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6
PA RT I T I O N E D D Y N A M I C B AY E S I A N N E T W O R K S

When modeling the dynamics of real-world processes, the model properties are often
assumed to be constant over time, resulting in a so-called time-homogeneous process.
This might be justified, e.g., by scarce amounts of data available. While this reduces the
number of parameters to be learned from data, the specificities of the underlying process
are to some degree lost in the obtained models. In this chapter, we propose partitioned
dynamic Bayesian networks for capturing distribution regime changes, benefiting from
an intuitive and compact representation with the solid theoretical foundation of Bayesian
network models. In order to balance specificity and simplicity in real-world scenarios, we
propose a heuristic algorithm to search and learn such models taking into account the
preference for less complex models. Experiments are performed based on simulated data to
evaluate how well the proposed method is able to recover the original distributions, for
different assumptions regarding the data generating mechanism. Finally, we consider a
study case based on psychotic depression complementary to that of Chapter 4 to evaluate
the goodness-of-fit and insight that partitioned dynamic Bayesian networks can provide
to a real-world problem.

6.1 introduction

Understanding the evolution of disease processes lies at the heart of clinical
medicine as insights into how effective a particular treatment is able to cure a
disease are based on this. Not surprisingly, most textbooks on clinical medicine
and pathology contain extensive descriptions of how a disease progresses and
likely reacts to particular treatments in the course of time. Yet, there has been
very little research where these qualitative descriptions have been substantiated
in a detailed, quantitative way. In research, the temporal dimension is usually
only explored by describing the outcome of treatment after some time. One of the
problems faced by researchers who wish to obtain such insight is the relatively
small size of clinical datasets. Often, data concerns something from a hundred
to a few hundreds of patients. However, the wish to develop a temporal model
usually increases the demands for data, and as a consequence various simplifying
assumptions have to be made.

One solution that is usually considered in clinical problems is to build a model
that covers the entire time span without distinguishing any of its time points [29,
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98 partitioned dynamic bayesian networks

74, 101, 146, 157]. Therefore, the model has the same properties for every time
point, as modeled by the well-known first-order homogeneous Markov chains
[52]. A generalization of Markov chains to multivariate problems are the dynamic
Bayesian networks [104, 136], which have been applied to a number of real-world
domains, such as medicine [38, 86, 132, 153] and bioinformatics [54, 109, 145].
Such probabilistic graphical models allow to reason about the interactions of
features of interest in an intuitive, temporal and compact fashion, while having a
sound basis in probability theory. This will yield more robust models, making
the use of these models attractive when dealing with small datasets. However,
while DBNs solve the robustness problem, they introduce an undesirable effect:
there is no distribution specificity as a function of time. Hence, one will never
learn the details of the underlying process as was the aim in the first place.

It is known that in many clinical situations the dependences between symptoms
and signs might change over time, as in the case of intervention studies where
different sets of correlations are expected to occur in the course of time, due
to the nature of this kind of study. Hence, a temporal graphical model that is
allowed to vary in structure and probability distribution as a function of time
would capture these complex dynamics, providing a potentially better model fit
and more insight that really helps in understanding the underlying process.

Although the notion of non-homogeneous models (a shorthand for non-
homogeneous time models) is certainly not new, it is often the case that such
models employ a number of approximations, for example due to properties of the
targeted applications. Typically, non-homogeneous PGMs have been focused on
biological processes, where regime shifts are assumed to be smooth [79, 109, 145].
These assumptions might, however, not be natural for other processes, where the
variety of eligibility criteria and unexpected patient response to drugs can make
the distribution regimes over time vary widely. Thus, a systematic algorithm that
finds the appropriate cut-off points to obtain new specific models, taking into
account the scarcity of data and the wish to obtain a robust model, is needed. To
the best of our knowledge, this idea has never before been explored in learning
Bayesian network-based models from data.

In this chapter, we first introduce partitioned dynamic Bayesian networks (PDBNs,
for short), which allow to express a process as a collection of DBNs. PDBNs
make few assumptions regarding the process, the main one being the fact that
the process duration is partitioned in the same way for every observable variable
involved. Then, we propose a heuristic procedure to explore the space of PDBNs,
taking into account the balance between specificity and simplicity. The approach
starts with a homogeneous model, and incrementally replaces parts of it by
sub-models that are valid for specific time periods. The increase of complexity is
allowed if there is a two-part split of one of the current sub-models that is able to
improve model fit over a training and test setting.

In order to demonstrate the applicability of the proposed model and heuristic
method, an extensive set of simulations and real-world-based experiments are
carried out. In simulations we evaluate whether the heuristic algorithm is able to
recover adequate models in terms of statistical distance to the data generating
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model, be it a homogeneous or a non-homogeneous model. We also aim to
evaluate experimentally the behavior of the heuristic in the case of small datasets.
Additionally, we consider a study case on psychotic depression data, and evaluate
the homogeneous and non-homogeneous models learned from this data. Based
on the obtained models, research questions of clinical relevance are formulated
regarding the prediction of symptom association over time.

The remainder of this chapter is organized as follows. Section 6.2 describes
related literature on homogeneous and non-homogeneous dynamic Bayesian
networks in clinical and biological domains. Partitioned DBNs and the heuristic
procedure to learn PDBNs are presented in Section 6.3. Simulations to evaluate
the learning procedure are discussed in Section 6.4, while the models learned
from psychiatry data are discussed in Section 6.5. Clinically-oriented discussions
based on the psychiatry models are provided in Section 6.6, and lastly Section 6.7
gives the conclusions and suggestions for future research.

6.2 related work

There has been quite some research on the application of Bayesian network
models to the clinical domain. To a lesser extent, models that take time into
account, such as dynamic Bayesian networks, have been considered in the past.
Relevant research include obtaining problem insight by analyzing the structure
and parameters of a DBN, and the use of DBN models for specific tasks such
as diagnosis and prognosis. For example, the learned structure of DBNs has
been explored for finding correlations among different brain regions in several
disorders, such as schizophrenia [101] and Alzheimer’s disease [29]. These results
have been used to confirm known correlations as well as to reveal new ones.
Furthermore, the sensitivity of the influence of parameter variation in DBNs has
been investigated in the context of ventilator-associated pneumonia [37].

Another aspect of DBNs explored in the clinical domain is the predictive ability
for several tasks, e.g. diagnosis [38, 146] and prognosis [74]. An advantage of
modeling stochastic processes using models as DBNs lies in the capability of
producing updated predictions as new observations become available while the
process evolves. This can be achieved by taking into account some form of
patient history, producing potentially more accurate predictions. Real cases have
shown the benefits of this type of multiple prediction, e.g. to diagnose ventilator-
associated pneumonia [38]. The application of DBNs and similar models in
clinical domains has been compared to similar formalisms in a recent survey
[132].

Although DBNs have been reasonably studied for their capability to deal with
clinical problems, this is not the case for more flexible models, e.g. when the
time-homogeneity assumption is rejected. These models address mainly the
analysis of change in structure at individual time points, in the scope of a specific
disease process [171]. On the other hand, more sophisticated models have been
developed in other fields, mainly biological processes [54, 79, 109, 145]. These
models are constructed based on assumptions justified by domain knowledge;
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for example, in some biological processes the intensity of interactions change
over time, but no interaction is created or destroyed [79].

The aforementioned non-homogeneous models assume a set of assumptions
or use a specific learning methodology, which we summarize as follows. Firstly,
additional restrictions are usually imposed to the model structure, ranging from
constrained intra-temporal interactions [109, 145] to completely fixed structure
with flexibility on the parameter space only [79]. A second assumption is that
regime switch in the process occurs in a smooth fashion. Finally, in many
biological-oriented networks the learning approach is based on sampling strate-
gies [54, 79, 109, 145], which can depend on additional assumptions in order to
be feasible. As we show further in the chapter, these assumptions will not be
considered for the development of PDBNs. Other approaches include, e.g., DBN
models with hidden variables to control the dependence structure, which has
been applied to engineering problems [170].

Clearly, clinical problems are potentially prone to exhibit a temporal behavior
that may be different from the biological processes studied so far. To illustrate
this, consider the case of intervention studies, where specific criteria exist to
define eligible patients. Imposing the previous assumptions on the manner by
which pieces of the process evolve can forbid capturing the temporal dynamics
accurately. Therefore, there is a need to define and construct models of non-
homogeneous time in a systematic manner, which will be able to reveal more
about the underlying structure of processes in clinical domains.

6.3 partitioned dynamic bayesian networks

Models of non-homogeneous time can be defined by a set of transition distribu-
tions that should hold at specific intervals of the considered time series. In this
work, the central idea lies in making the dependence on time by partitioning the
time series duration and associating each part to a homogeneous model, i.e. a
DBN valid within a sub-range of the time series. We refer to this class of models
as partitioned dynamic Bayesian networks. We proceed in the following towards a
formalization of PDBNs, its associated concepts, and lastly a procedure to learn
PDBNs by exploring the search space heuristically.

6.3.1 Model specification

Definition 6.1 (Time partition). A time partition of a set of integers {0, . . . , T} is a
set of integers {t1, . . . , tk}, where t1 > 0, tk = T, and ti < ti+1 for 1 ≤ i < k. Each ti,
with i > 1, defines a set {1 + ti−1, . . . , ti}, and t1 defines the set {0, . . . , t1}.

We say that each element of the time partition is a cut (a shorthand for cut-off) and we
say that such time partition has k cuts.

The aim of Definition 6.1 is to split a time series horizon into a partition of
indices. For example, given a time series indexed by the time points {0, . . . , 7},
the time partition {2, 7} has 2 cuts and splits the time series as follows: {0, 1, 2},



6.3 partitioned dynamic bayesian networks 101

and {3, 4, 5, 6, 7}. This definition is useful for defining non-homogeneous models
as follows.

Definition 6.2 (Partitioned dynamic Bayesian network). Consider a time partition
with k cuts of the integers {0, . . . , T}, where the ith cut is associated to a conditional
Bayesian network Bi over X(t+1) conditioned on X(t), t ≥ 0. A partitioned dynamic
Bayesian network with k cuts, denoted by PDBN-k, is a dynamic system (B0, . . . ,Bk)
over X where:

• B0 = (G0, P0) is a Bayesian network over the variables X(0) called initial network.

• Bi = (Gi, Pi), i > 0, is a conditional Bayesian network over the variables
{X(t), X(t+1)} called the ith transition network. The transition model Bi is as-
sociated to the ith cut of the time partition.

We use the term distribution cut to denote a cut in the context of a PDBN. The
joint distribution of an unrolled PDBN can be obtained by unrolling the transition
models over the time points each transition model is associated to. This is as
follows: the structure and parameters of all the nodes at time t = 0 come from
the initial model B0, while the structure and parameters for any node X(t)

i , where
t > 0, come from the transition model whose cut includes t, i.e., the Bi such that
t ∈ {1 + ti−1, . . . , ti}. Therefore, the joint distribution of an unrolled PDBN with
k cuts {t1, . . . , tk} is as follows:

P(X(0:T)) =
n

∏
i=1

P0(X(0)
i | π(X(0)

i ,B0))

·
k

∏
r=1

tr−1

∏
t=tr−1

n

∏
i=1

Pr(X(t+1)
i | π(X(t+1)

i ,Br))

(6.1)

where t0 = 0 and Pr refers to the CPTs pertaining to the transition model Br.
Note that the parent set of each Xi depends on Br as denoted by π(Xi,Br).

It follows from the previous definitions that a DBN is a PDBN with a single
cut {T}, hence, a DBN is a PDBN-1.

Example 6.1. Consider again the situation of Example 2.2, where two symptoms A
and B and a drug quantity D are measured per patient on a regular basis. We define
a PDBN-2 for this problem consisting of two cuts {2, 7} whose initial structure and
transition structures are shown on Fig. 6.1. Each cut of the PDBN is associated to a
conditional BN as follows: B1 holds for the time points {0, 1, 2}, while B2 holds for the
time points {3, 4, 5, 6, 7}.

Unrolling this PDBN-2 for the process duration yields the joint

P(X(0:7)) = ∏
i

P0(X(0)
i | π(X(0)

i ,B0))

· ∏
0≤t≤1

∏
i

P1(X(t+1)
i | π(X(t+1)

i ,B1))

· ∏
2≤t≤6

∏
i

P2(X(t+1)
i | π(X(t+1)

i ,B2))

(6.2)
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where Xi ∈ X, X = {A, B, D}, and Pi refers to the CPTs pertaining to the transition
model Bi.

t = 0

A

B

D

(a) Initial model B0

t+1

A

B

D

t + 1

A

B

D

(b) Transition model B1

t+1

A

B

D

t + 1

A

B

D

(c) Transition model B2

Figure 6.1: An example of PDBN-2. Bi represents the ith transition model (only its
structure is shown, parameters are omitted). Nodes on the left and right side
occur at t and t + 1 respectively, except for the initial model.

6.3.2 A heuristic search procedure

In this section, we present a heuristic algorithm to build PDBNs in an incremental
fashion from a dataset of sequences. As in many clinical studies there is typically
a scarcity of data, mainly in terms of number of sequences (e.g. represented by
patients), the central idea of the procedure is to prefer less complex models. In
order to achieve this, the heuristic assumes that a proper criterion for model
selection that prevents overfitting is used, which is naturally dependent on the
application domain and characteristics of the data. Hence, when constructing a
model, the heuristic iteratively increases the complexity as long as it is beneficial
for its score; if adding complexity is not beneficial, the procedure stops adding
further complexity. Additionally, the procedure has a hill-climbing behavior by
not further exploiting previous less complex solutions that were less promising
when analyzed by the algorithm.

6.3.2.1 Algorithm description

Taking the aforementioned factors into account, we present a procedure that
starting from a DBN follows a sequence of incremental refinements to evolve
it into a more specialized model. A refinement corresponds to splitting one of
the transition distributions of the current PDBN. At each iteration a new cutting
point is added without eliminating the cuts previously found. The procedure is
greedy since it does not further explore the branching of solutions that are less
interesting at each iteration. It is important to consider a strategy with feasible
running time to search over the space of PDBNs, since the number of possible
manners in which a discrete time series can be partitioned is potentially large. In
order to be flexible, the complexity of the produced models can be controlled, as
it is an input parameter of the algorithm.
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The heuristic algorithm to learn PDBNs is presented in Algorithm 2. In order
to be generic for different scoring criteria used to construct and evaluate PDBNs,
we emphasize the search for cut sets instead of PDBNs explicitly. The algorithm
starts with the current best cut set as the singleton C = {T}, which stands for
a homogeneous model. Let us denote by s the size of the current cut set, i.e.,
s = |C|. By entering the outer loop (Line 2) the algorithm will first evaluate new
cut sets with size s + 1, each one consisting of the current C unified with a new
cut that does not exist in C (Line 3). After finishing the inner loop, it is verified
whether the current iteration has found an improved cut set, i.e., a cut set whose
evaluation is better than C. In case positive, C is replaced by the best cut set
among those (Lines 5-6). The algorithm continues this incremental construction
of cut sets while the current iteration is capable of producing a new cut set with
size (s + 1) that is better than the current C and the maximum number of cuts
(the input parameter k) is not reached. At the end (Line 8), the heuristic returns
the PDBN-k′ learned from the best cut set found, where k′ ≤ k.

Algorithm 2 Builds a PDBN

Input: D: a dataset of sequences with length {0, . . . , T};
k: the maximum size of the cut set, 1 ≤ k ≤ T.
Output: a PDBN-k′, where k′ ≤ k.

1: C ← {T}
2: while |C| < k do
3: For each c ∈ {1, . . . , T} − C, construct a new cut set C ∪ {c}. Denote the

new cut sets by C = {C1, . . . , Cr}.
4: Evaluate each cut set in C by means of a criterion f .
5: if there is a new cut set Ci ∈ C, where 1 ≤ i ≤ r, such that f (Ci) > f (C)

then
6: Assign to C the Cj that maximizes { f (C1), . . . , f (Cr)}.
7: else break the loop.

8: return PDBN-k′ with cut set C learned from the data D.

6.3.2.2 Evaluation criterion

As Algorithm 2 shows, the criterion f abstracts the learning of PDBNs. This is
motivated by the fact that choosing a proper evaluation strategy depends on
the application and the characteristics of the data, which makes it difficult to
set a single criterion that works best for all problems [182]. Generally speaking,
a multitude of model selection criteria can be employed to determine how f
is concretely implemented; some well-known criteria include cross-validation
(e.g. based on model likelihood) and information theory criteria (e.g. the Akaike
information criterion and the Bayesian information criterion) [46].

For example, in order to employ the AIC in Algorithm 2, one would first learn
a PDBN from the full dataset (i.e. all the sequences, hence a DBN) using the
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AIC as scoring function. Then, each sub-DBN associated to new cut sets (Line 3)
would be learned based on this score using the corresponding part of the data.

6.3.2.3 Complexity

Initially, the cut set maintained by the algorithm is C = {T}. At the first iteration
of the outer loop, new cut sets with size s + 1 are built, consisting of C plus a
new element; there are T − 1 manners to make this inclusion. At the second
iteration, there are T− 2 possible cut sets to be constructed, and so on, until the
last iteration, in which there is only one cut to be inserted in the current C. Thus,
the total number of cut sets constructed by the heuristic is in O(T2), considering
the worst case.

The dominant part of the heuristic’s total cost corresponds to learning models.
In the case of learning DBNs, the input can be seen as a transition dataset (X, X′),
consisting of all the data (X(i), X(i+1)), i = 0, . . . , T − 1, merged. Note that this
construction is sound since the model is time-homogeneous. If the original
dataset D consists of m sequences (each of length T + 1), this merged dataset will
consist of mT short sequences (each of length 2). Thus, abstracting the cost of
learning a DBN by means of a cost function g will lead to a cost of O(g(mT)) for
learning a DBN.

The case of learning PDBNs-k, k > 1, can be seen as learning k sub-DBNs
made of potentially different number of sequences, as dictated by the cut set of
the PDBN. Note that when the number of cuts is maximal, it implies learning
T sub-DBNs, each one from a transition dataset (X(i), X(i+1)) consisting of m
sequences, each with length 2. As each of these sub-DBNs would cost g(m),
learning such PDBN would require O(Tg(m))).

6.4 empirical evaluation via simulations

6.4.1 Simulation parameters

In this section experiments based on simulated data are presented for a general
assessment of the proposed method for learning PDBNs. Time series with
varying length and number of sequences were generated, resulting in diversified
datasets. We considered the number of features as n ∈ {2, 6, 10, 14, 18}, and
defined that each time series is composed by sequences with length of 10 or 30

time points. Hence, the unrolled models used in simulations have between 20

and 540 random variables in total. For each n and time series length, datasets
were randomly generated containing different number of sequences, denoted
by d ∈ {100, 500, 2000, 5000}. Thus, the simulation cases allow for a reasonable
evaluation in terms of different feature spaces and dataset sizes.

For each simulation scenario, a random DBN or PDBN-k was constructed,
consisting of n binary features per instant t. Structurally, a random PDBN-k
consists of k random sub-DBNs, where the graphical structure of each random
sub-DBN was uniformly generated at random [122], and distribution parameters
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determined randomly as well (no noise was introduced in the model’s parame-
ters). Hence, each node of an unrolled PDBN assumes a Bernoulli distribution.
Given a random PDBN-k and a random cut set of length k, whose last cut cor-
responds to the length of the sequences that are to be sampled from the model,
four distinct datasets were constructed, one for each value of d. In other words,
a common underlying model was used for each group of simulations since the
experiments also aims at studying the effect on the heuristic’s capabilities over
different quantities of data.

Each dataset was generated from either a random DBN or a random PDBN.
The initial aim is to verify experimentally whether the construction algorithm is
able to learn the adequate class of model with respect to the reference model (a
random DBN or PDBN) used to simulate data. Moreover, the cuts of the learned
models are compared to the cuts of the reference models, where we use the
following notation:

• If the cuts of the reference and learned models are equal, we write ‘=’.

• If the cuts of the learned model include all the cuts of the reference model,
we write ‘⊆ +a’, where a denotes the number of additional cuts included
by the learned model.

• If none of these criteria is met, we write ‘ 6⊆’.

Although this notation is useful to perform a structural comparison in terms of
the number and position of distribution cuts, they do not provide information
about the distance between the probability distributions of two models. To this
end, the Kullback-Leibler (KL, for short) divergence [46] between the marginal
distribution of each feature X(t)

i was considered, which indicates the amount
of additional information one needs to codify samples from one distribution
using another distribution. The KL divergence over the entire joint distribution is
computationally prohibitive for most of the simulations covered in this section,
therefore we compute the KL divergence over marginal distributions as follows:

n

∑
i=1

T

∑
t=0

KL(P(X(t)
i ) || Q(X(t)

i )) =
n

∑
i=1

T

∑
t=0

∑
Xi

P(X(t)
i ) log

P(X(t)
i )

Q(X(t)
i )

(6.3)

where Q(X(t)
i ) = 0 implies P(X(t)

i ) = 0. Equation 6.3 corresponds to the sum
of the divergences between the marginal distributions P and Q, in this case
a reference distribution and a learned distribution respectively. As with the
standard KL divergence, the quantity of Equation 6.3 should be minimized.

6.4.2 Learning and evaluating PDBNs

In order to learn a PDBN with k cuts, k homogeneous models are learned
using the corresponding portions of the training data according to its cut set,
where each sub-DBN is learned separately. As it happens with Bayesian-network
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learning, typically search-and-score and constraint-based methods are used for
learning the structure and parameters of each sub-DBN (see Section 2.4.2). In the
experiments reported in this chapter, the AIC score (see Equation 5.2) is employed
for evaluating each sub-DBN, which yields a score proportional to the likelihood
of the model and a penalization term for the complexity.

In order to select a suitable number of cuts, we implemented the evaluation
criterion of Algorithm 2 by means of a 10-fold cross-validation. Cross-validation
minimizes the effect of overfitting (see Section 2.6.3); we describe the procedure
in detail in the following. Let Ci = {t1, . . . , tk} be a cut set of a time series over
{0, . . . , T}; in the context of Algorithm 2, Ci corresponds to a new cut set that is
built in Line 3. For each cross-validation fold, the training data is used to learn a
PDBN-k with cut set Ci, while the test data is used to compute the log-likelihood
of such PDBN-k. After processing all the folds, the mean of the log-likelihoods is
taken, which represents the evaluation value of the PDBN-k with cut set Ci, as
indicated in Algorithm 2 by f (Ci). When deciding between two cut sets (e.g. as
in Line 5), the algorithm chooses the one having the higher mean log-likelihood.

After leaving the outer loop of Algorithm 2, the heuristic search is finished and
the best cut set is known. Finally, a PDBN-k with such cut set is learned using the
full dataset, i.e. training and test data. Such PDBN-k corresponds to the output
of the procedure.

6.4.3 Results and discussion

The results of simulations with data generated from DBN, PDBN-2 and PDBN-3
models are shown in Tables 6.1, 6.2 and 6.3 respectively. Note that a DBN was
learned on every case to serve as a baseline method, specially when simulating
data from non-DBNs; the performance of the learned DBNs are indicated on
the sixth column of the tables. Table 6.1 shows that the models learned by the
heuristic based on DBN data have structural partitioning in accordance with
the reference models on most cases, indicating that the heuristic was capable
of retrieving the adequate type of model. When the returned models were
not a DBN, they were mostly only slightly more complex ones (i.e. PDBNs-2).
Interestingly, the KL divergence between the learned PDBNs and the respective
reference models are comparable to the divergence of the learned DBNs, i.e.
although consisting of additional transition distributions, the learned PDBNs
captured the reference distribution as well as the learned DBNs did.

The models returned by the heuristic based on data produced by PDBNs-2
and PDBNs-3 (Tables 6.2 and 6.3) support analogous points discussed just before.
Furthermore, these tables show that the KL divergences of the PDBNs learned
heuristically were substantially lower than those of the learned DBNs, i.e. the
former are closer to the reference ones. This fact was more prominent when
the length of the time series was increased to 30. Intuitively, DBNs capture the
average behavior of the distribution underlying data; if most of the transitions
were originated from a single distribution, then the few remaining ones will tend
to have less impact on the distribution learned by the DBN. On the PDBN-2
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n d Learned
Model

Cut Sets (R; L) Cut Diff. KL(L DBN) KL(L)

Time series length = 10
2 100 DBN (9) = 0.04 0.04

2 500 DBN (9) = 0.01 0.01

2 2000 DBN (9) = 0 0

2 5000 PDBN-2 (9); (7,9) ⊆ +1 0 0

6 100 DBN (9) = 0.17 0.17

6 500 DBN (9) = 0.04 0.04

6 2000 DBN (9) = 0.01 0.01

6 5000 DBN (9) = 0.01 0.01

10 100 DBN (9) = 0.24 0.24

10 500 DBN (9) = 0.09 0.09

10 2000 DBN (9) = 0.02 0.02

10 5000 DBN (9) = 0.02 0.02

14 100 DBN (9) = 0.38 0.38

14 500 DBN (9) = 0.07 0.07

14 2000 DBN (9) = 0.03 0.03

14 5000 DBN (9) = 0.02 0.02

18 100 DBN (9) = 0.23 0.23

18 500 DBN (9) = 0.07 0.07

18 2000 DBN (9) = 0.03 0.03

18 5000 DBN (9) = 0.02 0.02

Time series length = 30
2 100 DBN (29) = 0.01 0.01

2 500 DBN (29) = 0.01 0.01

2 2000 DBN (29) = 0 0

2 5000 PDBN-2 (29); (1,29) ⊆ +1 0.01 0.01

6 100 DBN (29) = 0.16 0.16

6 500 DBN (29) = 0.03 0.03

6 2000 DBN (29) = 0.02 0.02

6 5000 DBN (29) = 0.02 0.02

10 100 DBN (29) = 0.13 0.13

10 500 DBN (29) = 0.04 0.04

10 2000 DBN (29) = 0.03 0.03

10 5000 DBN (29) = 0.02 0.02

14 100 DBN (29) = 0.26 0.26

14 500 DBN (29) = 0.07 0.07

14 2000 DBN (29) = 0.04 0.04

14 5000 DBN (29) = 0.04 0.04

18 100 DBN (29) = 0.3 0.3
18 500 DBN (29) = 0.08 0.08

18 2000 DBN (29) = 0.05 0.05

18 5000 DBN (29) = 0.04 0.04

Table 6.1: Simulations with data generated from DBNs, where n and d denote the number of
features and the number of sequences respectively. R = reference model, L =
learned model (heuristic), KL (M) = KL divergence between model M and the
reference model, L DBN = learned DBN.

and PDBN-3 cases where the first cut was situated around half of the sequence
duration, there were at least two different transition patterns, which tends to
make DBNs less representative of each individual transition.

Overall, it is worth noting that the cases where the heuristic procedure was not
capable of constructing models with the same structural partition of transitions
as the reference models do have some particularities. Namely, these cases contain
just a few features (mostly n = 2) or have few sequences. Despite not returning
the exact type of model, the KL divergences of these PDBNs were noticeably
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smaller than the divergences of the learned DBNs, suggesting that the heuristic
made mistakes with low impact nonetheless.

n d Learned
Model

Cut Sets (R; L) Cut Diff. KL(L DBN) KL(L)

Time series length = 10
2 100 PDBN-4 (1,9); (1,2,4,9) ⊆ +2 0.18 0.08*
2 500 PDBN-2 (1,9) = 0.16 0.02*
2 2000 PDBN-4 (1,9); (1,5,7,9) ⊆ +2 0.19 0.01*
2 5000 PDBN-4 (1,9); (1,5,8,9) ⊆ +2 0.19 0.01*
6 100 PDBN-2 (6,9) = 1.88 0.14*
6 500 PDBN-2 (6,9) = 1.81 0.03*
6 2000 PDBN-2 (6,9) = 1.76 0.01*
6 5000 PDBN-2 (6,9) = 1.76 0.01*
10 100 DBN (8,9); (9) 6⊆ 1.06 1.06

10 500 PDBN-2 (8,9) = 0.96 0.05*
10 2000 PDBN-2 (8,9) = 0.95 0.02*
10 5000 PDBN-2 (8,9) = 0.95 0.01*
14 100 PDBN-2 (3,9) = 3.07 0.37*
14 500 PDBN-2 (3,9) = 2.68 0.1*
14 2000 PDBN-2 (3,9) = 2.39 0.03*
14 5000 PDBN-2 (3,9) = 2.35 0.02*
18 100 DBN (1,9); (9) 6⊆ 1.57 1.57

18 500 PDBN-2 (1,9) = 1.04 0.09*
18 2000 PDBN-2 (1,9) = 0.93 0.02*
18 5000 PDBN-2 (1,9) = 0.78 0.02*

Time series length = 30
2 100 PDBN-2 (15,29) = 5.05 0.09*
2 500 PDBN-2 (15,29) = 5.05 0.02*
2 2000 PDBN-7 (15,29); (2,6,15,20,26,28,29) ⊆ +5 5.07 0.02*
2 5000 PDBN-4 (15,29); (10,15,25,29) ⊆ +2 5.08 0.01*
6 100 PDBN-2 (18,29) = 15.8 0.12*
6 500 PDBN-2 (18,29) = 15.7 0.04*
6 2000 PDBN-2 (18,29) = 15.76 0.02*
6 5000 PDBN-2 (18,29) = 15.95 0.02*
10 100 PDBN-2 (20,29) = 7.24 0.26*
10 500 PDBN-2 (20,29) = 7.25 0.12*
10 2000 PDBN-2 (20,29) = 7.2 0.06*
10 5000 PDBN-2 (20,29) = 7.13 0.03*
14 100 PDBN-2 (21,29) = 9.29 0.35*
14 500 PDBN-2 (21,29) = 9.09 0.09*
14 2000 PDBN-2 (21,29) = 9.09 0.06*
14 5000 PDBN-2 (21,29) = 9.02 0.04*
18 100 PDBN-2 (17,29) = 13.02 0.34*
18 500 PDBN-2 (17,29) = 12.82 0.1*
18 2000 PDBN-2 (17,29) = 12.57 0.06*
18 5000 PDBN-2 (17,29) = 12.64 0.05*

Table 6.2: Simulations with data generated from PDBN-2 models. The best KL divergence
values are given in bold face and followed by an asterisk.

A summary of the results presented in Tables 6.1, 6.2 and 6.3 is given in
Table 6.4. Each row of the table aggregates simulations of DBNs, PDBNs-2 and
PDBNs-3 according to the number of features and sequence length.

6.4.4 Small datasets

In the final analysis based on simulations, we focus on the small datasets. The
simulations suggest that the models learned by the heuristic from the smallest



6.4 empirical evaluation via simulations 109

n d Learned
Model

Cut Sets (R; L) Cut Diff. KL(L DBN) KL(L)

Time series length = 10
2 100 PDBN-2 (1,6,9); (6,9) 6⊆ 2.73 0.26*
2 500 PDBN-4 (1,6,9); (1,2,6,9) ⊆ +1 2.8 0.02*
2 2000 PDBN-3 (1,6,9) = 2.79 0.01*
2 5000 PDBN-4 (1,6,9); (1,4,6,9) ⊆ +1 2.78 0*
6 100 PDBN-3 (2,6,9) = 3.37 0.25*
6 500 PDBN-3 (2,6,9) = 3.09 0.04*
6 2000 PDBN-3 (2,6,9) = 2.91 0.02*
6 5000 PDBN-3 (2,6,9) = 2.94 0.01*
10 100 PDBN-2 (6,8,9); (6,9) 6⊆ 2.99 1.83*
10 500 PDBN-3 (6,8,9) = 2.85 0.07*
10 2000 PDBN-3 (6,8,9) = 2.8 0.02*
10 5000 PDBN-3 (6,8,9) = 2.78 0.02*
14 100 PDBN-2 (2,3,9); (3,9) 6⊆ 6.5 1.61*
14 500 PDBN-3 (2,3,9) = 5.41 0.1*
14 2000 PDBN-3 (2,3,9) = 4.96 0.04*
14 5000 PDBN-3 (2,3,9) = 4.76 0.02*
18 100 DBN (1,8,9); (9) 6⊆ 2.17 2.17

18 500 PDBN-3 (1,8,9) = 1.85 0.1*
18 2000 PDBN-3 (1,8,9) = 1.7 0.03*
18 5000 PDBN-3 (1,8,9) = 1.52 0.02*

Time series length = 30
2 100 PDBN-3 (15,17,29) = 1.97 0.1*
2 500 PDBN-3 (15,17,29) = 1.93 0.02*
2 2000 PDBN-6 (15,17,29); (1,6,15,17,22,29) ⊆ +3 1.92 0.02*
2 5000 PDBN-5 (15,17,29); (3,15,16,17,29) ⊆ +2 1.92 0.01*
6 100 PDBN-3 (18,19,29); (17,19,29) 6⊆ 17.15 1.53*
6 500 PDBN-3 (18,19,29) = 17.09 0.05*
6 2000 PDBN-3 (18,19,29) = 17.13 0.03*
6 5000 PDBN-3 (18,19,29) = 17.12 0.02*
10 100 PDBN-3 (20,24,29) = 25.57 0.38*
10 500 PDBN-3 (20,24,29) = 25.69 0.07*
10 2000 PDBN-3 (20,24,29) = 25.59 0.05*
10 5000 PDBN-3 (20,24,29) = 25.09 0.03*
14 100 PDBN-3 (8,21,29) = 15.53 0.47*
14 500 PDBN-3 (8,21,29) = 15.3 0.17*
14 2000 PDBN-3 (8,21,29) = 15.15 0.07*
14 5000 PDBN-3 (8,21,29) = 15.05 0.04*
18 100 PDBN-3 (1,17,29) = 12.63 0.61*
18 500 PDBN-3 (1,17,29) = 12.07 0.11*
18 2000 PDBN-3 (1,17,29) = 12.03 0.06*
18 5000 PDBN-3 (1,17,29) = 11.97 0.05*

Table 6.3: Simulations with data generated from PDBN-3 models. The best KL divergence
values are given in bold face and followed by an asterisk.

datasets (i.e. those with d = 100 sequences) were simpler than the reference
models used to generate simulated data in virtually every case. Hence, the
heuristic tends to operate in a conservative mode when there is scarcity of data.
This also indicates that the methodology was effective in combating overfitting in
these simulations.

With regard to the structural partitioning and quality measurements for these
models: (1) the cuts of the learned models were all part of the cut sets of the
reference models in almost all cases (note that this includes all the cases with
a 6⊆); and (2) the divergences of the learned PDBNs were substantially smaller
than those of DBNs, specially when data was generated from PDBN-3 models,
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n KL(DBN) - KL(L) KL(L) ‘=’ (total) ‘⊆ +a’ ‘ 6⊆’ (total)
Time series length = 10
2 0.95 0.04 5(12) 1.5 1(12)
6 1.58 0.06 12(12) 0 0(12)
10 1.02 0.29 10(12) 0 2(12)
14 2.49 0.23 11(12) 0 1(12)
18 0.63 0.36 10(12) 0 2(12)
Time series length = 30
2 2.31 0.03 7(12) 2.6 0(12)
6 10.82 0.17 11(12) 0 1(12)
10 10.81 0.1 12(12) 0 0(12)
14 8.02 0.14 12(12) 0 0(12)
18 8.2 0.15 12(12) 0 0(12)

Table 6.4: Summary of simulations with DBNs and PDBNs. Abbreviations: L = learned
model (heuristic), KL (M) = KL divergence between model M and the refer-
ence model. Positive values in the 2nd column indicate higher divergences
achieved by DBNs. The 4th, 5th and 6th columns refer to the structural com-
parison of Section 6.4.1 and stand for the number of equal cut sets, average
number of additional cut sets in learned models, and number of remaining cases
respectively.

indicating a decent learning ability of the heuristic in the difficult situation of
small datasets.

6.5 learning temporal models of psychotic depression

6.5.1 Bayesian networks in psychiatry

The use of probabilistic graphical models in psychiatry has been fairly narrow.
Existing research is mainly restricted to semi-automatic and fully handcrafted
approaches, namely, learning only the parameters from data [41, 157] and eliciting
both structure and parameters from descriptive statistics and expert knowledge
[49, 103]. Although making use of expert knowledge might be necessary, e.g.
in order to include established medical knowledge, the use of a data-driven
approach has been able to discover new and unexpected insights in a multitude
of fields. Furthermore, an advantage of BN models that can be of interest in
psychiatry studies lies on making predictions when provided with incomplete
evidence (e.g. only a few symptoms). This feature has been explored in some
studies [49, 103], however at the individual level of a few patients (whether real
or artificial), consequently, there is still a need for understanding associations
between different variables in a more comprehensive and systematic way. This
can include inferences for a population of patients, in order to reveal more
general knowledge about, for example, the predictive power among different sets
of features.
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In the literature on BNs in psychiatry, so far time has not been a factor that has
been taken into account in a comprehensive manner. Except for [41] that deals
with the beginning and end of treatment, research that considers a broad range
of time granularities has not been done up to this moment. This could be of
interest, e.g., to controlled treatment trials and longitudinal diagnosis, where the
examination of some form of history or time series measurements would allow
for a more global comprehension of, for example, the evolution of mental illnesses
and a more accurate diagnosis. For prediction with BNs and extensions such as
DBNs, it is not required to enter all the symptoms as input for these models to be
able to deliver predictions about the future. Furthermore, these predictions can
be done for any point in future. Besides prediction, temporal models can also be
used to find associations taking into account the time dimension. On the other
hand, well-known models such as regression seem to be less flexible with regard
to tasks such as the mentioned ones.

Within the field of psychiatry, diseases that have been covered under a BN
approach include depression [36, 41, 103], social anxiety [157], schizophrenia
[49], as well as analyzing the use of BNs on diagnosis in psychiatry [162]. More-
over, there is little research on using temporal models for better understanding
psychotic depression, which besides being a severe mental disorder, brings an
additional complexity due to the presence of psychosis and depression factors.

6.5.2 Problem description and data

To illustrate the use of non-homogeneous probabilistic models and the heuristic
construction procedure proposed in this work, a case study in psychiatry is
considered. It comprises a dataset from an original study designed to assess three
different drugs to treat psychotic depression over 7 weeks [175]. The primary
outcome of the original study aimed at comparing the drugs to depression
levels and psychotic features at treatment endpoint. In this work, we aimed at
answering a different research question: to which extent do depressive and psychotic
symptoms interact over time? To this end, temporal models as DBNs and PDBNs
are used to evaluate a large range of hypothesis about PD while modeling explicit
relationships between psychotic and depressive features. We first discuss the
results obtained by the heuristic algorithm when applied over psychiatry data,
aiming at: (1) a more technical perspective based on fitting assessment between
DBNs and PDBNs; and (2) an investigation of the dependences in the graphical
structure. Then, in Section 6.6 we make use of the obtained models to answer
clinically-oriented research questions, as the one mentioned earlier.

Differently from the original study, in which the primary outcome was the
sum of the 17-item Hamilton depression rating scale (abbreviated as HDRS17)
[81], in this section we considered the individual symptoms of the HDRS17. The
dataset consists of 122 patients’ data, from which 100 are patients that completed
the treatment. Given the limited data, we used the 6-item melancholia sub-scale
(HDRS6) [89] instead of the complete HDRS17, consisting of the features shown
on Table 6.5. Using the melancholia sub-scale is, therefore, two-fold: it avoids
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the usage of the complete HDRS17 upon the available scarce dataset, whereas
HDRS6 is able to capture the core symptoms of depression [89]. In addition,
two psychotic features were considered (hallucinations and delusions), totalizing
eight features.

Psychiatry dataset [175]
Number of sequences
(complete)

122 (100) patients

Number of time points 8 (including baseline)
Depression features
(HDRS6)

Depressed mood (Dm), Guilt (Gu), Work
and Activities (Ac), Psychomotor Retarda-
tion (Re), Psychic Anxiety (Ap), and So-
matic General (Sg)

Psychotic features Hallucinations (Ha) and Delusions (De)
Study’s period and loca-
tion

2002-2007, The Netherlands

Table 6.5: Summary of psychiatry data.

The somatic general item takes values from the set {0, 1, 2}, where the value 0

means the item is absent, and the value 2 means it is clearly present. The other
items of HDRS6 are graded on {0, 1, 2, 3, 4}, where 0 means the item is absent, and
4 means the item is severe [81]. To use as much data as possible, the incomplete
cases were imputed with the same method used in the original study [175],
namely, the last observation carried forward (LOCF). The frequencies of the
imputed data at each week are shown on Table 6.6. An additional step in data
preprocessing to cope with the limitation of dataset size consisted of discretizing
each item as binary variables on {low, high}, as follows: {0, 1} was mapped
to low, while {2, 3, 4} (for five-valued variables) and {2} (for the three-valued
variable) were mapped to high.

6.5.3 Heuristic learning

Applying the heuristic procedure over the data first yields a DBN, with mean
log-likelihoods −351.18. In the first iteration of the heuristic refinement, it tries
to find a model with two cuts that is a better fit than the DBN, which in fact
was possible, precisely a PDBN-2 with cuts {4, 7} and fit of −345.53, as show
on left side of Fig. 6.2. Although not expanded further, the model with cuts
{6, 7} was also a better fit than the DBN (mean equal to −350.31). Since the
algorithm found an improvement over the current best solution (the DBN), it
updates the best solution to the most fit PDBN-2 and continues the heuristic
search, now over PDBNs-3. As the right plot of Fig. 6.2 shows, the search again
could find an improved solution, precisely a PDBN-3 with an additional cut just
before the last cut, leading to a new cut set {4, 6, 7} and mean log-likelihood
of −344.80. Consequently, a new iteration is began over PDBNs-4, however, no
further improvement could be achieved this time since the best fitting PDBN-
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Depressed mood Guilt
t 0 1 2 3 4 µ 0 1 2 3 4 µ

0 0 0 0.04 0.35 0.61 3.57 0.04 0.05 0.14 0.14 0.63 3.27
1 0.01 0.02 0.14 0.41 0.43 3.23 0.04 0.07 0.2 0.23 0.45 2.98
2 0.05 0.07 0.26 0.39 0.23 2.69 0.09 0.15 0.24 0.2 0.33 2.52
3 0.1 0.13 0.26 0.29 0.22 2.4 0.15 0.23 0.25 0.16 0.22 2.07
4 0.16 0.17 0.3 0.2 0.17 2.07 0.24 0.23 0.2 0.14 0.19 1.81
5 0.22 0.16 0.23 0.22 0.17 1.97 0.3 0.2 0.2 0.12 0.17 1.67
6 0.25 0.12 0.27 0.2 0.15 1.87 0.34 0.16 0.18 0.15 0.17 1.66
7 0.26 0.15 0.26 0.2 0.13 1.79 0.34 0.23 0.16 0.1 0.17 1.52

Psychomotor retardation Psychic anxiety
t 0 1 2 3 4 µ 0 1 2 3 4 µ

0 0.16 0.3 0.31 0.22 0.02 1.65 0.03 0.14 0.27 0.37 0.19 2.54
1 0.15 0.33 0.34 0.16 0.02 1.59 0.11 0.16 0.29 0.29 0.16 2.22
2 0.27 0.3 0.29 0.12 0.02 1.34 0.18 0.22 0.3 0.23 0.07 1.8
3 0.33 0.35 0.22 0.08 0.02 1.11 0.29 0.25 0.23 0.16 0.07 1.47
4 0.4 0.31 0.2 0.07 0.02 0.98 0.3 0.26 0.2 0.17 0.06 1.42
5 0.53 0.21 0.18 0.06 0.02 0.81 0.39 0.2 0.24 0.12 0.05 1.24
6 0.52 0.27 0.13 0.06 0.02 0.77 0.39 0.16 0.23 0.17 0.04 1.3
7 0.62 0.18 0.12 0.06 0.02 0.66 0.38 0.26 0.19 0.12 0.05 1.2

Work and activities Somatic general
t 0 1 2 3 4 µ 0 1 2 µ

0 0 0 0.15 0.49 0.36 3.21 0.1 0.3 0.61 2.54
1 0 0 0.21 0.52 0.27 3.06 0.16 0.34 0.51 2.22
2 0 0.02 0.34 0.5 0.14 2.76 0.22 0.43 0.34 1.8
3 0.01 0.08 0.35 0.4 0.16 2.61 0.34 0.39 0.27 1.47
4 0.02 0.12 0.4 0.34 0.12 2.43 0.27 0.48 0.25 1.42
5 0.02 0.14 0.43 0.29 0.12 2.34 0.39 0.42 0.2 1.24
6 0.03 0.19 0.36 0.3 0.12 2.29 0.41 0.38 0.21 1.3
7 0.07 0.25 0.37 0.2 0.11 2.03 0.4 0.36 0.24 1.2

Table 6.6: Relative frequencies of HDRS6 items of psychiatry data at each week, where µ

denotes the respective weighted means.

4 had a mean of −362.61 (plot not shown), leading to the termination of the
procedure. Hence, the model returned was a PDBN-3 with cuts at {4, 6, 7}.

A more detailed examination of the time partitioning of the resulting PDBN-3
can reveal insight on the underlying dynamics of the psychiatric treatment. In
general lines, it suggests that the dynamics governing roughly the first half of the
treatment’s duration is distinguished from the remaining weeks. The second half
of treatment is further dichotomized since the transition pattern to the last week is
distinguished as well. Hypothesis can be devised from this structural partitioning,
e.g. whether there are one or more symptoms that have stronger influence on the
others in the first stage, and whether the last transition is distinguished due to a
possible stabilization. Nonetheless, clinically relevant questions as these need a
stronger assessment based on the graphical structure and distributions of each of
the three components of the model, as covered in the next section.
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(a) First iteration: 2 cuts.
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(b) Second iteration: 3 cuts.

Figure 6.2: Boxplots for each stage of the heuristic over psychiatry data. The means are
represented by a diamond symbol.

6.5.4 Transition structures

The structure of the DBN is shown in Fig. 6.3, while the structure of the con-
ditional BNs that compose the PDBN-3 are shown in Figures 6.4 and 6.5. For
a clearer exposition, each conditional BN was split into inter-temporal arcs (i.e.
those from t + 1 to t) and intra-temporal arcs (those delimited to each point t + 1).
Note that DBN’s and PDBN-3’s initial structure are naturally the same. Both
models indicate the existence of a self-influence for every feature when moving
from present to future. More precisely, if A is a feature, the chain A(t) → A(t+1)

has been regularly learned for both DBN and PDBN-3, indicating (part of) the
direct effect received by A(t+1).

6.6 model assessment from a clinical perspective

In this section we approach the use of the learned models for psychotic depression,
specially the DBN and the PDBN-3, to support answering clinically-oriented
questions.

6.6.1 Marginals of symptoms over time

The previous sections showed that the PDBN-3 learned by the heuristic procedure
provided: a better fit and a richer transition structure information with respect
to other evaluated PDBNs, including the DBN. A complementary and practical
assessment of these models compare the marginal frequencies of each symptom
per week, as seen in data, with the respective model-based marginal distributions.
Table 6.7 presents the empirical and model-based marginals for each symptom
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Figure 6.3: Structure of the DBN learned from the psychiatry data. Nodes on the left side
of the inter-temporal arcs occur at time t, while those on the right at t + 1. De
= Delusions, Ha = Hallucinations, Dm = Depressed mood, Gu = Guilt, Ac =
Work and activities, Re = Psychomotor retardation, Ap = Psychic anxiety, Sg =
Somatic general.

per week, where the value assumed is either true or high. A summary of this
information is presented at Table 6.8.

Concerning the psychotic symptoms, the PDBN-3 produced marginals that are
closer to the empirical data than the DBN on average. With respect to depressive
symptoms, a superior fit was achieved by the PDBN-3, except for the symptom
psychomotor retardation.

6.6.2 Predictive symptoms over time

As discussed before, selecting an adequate structure is an important step to
capture the underlying distribution in data as precisely as possible. As a proba-
bilistic graphical model, the structure of PDBNs can be systematically verified
for statistical independences among two sets of random variables by means of
d-separation properties [104], essentially testing the paths between the respective
nodes in the structure. As the Figures 6.4 and 6.5 show, the marginal statistical
dependences, both direct and indirect (i.e. through paths with two or more arcs),
dominated over the marginal independences. Nevertheless, the independence
relation ⊥⊥P (or its counterpart 6⊥⊥P) is qualitative, in the sense that two variables
being dependent does not directly inform about any intensity in which this
dependence occur.
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(a) First cut: [0, 4].
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(b) Second cut: [4, 6].
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(c) Third cut: [6, 7].

Figure 6.4: Inter-temporal arcs of the PDBN-3 learned from the psychiatry data. De =
Delusions, Ha = Hallucinations, Dm = Depressed mood, Gu = Guilt, Ac =
Work and activities, Re = Psychomotor retardation, Ap = Psychic anxiety, Sg =
Somatic general.

In this context, we approach a research question within the field of psychiatry,
specially in psychotic depression: to which extent do psychotic and depressive features
interact during treatment? This question can be rephrased more concretely as:
how predictive are the psychotic symptoms to depressive symptoms, and vice-versa? To
answer this question, statistical (in)dependences play a key role, since it is the
fundamental criterion to decide on dependence and independence. However, it
must be complemented to allow an assessment of the intensity of dependence
among different dependent variables, aiming ultimately at discovering adequate
predictors, i.e. features capable of performing an effective prediction of the
interested symptoms. Intuitively, a symptom is a good predictor if each of its
groups (i.e. its values) induces a different distribution on the predicted symptom;
in other words, it should allow to reasonably distinguish the predicted symptom.

In this section, the odds ratio criterion is employed to determine the strength
of predictors. A subset of time points was selected as conditioning points to
observe a psychotic (resp. depressive) symptom and then compute the ORs of
future time points for each depressive (resp. psychotic) symptom. Using multiple
points allows to evaluate the dynamics of predictive capability as treatment
progresses and more information become available. These conditioning points
were selected to match approximately the cut points of the PDBN-3 learned
heuristically, namely, {1, 4, 6}. The baseline point (t = 0) was discarded since it
was a weak predictor for most of these predictions.
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Figure 6.5: Intra-temporal arcs of the PDBN-3 learned from the psychiatry data. De =
Delusions, Ha = Hallucinations, Dm = Depressed mood, Gu = Guilt, Ac =
Work and activities, Re = Psychomotor retardation, Ap = Psychic anxiety, Sg =
Somatic general.

In order to compute an OR, suppose X is a psychotic symptom observed at
some point (e.g. at t = 1), and Y is a depressive symptom that will be predicted at
t = i, i > 1; therefore, dom(X) = {true, f alse} and dom(Y) = {low, high}. Then,
the odds ratio to predict Y given X is:

OR(Y(i)|X(1)) =
odds(Y(i) = high | X(1) = true)
odds(Y(i) = high | X(1) = f alse)

(6.4)

=

P(Y(i) = high | X(1) = true)
1− P(Y(i) = high | X(1) = true)

P(Y(i) = high | X(1) = f alse)
1− P(Y(i) = high | X(1) = f alse)

(6.5)

We fix that each depressive variable Y is predicted with level high, hence,
the OR indicates the chances of having level high in the future according to
each group of a psychotic feature X. If OR > 1, then it is more likely that the
depressive feature Y will have level high if the patient comes from the group with
X = true compared to the patients coming from the group X = f alse; if OR < 1,
it is more likely to observe Y at high in the group X = f alse than in the group
X = true; finally, if OR = 1, there is no association between X and Y, i.e. knowing
the group of this particular psychotic feature does not affect the predictions for
this depressive symptom. For the sake of terminology, an OR > 1 is also called a
positive correlation, while an OR < 1 indicates a negative correlation. Note that
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Symptom Marginal probability (%)
t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7

Delusions
Data 91.0 72.1 59.0 47.5 40.2 36.1 32.0 30.3
DBN -0.09 0.43 0.32 2.03 1.93 0.22 -0.18 -1.95

PDBN-3 -0.09 -0.88 -1.32 0.28 0.16 0.38 1.6 0.11
Hallucinations
Data 23.8 15.6 16.4 13.1 13.1 11.5 13.9 11.5
DBN 0.03 3.69 -0.25 0.68 -1.06 -0.77 -4.26 -2.62

PDBN-3 0.03 2.77 -1.59 -0.58 -1.95 -0.01 -2.05 -1.66
Depressed mood
Data 100.0 97.5 88.5 77.0 67.2 62.3 62.3 59.0
DBN -0.83 -4 -2.22 2.02 4.96 4.07 -1.07 -2.06

PDBN-3 -0.83 -4.39 -3.66 -1.08 0.67 4.02 2.5 1.76
Guilt
Data 91.0 88.5 76.2 62.3 53.3 50.0 50.0 42.6
DBN -0.03 -5.78 -2.37 3.09 4.56 1.49 -3.76 -0.84

PDBN-3 -0.03 -6.72 -3.92 0.9 2.03 3 1.17 -0.07
Activities
Data 100.0 100.0 98.4 91.0 86.1 83.6 77.9 68.0
DBN -0.83 -4.36 -6.87 -3.87 -3.13 -4.52 -2.36 4.47

PDBN-3 -0.83 -3.03 -4.14 0.16 1.73 -0.18 2.72 2.66
Retardation
Data 54.9 52.5 43.4 32.0 28.7 25.4 20.5 19.7
DBN -0.1 -6.18 -4.38 1.32 -0.01 -0.41 1.77 0.39
PDBN-3 -0.1 -4.3 -2.96 1.78 -0.45 -2.73 -0.86 -2.32

Psychic anxiety
Data 82.8 73.0 59.8 45.9 43.4 41.0 44.3 36.1
DBN -0.01 -4.76 -1.04 5.93 3.04 1.07 -5.76 -0.57
PDBN-3 -0.01 -5.54 -3.19 2.87 -0.56 3.36 0.17 1.98

Somatic general
Data 60.7 50.8 34.4 27.0 25.4 19.7 21.3 23.8
DBN -0.02 -6.71 0.83 3.03 1.2 4.47 0.94 -3.05
PDBN-3 -0.02 -7.28 -0.95 1.15 -0.29 1.57 -1.63 -3.33

Table 6.7: Marginal distributions over time: psychiatry data and learned models (the latter
minus the former). The time span is split according to the cut set of the PDBN-3.

for the case when X is depressive and Y is psychotic, we fix true for X, and high
and low in the numerator and denominator for Y respectively.

Additionally, to evaluate of the significance of the association between each X
and Y, tables of contingency were constructed based on expected counts from the
model. The Fisher’s exact test was employed to evaluate the statistical significance
of these, under a significance level of α = 0.05.

6.6.2.1 Predictors for depression

Table 6.9 shows the ORs for psychotic features one week after baseline (i.e. at
t = 1), acting as predictors for depression. These results suggest that delusions at
that point had an at least reasonable association with the symptoms depressed
mood and guilt, i.e. for at least half of the future points that were predicted.
On the other hand, hallucinations at t = 1 showed to be less associated to the
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Symptom Mean Diff.
(DBN)

Mean Diff.
(PDBN-3)

Delusions 0.89 0.6
Hallucinations 1.67 1.33*
Depressed mood 2.65 2.36*
Guilt 2.74 2.23*
Activities 3.8 1.93*
Retardation 1.82* 1.94

Psychic anxiety 2.77 2.21*
Somatic general 2.53 2.03*

Table 6.8: Summary of percentage differences of learned models to the marginal frequen-
cies of psychiatry data. The absolute values are used to compute the means.

depressive symptoms. Nonetheless, somatic general contrasts with this pattern,
as it has been predicted by hallucinations almost until the end of the remaining
weeks of treatment. The other case where some dependency on this predictor
was noticed is psychic anxiety, however for a shorter period of time (three weeks
forward).

With respect to the predictive power of psychotic symptoms observed at t = 4
and t = 6 (Table 6.10, left and right respectively), delusions stood as predictor
of depressed mood and guilt, in this situation as a stronger predictor (all three
future predictions were significant). Other depressive symptoms were mostly
weakly associated to delusions. Hallucinations at these time points showed a
more restricted behavior than before, since it acted as predictor of somatic general
only, although by significant associations.

Symptom & predictor t=2 t=3 t=4 t=5 t=6 t=7
Depressed mood

Delusions(1) 5.15* 3.39* 2.72* 1.75 1.38 1.44

Hallucinations(1) 1.13 1.5 1.46 1.59 1.66 1.48

Guilt
Delusions(1) 3.84* 3.27* 2.75* 2.11* 1.84 1.62

Hallucinations(1) 1.1 1.12 1.2 1.2 1.3 1.29

Activities
Delusions(1) 3.53 2.23 2.45 1.42 1.4 1.45

Hallucinations(1) 1.34 1.04 1.38 1.38 1.6 1.47

Retardation
Delusions(1) 3.24* 3.22* 2.4 2.02 1.67 1.35

Hallucinations(1) 1.15 1.16 1.24 1.33 1.25 1.35

Psychic anxiety
Delusions(1) 1.33 1.21 1.16 1.27 1.33 1.46

Hallucinations(1) 2.54* 2.66* 2.41* 1.65 1.32 1.31

Somatic general
Delusions(1) 0.96 0.95 0.8 0.7 0.64 0.82

Hallucinations(1) 3.31* 3.27* 2.86* 3.07* 2.97* 2.23

Table 6.9: Odds ratios for psychotic symptoms as predictors. An OR greater than 1

indicates that the level high on the depressive feature is more likely to be
observed in the group true than in the group f alse of the psychotic feature.
Results marked in bold and * stand for a statistically significant association.
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Symptom & predictor t=5 t=6 t=7
Depressed mood

Delusions(4) 3.09* 2.26* 2.17*
Hallucinations(4) 1.98 2.14 1.71

Guilt
Delusions(4) 4.15* 2.93* 2.34*
Hallucinations(4) 1.19 1.31 1.4

Activities
Delusions(4) 2.26 1.81 2.59*
Hallucinations(4) 2.52 1.53 1.61

Retardation
Delusions(4) 2.97* 2.02 1.98

Hallucinations(4) 1.4 1.25 1.36

Psychic anxiety
Delusions(4) 1.88 1.88 2.21*
Hallucinations(4) 2.18 1.53 1.45

Somatic general
Delusions(4) 0.97 0.87 0.99

Hallucinations(4) 6.52* 6.18* 4.91*

Symptom & predictor t=7
Depressed mood

Delusions(6) 2.72*
Hallucinations(6) 1.67

Guilt
Delusions(6) 3.62*
Hallucinations(6) 1.2

Activities
Delusions(6) 5.66*
Hallucinations(6) 1.61

Retardation
Delusions(6) 2.04

Hallucinations(6) 1.34

Psychic anxiety
Delusions(6) 3.52*
Hallucinations(6) 1.25

Somatic general
Delusions(6) 1.14

Hallucinations(6) 4.31*

Table 6.10: Odds ratios for psychotic symptoms as predictors (cont.). Left: t = 4, right:
t = 6.

6.6.2.2 Predictors for psychosis

In the following, we evaluate how predictive the depressive symptoms are to
predict psychotic symptoms. Note that ORs are not symmetric; for example,
we calculate P(Som.gen(t)|Del(0)) to assess whether delusions is predictive to
somatic general, while we compute P(Del(t)|Som. gen(0)) to assess whether
somatic general is predictive to delusions. Note that these two might represent
distinct quantities.

Table 6.11a shows the odds ratio for each depressive symptom observed at t = 1.
As the results indicate, the depressive symptoms were not significantly strong to
predict delusions, except depressed mood, guilt and retardation, which accounted
for a weak association (precisely, two weeks ahead of the reference measurement).
Regarding hallucinations, there is virtually no depressive symptom predictor for
the case of t = 1.

On the other hand, updating the depressive symptoms at t = 4, as shown on
Table 6.11b (left), increased the association of the three symptoms mentioned
before to predict delusions until the end. The same insight applies to predict
delusions at t = 6. Concerning the prediction of hallucinations, somatic general
emerged with strong associations when measured both at t = 4 and t = 6,
while psychic anxiety showed reasonable associations only when measured at
the middle point, though.

6.7 conclusions

In this work, we proposed a heuristic algorithm to learn non-homogeneous time
dynamic Bayesian networks for relatively small temporal datasets with a small
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Symptom & predictor t=2 t=3 t=4 t=5 t=6 t=7
Delusions

Depressed mood(1) 5.3* 6.91* 5.04 4.2 3.66 3.21

Guilt(1) 2.91* 2.86* 2.21 2.16 1.9 1.62

Activities(1) 2.79 2.78 2.05 1.75 1.53 1.31

Retardation(1) 2.49* 2.11* 1.8 1.57 1.37 1.38

Psychic anxiety(1)
1.18 1.19 1.18 1.26 1.27 1.22

Somatic general(1) 0.91 0.97 0.96 1.07 1.07 1.16

Hallucinations
Depressed mood(1)

0.58 0.49 0.42 0.83 0.9 0.75

Guilt(1) 0.84 0.86 0.78 0.78 0.79 0.67

Activities(1) 0.51 0.44 0.38 0.38 0.41 0.31

Retardation(1)
1.08 0.93 0.91 0.81 0.93 1.07

Psychic anxiety(1)
1.84 2.05 1.71 1.83 1.39 1.52

Somatic general(1) 3.04* 2.9 2.54 1.86 1.86 1.94

(a) Odds ratios based on t = 1.
Symptom & predictor t=5 t=6 t=7
Delusions

Depressed mood(4) 4.96* 3.97* 4.22*
Guilt(4) 8.13* 5.62* 4.58*
Activities(4) 3.84 3.36 3.14

Retardation(4) 3.32* 2.5* 2.2*
Psychic anxiety(4)

1.8 1.69 1.9
Somatic general(4) 1.35 1.35 1.37

Hallucinations
Depressed mood(4)

1.2 1.2 0.97

Guilt(4) 1.07 0.91 0.96

Activities(4) 0.82 0.9 0.67

Retardation(4)
1.04 1.3 1.27

Psychic anxiety(4) 3.8* 3* 2.97

Somatic general(4) 4.85* 3.6* 3.36*

Symptom & predictor t=7
Delusions

Depressed mood(6) 3.94*
Guilt(6) 5.63*
Activities(6) 1.83

Retardation(6)
1.87

Psychic anxiety(6) 2.52*
Somatic general(6) 1.19

Hallucinations
Depressed mood(6)

1.71

Guilt(6) 1.35

Activities(6) 1.25

Retardation(6)
1.41

Psychic anxiety(6)
1.29

Somatic general(6) 7.47*

(b) Odds ratios based on t = 4 (left) and t = 6 (right).

Table 6.11: Odds ratios for depressive symptoms as predictors. An OR greater than
1 indicates that the level true on the psychotic feature is more likely to be
observed in the group high than in the group low of the depressive feature.
Results marked in bold and * stand for a statistically significant association.

number of variables as typically encountered in clinical settings. Extensive simu-
lations and a case study in psychiatry (psychotic depression) demonstrated its
capability to find adequate models under different assumptions, which included
data generated from non-homogeneous and homogeneous models. In particular,
simulated experiments played an important role to show that, in more general
scenarios, models based on non-homogeneous time have substantial benefits
over DBNs on several aspects (e.g. model fit and problem insight) when the
underlying process switches between different regimes on time. In the case of
small datasets, common in many clinical studies, it was shown that the heuristic
algorithm behaves in a more conservative fashion, i.e. it tends to produce slightly
simpler non-homogeneous models compared to the reference models, and yet
providing a decent fit.

Aiming at learning non-homogeneous models in the usually unfavorable sce-
nario of data scarcity, an evaluation criterion employed by the heuristic explicitly
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avoids over-specialized models, at the same time providing more robust models.
Moreover, the search strategy of the heuristic, based on incremental construction
of non-homogeneous models, is able to cope with the trade-off between model
complexity and data scarcity.

A first step towards a systematic application of probabilistic graphical models
in psychiatry taking into account the temporal dimension was taken. It allowed
to obtain insight about the dynamics of patient recovery in psychotic depression
over the course of a controlled treatment. In particular, a research question aiming
to answer the temporal relationship between psychotic and depressive features
was investigated, supported by models learned with the heuristic procedure.
The experimental assessment of the predictive capability of psychotic symptoms
observed at different moments (near baseline, middle and near-end points)
showed that the delusions symptom was more predictive than the hallucinations
symptom on most cases. On the other hand, the depressive symptoms were less
predictive for the psychotic symptoms. Nevertheless, a point to be observed is
that in general the predictions were bidirectional, i.e. the symptoms from one
category that stood as statistically significant predictors for the other can be
interchanged.

Among future research, we intend to evaluate the developed algorithm in
other real-world problems, as well as investigate further variations of the incre-
mental search. For example, during the execution of the algorithm, different
new solutions with equal or approximately equal score yet higher than the cur-
rent best solution can be found; this is currently worked out by choosing one
of these new solutions randomly and then resuming the search. The problem
of handling multiple solutions is in fact recurring in the literature of Bayesian
networks, where extensive research has been developed [33, 40, 108, 124]. In
this direction, the approach of this chapter could benefit from such research, for
example by extending the greedy search, as well as taking into account Bayesian
approaches [145]. These further investigations could provide more insight about
the distribution and the variance of the cut sets.


