convolutional layers in convolutional
neural networks [167], which might help the interpretation of such models.

7.3 temporal exceptional model mining

In this section we describe relevant background notions and define the task of
temporal exceptional model mining.

7.3.1 Temporal targets

In order to represent subgroups in SD and EMM we define descriptor and
target variables. The set of descriptor variables is a set A of random variables
{A1, . . . , Ak}, where each Ai is a descriptor variable and has a domain dom(Ai).
We denote values of the domain by lower-case letters such as ai ∈ dom(Ai). In
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standard SD, one normally models next to A a single variable X called target
variable, while in EMM a set of targets variables X = {X1, . . . , Xn} is used instead.
For example, in EMM for regression [110], the predictor and response variables
are the target variables.

In TEMM, we assume that the target variables are the result of a temporal
process that changes a set of basis variables X.

Definition 7.1 (Temporal targets). Let X be a set of random variables. We assume
that there is a process that changes X at regular time points, resulting in the variables
X(0), X(1), . . .. The variable X(t)

i denotes Xi at time t, and we denote by X(t1 :t2)
i the

variables Xi occurring from time t1 up to t2. The variables X(t)
i , for t ≥ 0, have the same

domain. We call each X(t) a temporal target.

Based on Definition 7.1, we define the space of variables in TEMM as {A, X(0),
X(1), . . .}. In practice, a data point in TEMM corresponds to configurations of A
and a finite number of temporal targets. Based on this, we consider a multiset D
of data points, where the ith data point is denoted by (a[i], x[i](0), . . . , x[i](mi)), in
which mi is the last temporal target. Thus, each data point of D has a particular
number of temporal targets. An example is given next.

Example 7.1. Consider the dataset for the application described in Section 7.1.1 with
descriptors A = {Year, Department, Number Parcels, Land Area} and targets
X = {Activity, Doc Type}. Table 7.1 shows two data points of this dataset.

7.3.2 Subgroups

A subgroup can be described by different pattern languages [57], depending
on the type of data and the kind of patterns one wants to discover. In spite
of different existing languages (see, e.g., [9, 113]), the attribute-value pattern
language [58, 61, 128] is still very relevant in SD and EMM. In this work, we use
this propositional language, which is defined based on the space of descriptor
variables A as follows.

Definition 7.2 (Subgroup). Let D = {d1, . . . , dm} be a dataset (multiset) with each
record di a collection of variable-value pairs Aj[i] = aj and A = {A1, . . . , Ak}. Let ϕ
denote an expression of the form (Ap1 = ap1 ∧ · · · ∧ Apq = apq), where {p1, . . . , pq} ⊆
{1, . . . , k}. The subgroup associated to ϕ is defined as:

Gϕ =
{

di ∈ D | (Ap1 [i] = ap1 ∧ . . . ∧ Apq [i] = apq)
}

(7.1)

We say that the number of descriptors of Gϕ is q.

We refer to a subgroup defined by the expression ϕ either by Gϕ or by the
expression ϕ itself. For convenience, the domain of a binary descriptor such as A
is denoted by dom(A) = {a−, a+}. For example, an expression (a+1 ∧ a+2 ∧ a−3 )
represents a subgroup with 3 binary descriptors. In Definition 7.2, a subgroup
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Year Department # Parcels Area Activity Doc Type
2016 4e 31 97.8 mail valid Payment application

initialize Geo parcel document
finish editing Control summary
performed Reference alignment
finish editing Geo parcel document
performed Department control parcels
finish editing Geo parcel document
calculate Payment application
decide Payment application
revoke decision Payment application
calculate Payment application
decide Payment application
begin payment Payment application
abort payment Payment application
begin payment Payment application
insert document Payment application
finish payment Payment application

Year Department # Parcels Area Activity Doc Type
2016 e7 37 97.8 mail valid Payment application

initialize Geo parcel document
finish editing Control summary
performed Reference alignment
performed Department control parcels
calculate Payment application
decide Payment application
revoke decision Payment application
calculate Payment application
decide Payment application
begin payment Payment application
insert document Payment application
finish payment Payment application

Year Department # Parcels Area Activity Doc Type
2017 6b 7 9.1 mail valid Payment application

pre-check Geo parcel document
finish editing Control summary
finish editing Geo parcel document
performed Reference alignment
initialize Payment application
finish editing Geo parcel document
calculate Payment application
finish editing Geo parcel document
calculate Payment application
decide Payment application
begin payment Payment application
insert document Payment application
finish payment Payment application

Table 7.1: Data points of a process dataset, with A = {Year, Department,
Number Parcels, Land Area} and X = {Activity, Doc Type}. The tempo-
ral targets correspond to the work flow of events in the order they occurred.
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is a subset of data points of D selected according to a propositional expression
formed by a conjunction of attribute-value pairs. Not all attributes of A need
to be involved in the subgroup expression, hence pq ≤ k. If q = 1 we say that
the subgroup is unitary, otherwise the subgroup is specialized. The subscript ϕ is
omitted from Gϕ if no risk of ambiguity arises.

Each data point of Gϕ is associated to a configuration of temporal targets for
which notation is introduced next.

Definition 7.3 (Subgroup sequences). The subgroup sequences of a subgroup Gϕ of
D are given by:

S(Gϕ) = {x[i](0:mi) | di ∈ Gϕ} (7.2)

The size of subgroup Gϕ is ∑
di∈Gϕ

(mi + 1) and is denoted by |Gϕ|.

7.3.3 Comparing subgroups

In TEMM, a model shall be fitted on the subgroup’s sequences. We refer to the
model fitted on the data S(G) of a subgroup G as its subgroup model. When we
wish to compare subgroups in TEMM, we shall compare the subgroup models
associated to these subgroups, hence this comparison is based on the space of
temporal targets.

The notion of exceptional subgroups involves comparing subgroups based on
some notion of distance. We define a distance notion with some desirable properties
that serves as a basis for the development of distance measures for specific class
of temporal models.

Definition 7.4 (Distance function). Given a multiset D, the distance function between
two subgroups G and H of D is a real number denoted by d(G, H). This distance has the
following properties:

d(G, H) ≥ 0 non-negativity (7.3)

d(G, H) = 0 if G = H weak identity of indiscernibles (7.4)

d(G, H) = d(H, G) symmetry (7.5)

Other properties can be added to the above ones depending on the desired
characteristics of the distance function. For example, by strengthening the second
assumption and adding the triangle inequality, one would arrive at a distance
function that would be a metric. The distance function should, however, be
designed in such a way to support these properties.

7.3.4 Exceptional subgroups

One way to determine whether a subgroup G is exceptional is by considering a
reference subgroup upon which the distance to G can be computed. We introduce
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the notion of exceptional relation next, which has a few desirable properties of
interest.

Definition 7.5 (Exceptional subgroup). Given a multiset D, we define a relation
ex ⊆ 2D × 2D, called exceptionality which has the following properties for two any
subgroups G and H of D:

ex(G, H) =⇒ ex(H, G) (symmetry) (7.6)

¬ex(G, G) (anti-reflexive) (7.7)

If ex(G, H) holds, we say that G is an exceptional subgroup with regard to the
subgroup H.

The precise definition of which subgroups are exceptional depends on the
definition of the distance function. An exceptionality relation will be defined in
Section 7.4.4.

7.3.5 Problem statement

In TEMM, we wish to find all the subgroups G which are exceptional with regard
to the population. One additional requirement is that every exceptional subgroup
G must have a minimal size, i.e. |G| ≥ σ|D|, where σ ∈ [0, 1] is the minimal size
threshold. One can also specify some kind of preference for more specialized or
more general subgroups (see, e.g., [112]).

7.4 exceptional dynamic bayesian networks

In this work, we consider dynamic Bayesian networks [68, 104, 124] as model
class to represent subgroup models. We define a distance function for DBNs
and instantiate it for a scoring function, allowing for the discovery of exceptional
dynamic Bayesian networks.

7.4.1 Dynamic Bayesian networks

Dynamic Bayesian networks extend Bayesian networks for modeling processes
with uncertainty. In this work, DBNs model the temporal targets from Definition
7.1.

In order to keep the model compact, a few assumptions are considered in
dynamic systems such as DBNs. We say that a dynamic system over the temporal
targets X is Markovian if P(X(t+1) | X(0:t)) = P(X(t+1) | X(t)), for all t ≥ 0. This
means that predicting the future state depends only on the current state. Another
useful assumption is the time homogeneity, which holds in a dynamic system if
the transitions P(X(t+1) | X(t)) are fixed for every t ≥ 0. We refer the reader to
Section 2.4 for more details on DBNs.
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7.4.2 Distance function

Definition 7.6 (Mismatch score). Let D be a multiset over {A, X(0), X(1), . . .} and
G, H be two subgroups of D. Further, let us denote by MG and MH the dynamic Bayesian
networks learned from G and H respectively by maximizing some scoring function. The
mismatch score between MG and MH is:

mismatch(MG, MH) = (score(MG : G)− score(MH : G))

+ (score(MH : H)− score(MG : H))
(7.8)

where score(M : G) refers to the score of model M based on data G. The mismatch
distance resembles the idea of learning and validation sets (e.g. as used in cross-
validation [104])). However, here we are considering a more general situation,
because we assume that G and H might not have come from the same distribution.
In fact that is what we want to evaluate: the error that a model makes when given
data not used to learn it. Intuitively, if the DBNs induced from G and H are
similar one would expect a small mismatch value, while a high mismatch would
be obtained had the models been too different. A few properties regarding the
mismatch score are given next.

Proposition 7.1 (Weak identity of indiscernibles). Let MG be a DBN fitted to the
subgroup G of D. Then it holds that:

mismatch(MG, MG) = 0 (7.9)

Proof. Directly from the definition of mismatch score.

Proposition 7.1 means that the weak identity of indiscernibles holds for the
mismatch. However, it is not the case that a mismatch equal to zero implies that
the subgroups G and H are the same. This is because D is a multiset, hence
G and H might be associated to the same sequences while being two different
subsets of D. Another relevant property is symmetry, which is formalised in the
next proposition.

Proposition 7.2 (Symmetry). Given two DBNs MG and MH learned from two sub-
groups G and H of D, it holds that:

mismatch(MG, MH) = mismatch(MH , MG) (7.10)

Proof. Directly from the definition of mismatch score.

A relevant property concerns the sign of the mismatch distance is given as
follows.

Proposition 7.3 (Non-negativity). Let MG and MH be the DBNs learned from the
subgroups G and H of D. Then it holds that:

mismatch(MG, MH) ≥ 0 (7.11)
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Proof. If G = H, the claim holds by Proposition 7.1. Otherwise, if MG is the
model learned from G, then it must hold that score(MG : G) ≥ score(MH : G) for
any model MH . This is because by Definition 7.6 MG was learned by maximizing
the score given the data G, then no other model can have better score given G.

As the mismatch distance is non-negative, symmetric and has the weak identity
of indiscernibles property, it follows that it can be taken as a distance function
for TEMM, as discussed in Section 7.3.3.

7.4.3 Scoring function

In this work, we use Bayesian information criterion as scoring function (see
Section 2.3.2), which is proportional to the log-likelihood of the model and
includes a penalty to control for model complexity. For convenience, we repeat
the definition of the BIC of a model MG given data G as follows:

BIC(MG : G) = 2 logL(MG : G)− |MG| log |G| (7.12)

where logL(MG : G) denotes the log-likelihood of the model MG, |MG| the
number of parameters of MG, and |G| is the number of observations of G. The
negative value of the standard BIC was taken for the convenience of maximizing
the score.

We assume that MG is fitted by maximizing the BIC score as denoted by
BIC(MG : G), and we shall denote by BIC(MG : H), with H 6= G, the score of MG
given data H different than that used to fit MG. The BIC score corresponds to the
score term of Definition 7.6.

7.4.4 Exceptional subgroups

We define next a general notion of exceptional DBNs.

Definition 7.7 (Exceptional subgroups). Consider the exceptionality relation ex ⊆
2D× 2D. We say that G is an exceptional subgroup with regard to a subgroup H, denoted
by ex(G, H), if the distribution of the DBN MG is different from the distribution of the
DBN MH .

Definition 7.7 implements the idea of exceptional subgroups delineated by
Definition 7.5 applied to exceptional DBNs. It is straightforward to verify that
the exceptionality relation just defined is symmetric and anti-reflexive, hence the
relationship has the desired properties as discussed in Section 7.3.4.

In EMM, the reference subgroup used for determining the exceptionality of
a subgroup is typically the full data D, also referred to as population [161]. This
means that a subgroup of interest G would be compared with D, however,
this comparison is made more convenient by instead comparing G with its
complement denoted by Ḡ [57], which results in a comparison involving two
disjoint subgroups. TEMM uses the population as reference subgroup as well,
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thus for determining whether a subgroup G is exceptional we compare the
subgroup models of G and Ḡ.

7.5 identifying exceptional subgroups

In this section, we discuss how the exceptionality of DBNs can be identified from
data by considering reasonable assumptions on what can be seen as exceptional
in real-world situations.

7.5.1 Distribution of false discoveries

In practice, one way to use Definition 7.7 for identifying exceptionality is to
consider the extent to which subgroup models differ from the population model.
In this case, we would like to identify models which are significantly different
from the population model. The reason for shifting the focus to significantly
different subgroups is that the true distribution of subgroups is unknown, and
we therefore need to account for the error in the estimated model. Based on these
ideas, the identification of exceptional subgroups is described next.

To determine how exceptional a subgroup G is, a sampling-based approach
with the distribution of false discoveries (DFD, for short) [59, 112] is used. Suppose G
has size |G|, then random subgroups of size |G| are drawn without replacement
from D, such that for each random subgroup its mismatch distance is computed.
In order to compute the mismatch of each random subgroup, we fit a DBN on the
random subgroup data and another DBN on its complement data. This sampling
procedure approximates the distribution of mismatch distances that characterizes
the mismatch of subgroups with size |G|.

By constructing a distribution of distances of random subgroups, we are able
to assess how unusual the mismatch distance of a subgroup G is. In order to
do so, we execute a hypothesis testing procedure as follows. By taking large
enough number of sampled subgroups, the resulting distribution of random
mismatch distances will be approximately Normal (see, e.g., [59, 112]). We can
then compute a z-score for the mismatch of G, from which we can obtain a
p-value. If the p-value of G is smaller than a significance level α, we conclude
that G is an exceptional subgroup.

7.5.2 Subgroup search

In order to generate subgroups and test their exceptionality, we introduce a
general search algorithm outlined in Algorithm 3. The central idea of Algorithm
3 is to specialize all exceptional subgroups that have been found so far, until there
are no further exceptional subgroups to be specialized. The algorithm does not
specialize subgroups considered as non-exceptional.

Algorithm 3 starts with c = ∅ as the current subgroup, i.e. the total popu-
lation. By entering the outer loop, new candidate subgroups are generated by
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specializing c with the addition of one descriptor that is not in the descriptor
set of c (Line 8). For brevity sake, Line 8 in fact generates several subgroups,
one for each value from the domain of the new descriptor. Then, each new
candidate subgroup is tested for a minimal size σ and for exceptionality. If the
candidate subgroup passes these tests, it is stored into the set E′, which keeps the
exceptional subgroups found so far. The new exceptional subgroup is also added
to F, which stores the subgroups to further expand. Once the new exceptional
subgroups have been processed, a subgroup to be further specialized is picked at
random from F. While F 6= ∅, the whole specialization process is repeated.

Algorithm 3 Subgroup search

Input: D: a dataset of data points of the form {A, X(0), X(1), . . .}; σ: minimal size
threshold; α: significance level for exceptionality test.
Output: E: set of exceptional subgroups.

1: E← ∅
2: F ← ∅ // Subgroups to further expand
3: c← ∅ // Current subgroup
4: cand_descs← {A1, . . . , Ak}
5: do
6: E′ ← ∅
7: for all Ai ∈ get_cand_descriptors(c) do
8: G ← c ∪ {Ai = ai}, for each ai ∈ dom(Ai)
9: if check_size(G, D, σ) and exceptional(G, D, α) then

10: E′ ← E′ ∪ {G}
// Add new exceptionals and select new one for expansion

11: E← E ∪ E′

12: F ← F ∪ E′

13: c← select_random(F)
14: F ← F− {c}
15: while F 6= ∅
16: return E

7.5.3 Exceptionality test

Algorithm 3 makes use of an exceptionality test, which is detailed in Algorithm 4.
Algorithm 4 does intensive computation as it learns subgroup models, calculates
their mismatch distances, and calculates the DFDs. These steps are necessary
to assess how unusual the mismatch of a particular subgroup is compared to
random subgroups.
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Algorithm 4 Exceptionality test

Input: G: a subgroup; D: a dataset of data points of the form {A, X(0), X(1), . . .}; α:
significance level for exceptionality test.
Output: a Boolean value indicating whether G is exceptional.

1: MG ← learn_dbn(S(G))
2: MḠ ← learn_dbn(S(Ḡ))
3: d← mismatch(MG, MḠ)

// Distribution of false discoveries
4: Sample subgroups from D with size |G|.
5: for all sampled subgroup H do
6: MH ← learn_dbn(S(H))
7: MH̄ ← learn_dbn(S(H̄))
8: dH ← mismatch(MH , MH̄)

9: Calculate the mean and standard deviation from the set of distances dH , and denote
them by x and s respectively.

10: z← d− x
s

// z-score of the subgroup
11: Calculate the p-value corresponding to the z-score.
12: if p-value < α then
13: return true
14: return false

7.5.4 Search optimization

The computation of DFDs is a costly step of the exceptionality test used by
Algorithm 3. In order to evaluate the exceptionality of a subgroup G, we check
whether a subgroup H with |H| = |G| has been considered before during search.
If so, we can reuse the previously computed DFD of H as the DFD of G, because
the DFD is a function of the subgroup size. This can save substantial computation
because in problems with several descriptor variables (the set A), one would
expect that some subgroups have the same size. We can take advantage of this
fact by storing a list of sizes and a DFD for each size, so that a DFD is actually
computed only when it is not found in this list.

By Proposition 7.2, the mismatch distance is symmetric. This means that if we
ask whether a subgroup G with size |G| is exceptional, we could equivalently ask
whether the complementary subgroup (which has size |D| − |G|) is exceptional.
This means that when we look up for a DFD in our table of stored DFDs, we can
look up for DFDs associated to size |G| and to DFDs associated to size |D| − |G|.
This yields additional computational savings.
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7.6 experiments with simulated data

7.6.1 Data

We consider two simulation scenarios to assess the method by varying the
set X = {X1, . . . , Xn}, with Xi binary. In the first scenario, we use n = 10
variables inspired by previous research [112] which used Markov chains with
1,024 states. In the second scenario, we consider 100 times more MC states,
requiring n = log2 100 · 1024 ' 17 variables, allowing for a more comprehensive
evaluation.

In order to build a dataset for a scenario, simulated data was generated from
two ground truth DBNs based on the variables X. The number of time points
was 10 for both n = 10 and n = 17. The structure of each DBN was generated by
uniformly sampling DAGs [122], while node parameters are sampled from Beta
distributions.

The next step is to define the descriptor space. We defined a descriptor vari-
able A1 such that the sequences from one DBN were assigned to the subgroup
(A1 = a−1 ) and the sequences from the other DBN to (A1 = a+1 ). The same
amount of data was generated for these subgroups. We also added 5 binary de-
scriptors R1, . . . , R5 to act as noisy variables by randomly assigning the generated
sequences to the noisy variables (with uniform probability).

Given a scenario, we now assign ground truth labels to unitary subgroups as
follows:

• The subgroups (a+1 ) and (a−1 ) are seen as positive instances, as the sequences
of each come from a single DBN, thus making these subgroups exceptional
by definition.

• The subgroups described by Ri, such as R1 = r+1 and R2 = r−2 , are seen as
negative instances, as they correspond to random selections of sequences.

Based on the true and predicted labels, we measure how well we can identify
exceptional subgroups (described by A1) and non-exceptional subgroups (de-
scribed by Ri). Further, by having only one descriptor for exceptional subgroups
(A1) and multiple ones for non-exceptional subgroups (Ri), it becomes more
challenging to distinguish the two types of subgroups. This way we evaluate the
robustness of the proposed algorithm.

Based on the described procedure, simulated data for a scenario consists of data
points over the variables {A1, R1, . . . , R5, X(0), . . . , X(9)}. The whole simulation
process, including the generation of ground truth models, was executed 10 times
for better assessment of each scenario.

7.6.2 Evaluation

Algorithm 3 always generates unitary subgroups, which allows for evaluating
the labeling done by the proposed method using several metrics. The AUC-ROC
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MC n = 10 DBN n = 10 MC n = 17 DBN n = 17

Seq Pr Rec Pr Rec Pr Rec Pr Rec
10 0.6 0.6 0.82 1 0 0 0.9 1

20 0.87 1 0.95 1 0 0 0.9 1

40 0.85 1 0.87 1 0.15 0.2 0.9 1

60 0.92 1 0.87 1 0.53 0.6 0.89 1

80 0.92 1 0.83 1 0.75 0.85 0.88 1

Table 7.2: Precision (Pr) and recall (Rec) achieved by Markov chains and DBNs on simu-
lated data. Seq = number of data sequences.

(area under the ROC curve) evaluates how the method separates the positive
from the negative instances. We also compute precision and recall values, where
precision is TP/(TP+FP) and recall is TP/(TP+FN) and TP, FP and FN denote the
number of true positives, false positives, and false negatives.

Algorithm 3 also generates specialized subgroups if unitary exceptional sub-
groups are found. Specialized subgroups described by A1 are also considered as
exceptional. A subgroup such as (a+1 , r−1 ) can be seen as a selection of half the
sequences of subgroup (a+1 ), making the models of (a+1 , r−1 ) and (a+1 ) similar. By
opposition, specialized subgroups without A1 are considered as non-exceptional.
To facilitate comparisons, we evaluate unitary and specialized subgroups sepa-
rately as the number of generated specialized subgroups can vary over different
simulations. We used a size threshold σ = 0.05.

As a baseline, we consider Markov chains for representing the temporal targets
instead of a DBN. In this case, the search algorithm is the same but the temporal
targets are represented by a MC. To learn a MC, each variable X(t) was mapped
into a single variable X′(t) which has as domain the Cartesian product of the
domains of X1, . . . , Xn. As a result, the state space of this MC can have up to 1,024

and 131,072 states for n = 10 and n = 17 respectively. Then, the temporal data of
each sequence X(0), X(1), . . . was mapped into X′(0), X′(1), . . .. This allows for an
additional assessment of the DBN representation. To avoid zero probabilities, a
Laplace smoothing [104] with λ = 1 is used in MC and DBN learning.

7.6.3 Results

Figure 7.1 shows the results based on simulated data for unitary subgroups. The
results suggest that the DBN and the MC representation achieved good results
with datasets of n = 10 target variables (or 1,024 MC states). However, substantial
differences arose with n = 17 variables (or 131,072 MC states), a situation where
DBNs were able to provide optimal AUC values even with the minimal amount
of data, as opposed to MCs. In this case, MCs had to count on substantially larger
amounts of data in order to provide comparable AUC values to those of DBNs.
Table 7.2 shows the precision and recall of MCs and DBNs based on the threshold
α = 0.05 of Algorithm 4.
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Figure 7.1: Effect of the amount of simulated data on the AUC-ROC of Markov chains and
DBNs. Every sequence has 10 time points.

As previously discussed, specialized subgroups that include A1 are supposed
to be labeled as exceptional subgroups. Figure 7.2 shows the mean number of
specialized subgroups which include A1 and were labeled as exceptional. As the
amount of data increases, the results show that more subgroups were produced
by both the MC and DBN representations. However, it is clear that DBNs were
able to capture significantly more specialized exceptional subgroups.
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Figure 7.2: Mean number of specialized subgroups with A1 which were labeled as excep-
tional (simulated data).

7.6.4 Similar ground truth models

Now we consider simulations where we control how similar the ground truth
models are. This allows for a complementary evaluation of the search algorithm
than that where we essentially varied the amount of data supplied to the algo-
rithm. As before, two ground truth models are associated to the binary descriptor
A1.
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In the following experiments, the second ground truth DBN was defined by
copying the structure and parameters of the first DBN. For a variable Xi in the
second DBN we have p = P(X(0)

i = x−i | π(x(0)i )) and p′ = P(X(0)
i = x+i |

π(x(0)i )). These parameters were changed by picking at random a real number
called change from the interval [0, min(δ, 1− p)], with uniform probability, where
δ ∈ [0, 1] is the maximal change threshold. Next, we set p = p + change and
p′ = p′ − change. The lower the threshold δ, the more similar the DBNs are. It
is straightforward to see that the modified p and p′ values constitute a valid
probability distribution.

Based on the previous results, we focus the analysis on DBNs in the remain-
ing of this chapter. Figure 7.3 shows the AUC-ROC of simulations based on
different maximal change thresholds. The results suggest that the search algo-
rithm achieved better results with higher δ, which is expected because with more
dissimilar ground truth models detecting exceptional behavior becomes more
straightforward. On the other hand, the method made more mistakes under
lower δ, particularly when there was little data, which can be seen as difficult
situations for the method. In general, with larger amounts of data the method
had better performance with any δ, which supports a behavior consistent with
the previous experiments.
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Figure 7.3: AUC-ROC achieved by DBNs on simulated data from different ground truth
models. δ = maximal change threshold.

7.6.5 Discussion

Table 7.3 shows a fragment of subgroups from a simulation iteration using DBNs,
together with their mismatch distances. This shows that the method is robust
at identifying exceptional subgroups even when most of other subgroups are
noisy subgroups. Moreover, the mismatch distances of exceptional subgroups are
usually very different from those of non-exceptional subgroups.

The proposed mismatch score can be seen as a data-based score, as it is computed
based on goodness-of-fit scores (the BIC score). By opposition, previous research
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Subgroup Size z-score p-value Labels (I & T)
(a+1 ) 0.50 195.8 ' 0 1 1

(a−1 , r−2 ) 0.27 49.4 ' 0 1 1

(a+1 , r+1 , r+2 ) 0.11 15.1 ' 0 1 1

(r−2 ) 0.49 -1.2 0.22 0 0

(r−3 ) 0.49 0.5 0.64 0 0

Table 7.3: A simulation iteration based on DBNs (n = 17, 80 data sequences). Size =
subgroup size normalized by |D|, Labels (I&T) = inferred and true labels
respectively. The labels ‘1’ and ‘0’ indicate positive and negative instances
respectively.

[112] for discovering exceptional MCs used a measure based on statistical distance
between transition distributions. While structure learning is not required for MC
learning, the number of parameters in DBNs is typically substantially lower due
to its factorized representation. This is because the dimension of the transition
matrices of MCs is prone to become very large even with a moderate number of
target variables (e.g. n = 17).

As experiments have shown, this parameter issue makes the MC representation
to scale poorly, particularly when n is larger and there is a reduced availability of
data for model learning. Furthermore, the DBN-based search made substantially
less mistakes in the simulations, which makes this representation suitable for
TEMM.

7.7 data of funding applications

In order to evaluate the proposed TEMM method, we consider data from the
business process intelligence challenge (BPIC18, for short) [56]. The BPIC18 dataset
contains event log data of applications submitted to the European Union for
direct payments for German farmers in 2015, 2016 and 2017. The goal of applying
TEMM to the BPIC18 data is to identify the subgroups in which the dynamic of events is
exceptional.

7.7.1 Data

Each application in the BPIC18 data is associated to descriptor variables (domain
size) as follows: Land Area (437), Department (4), Number of Parcels (74),
Redistribution (2), Year of Submission (3), Success (2), Small Farmer (2), and
Young Farmer (2). Applications are also associated to events related to workflow
activities, where an event is described by the multinomial variables (domain size):
Activity (41), Doctype (8), Subprocess (8). Each application is associated to one
or more events, which are the temporal targets of the data. Hence, the ith data
point of this dataset has the form {Land Area, . . . , Young Farmer, Activity(0:mi),
. . . , Subprocess(0:mi)}, where mi is its last time point.
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The BPIC18 dataset has 4,800 applications randomly selected from the original
dataset, with an equal number of applications per year. The dataset considered
for the experiments has 275,226 events in total (mean [StDv] length of each
application: 57.3 [49.5] events).

7.7.2 Discovered subgroups

Table 7.4 shows the exceptional and non-exceptional subgroups that were dis-
covered from the BPIC18 data based on a minimal size σ = 0.05. The results
suggest that the most exceptional subgroups are unitary and described by a
particular year, be it 2015, 2016 or 2017. This might suggest that significant
changes took place in application processing between different years, such as
changes in application structure, time spent in application tasks, funding policies,
etc. Regardless of the year, each department has its own dynamics, as all unitary
subgroups (Department) were exceptional. However, their the exceptionality was
not as strong as that of (Year) subgroups.

As Table 7.4 shows, unitary subgroups of (Young Farmer) were not ex-
ceptional, which suggests that the exceptionality of subgroups as (Year =
2017∧ Young Farmer−) is only caused by other attributes. Due to the large size
of (young.farmer−), we conjecture that some specialized subgroups of (Young
Farmer) have distributions similar to their generalized subgroups without (Young
Farmer), which would make such specialized subgroups redundant.

7.7.3 Validation

The BPIC18 data provider [56] claims that the underlying process changed
between years due to changes implemented in the structure of the application
procedure. This is evidence that supports the exceptional subgroups found in
this chapter described by (Year), as shown in Table 7.4.

Such discovered exceptional subgroups are also in line with previous research
[135] applied to this dataset, which was able to identify concept drifts precisely
between each year of the data. Other research [174] has analyzed how the work-
flow of applications submitted in different years has changed, also suggesting
that differences exist in the workflow structure between years.

Differently than the other analyses from the literature on the BPIC18 data,
the method proposed in this chapter can be seen as a principled one due to its
automated nature. However, the discussed validation of the subgroups found
should be seen as a partial validation, as the true exceptional subgroups of
real-world data are usually unknown.

7.8 conclusions

In this chapter, we proposed TEMM, a generalization of EMM to allow for the
representation of multiple and temporal targets. We proposed a method able to
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Exceptional subgroups Size z-score
year = 2017 0.34 773.6
year = 2015 0.35 524.1
year = 2016 0.30 479.0
department = e7 0.30 23.4
department = d4 0.16 21.3
department = 4e 0.30 13.1
department = 6b 0.24 11.3
number_parcels = 2 0.06 7.2
year = 2017 ∧ young.farmer− 0.31 385.0
year = 2015 ∧ young.farmer− 0.32 363.7
department = e7 ∧ year = 2017 0.10 166.6
department = 6b ∧ year = 2017 0.09 110.9
department = 6b ∧ year = 2016 0.07 106.7
department = 6b ∧ young.farmer− ∧ year = 2016 0.06 147.6
department = e7 ∧ young.farmer− ∧ year = 2017 0.09 128.2
department = 4e ∧ young.farmer− ∧ year = 2017 0.09 124.9
department = 6b ∧ young.farmer− ∧ year = 2017 0.08 118.3
department = e7 ∧ young.farmer− ∧ year = 2016 0.08 69.6

Non-exceptional subgroups Size z-score
young.farmer− 0.91 1.7
young.farmer+ 0.09 1.3
number_parcels = 3 0.06 0.9
department = e7 ∧ year = 2015 0.11 0.2
department = 4e ∧ year = 2015 0.10 -1.6

Table 7.4: Exceptional (34) and non-exceptional (5) subgroups from the BPIC18 dataset.
For better visualization, the 5 most specialized subgroups are shown. Size =
subgroup size normalized by |D|. All p-values < 0.001 (exceptional subgroups)
and ≥ 0.05 (non-exceptional subgroups).
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identify exceptional DBNs from temporal data, which allows for an intuitive and
sound model class for TEMM.

The proposed TEMM method was empirically evaluated on simulated data
and a process data based on funding applications, showing that the identifiability
of the method in different scenarios is robust. Our method was able to discover
exceptional subgroups from the funding data in accordance to previous research,
as well other, yet less exceptional subgroups. Furthermore, our approach solved
this practical problem in a more principled manner.

As future work, we would like to better explain why models are considered as
exceptional, e.g., by looking at relevant structural or numerical parameters of the
DBNs. We also wish to summarize exceptional subgroups that might reflect the
same DBN distribution, e.g., by merging exceptional subgroups during search or
post-processing. Moreover, by investigating the relation between subgroup size
and the mismatch distance, the search mechanism could be further optimized.


