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3
A S Y M M E T R I C H I D D E N M A R K O V M O D E L S

In this chapter, we introduce asymmetric hidden Markov models, which generalize the
emission distributions of HMMs to arbitrary Bayesian-network distributions, allowing
for state-specific graphical structures defined over the feature space. As a consequence,
HMM-As are able to render more compact state spaces, thus from a learning perspective
HMM-As can better cope with model overfitting compared to other HMM architectures.
We study representation properties of asymmetric and symmetric HMMs, as well as
provide a learning algorithm for HMM-As. Empirical results based on simulated and
real-world data from several domains show the effectiveness of modeling more general
asymmetries as done by HMM-As and the insight that such models can yield.

3.1 introduction

In many dynamic systems, complex patterns of observations are emitted over
time. It is often the case that parts of the underlying process are not observed,
e.g. because it is too difficult or impossible. This situation imposes challenges for
capturing the interactions between observable features. Hidden Markov models
are often employed as models for dynamic systems, having been successful in
speech recognition and synthesis domain [119, 141, 168]. HMMs have also been
applied to problems such as gene prediction and biological sequences [60, 165],
information retrieval [64, 155], and business processes [148]. However, it has
been also recognized that HMMs might face limitations to properly capture
distributions when limited data is available [13, 75, 119]. Furthermore, HMMs in
practice often have a single chain of states and impose a naive structure over the
feature space, which on the one hand alleviates learning and inference costs, but
on the other hand gives rise to larger state spaces that can lead to learning issues
(e.g. model overfitting) and unsatisfactory problem insight.

Research has been dedicated to extending HMMs for representing more struc-
tural information, aiming to render more useful and accurate models, e.g. factorial
HMMs [76], hierarchical HMMs [62], HMM/BN [119], and autoregressive HMMs
[139]. Nevertheless, these extensions do not capture more specialized indepen-
dences, often referred to as asymmetric independences or local structure [73],
i.e. independences that hold for subsets of values of the involved variables. In
the context of graphical models, the representation of asymmetries dates back
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30 asymmetric hidden markov models

to Bayesian multinets [73] and similarity networks [84], and had its importance
recognized for allowing better probabilistic inference [19, 32, 173], learning [66,
137], and for improving problem insight [102] as well.

In the context of HMMs, however, research on capturing asymmetries has been
much more limited, with a focus mostly on autoregressive models. Such models
include the representation of higher-order autoregressive interactions by means
of dynamic multinets [12], tree-based interactions on the observables space by
means of Chow-Liu HMMs [102], and a combination of first-order autoregressions
and tree-based interactions as implemented by conditional Chow-Liu HMMs
[12]. Therefore, a model able to capture more general asymmetries on the
observables space is needed. The literature also lacks a better understanding of the
implications of employing asymmetry models in time series settings. To address
these research aspects, we propose asymmetric hidden Markov models (HMM-As). In
HMM-As observations are emitted according to state-specific Bayesian-network
distributions, thus these models are able to represent independences that are not
represented in symmetric HMMs.

The contributions of this chapter are as follows. We first define HMM-As,
and compare its representation aspects with families of symmetric HMMs with
respect to their state space dimensions. Then, we discuss a learning algorithm for
HMM-As, which is based on the structural expectation-maximization framework
[53, 65], and additionally analyze computational costs associated to symmetric
and asymmetric HMMs. A set of varied simulations is then presented, with
special attention to the effect of different dataset sizes and number of underlying
structured states when learning symmetric and asymmetric models. Finally,
we discuss experiments based on real-world datasets, where we take a close
look at the obtained models in order to gain additional insight supported by
HMM-As. Such empirical results indicate that HMM-As can be successfully used
to obtaining new insight from real-life problems from several domains, including
business processes, monitoring of urban pollution, and industrial processes.

The remainder of this chapter is organized as follows. In Section 3.2 we provide
basic notions on distribution asymmetries and HMMs that represent asymmetries.
In Section 3.3 we define HMM-As and relate them to other HMMs. In Section
3.4 a learning procedure for HMM-As is introduced. Section 3.5 reports results
based on simulated data, while Section 3.6 reports results based on real-world
data and discusses problem insight. In Section 3.7 the related work is discussed.
The summary and future work are discussed in Section 3.8.

3.2 basic notions

In Chapter 2, we discussed different classes of HMMs, which included the most
common one, i.e., the independent HMM, as well as other HMMs. It is worth
noting that the HMMs shown in Figure 2.4 do not capture asymmetries in the
distribution, i.e. independences that are valid for some values within the domains
of the variables. Such independences can be formally defined by the notion of
context-specific independences, which we define next, based on [19].
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Definition 3.1 (Contextual independence). Let P be a probability distribution over
the sets of random variables V, W, U, and C, which are pairwise disjoint. We say
that V is contextually independent of W given U and the context c ∈ dom(C) if
(V ⊥⊥P W | c, U) for all values of V, W, and U.

Context-specific independences are able to capture independence statements
that are not captured with conditional independence statements. In the context
of HMMs, the context is typically given by values of the state variables(s), and
we shall refer to such statements as asymmetric independences in this chapter.

A summary of HMMs that represent distribution asymmetries is given in Table
3.1. For such HMMs, each state s ∈ dom(S) determines the parent set of each
observable, thus leading to asymmetric independences of the form:

(V(t) ⊥⊥P W(t) | s(t), U) (3.1)

where V, W ⊆ X. The set U depends on the state s at t, and it determines the
model architecture. For example, in Chow-Liu HMMs U ⊆ X(t), whereas in
dynamic multinets U ⊆ X(0:t−1).

Model Chain of
states

Distribution asymmetries Learning

Dynamic Multinet [12] Single Higher-order autoregressions be-
tween observables. No intra-
temporal correlations.

Discriminative
(classification)

Chow-Liu HMM [102] Single Intra-temporal interactions mod-
eled by tree distributions.

Generative

Conditional
Chow-Liu HMM [102]

Single First-order autoregressions and
tree-based intra-temporal interac-
tions.

Generative

Activator DBN [123] No chain Autoregressions and intra-
temporal interactions between
observables.

Not available

Asymmetric HMM
(this chapter)

Single Intra-temporal interactions mod-
eled by arbitrary Bayesian network
distributions.

Generative

Table 3.1: HMM families which represent independence asymmetries.

Representing distribution asymmetries is important for inference and learning,
however, as Figure 2.4 and Table 3.1 show, research to represent asymmetries
has been much narrower in the context of HMMs. This is justified by the
sequential nature and the role played by hidden states in HMMs, which imposes
other challenges when compared to the static case. We further discuss work on
representing distribution asymmetries in HMMs as follows.

As Table 3.1 indicates, systematic approaches for learning Chow-Liu HMMs are
available by means of a generative-based learning. However, the representation
of state-specific asymmetries in such HMMs is limited to trees, which can be
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harmful especially when the feature space has more features, and thus many
more structures become available. On the other hand, dynamic multinets directly
model potentially longer-history correlations by means of autoregressions. Yet,
no instantaneous (i.e. intra-temporal) interactions are captured, which makes
them closer to the original ideas of autoregressive HMMs [99, 139] by not fully
exploring the graphical structure.

The learning approach of the previous asymmetry-aware HMMs is targeted at
specific tasks, namely, classification. Thus, there is a need for models that can
represent more general asymmetries within the feature space, yet in a compact
manner to avoid the need for large amounts of data. Furthermore, the literature
lacks a better understanding of the representation capacities of the independent
HMM and other, structured HMMs with respect to state space dimensions and
model fit when the data generation process has varying amount of structure.

3.3 asymmetric hidden markov models

Asymmetric hidden Markov models generalize HMMs by allowing the emission
distributions to represent additional qualitative independence per state. In
the following we define HMM-As by first defining the association between
states and Bayesian-network distributions, followed by a discussion on model
parameterization.

3.3.1 Model specification

In order to define asymmetries in HMMs, we consider that hidden states induce
local models over the observables. This notion can be conveniently represented
by conditional Bayesian networks [104], in which a distribution P(X | S) is
defined for the observables X and the state S. As standard conditional BNs
provide a single factorization of X for all s ∈ dom(S), we extend this notion for
accommodating more general state-specific models as follows.

Definition 3.2 (State-specific Bayesian network). Let X and S be random variables.
For each s ∈ dom(S), we associate a Bayesian network over X called state-specific
Bayesian network for s. If Bs = (Ps, Gs) is the state-specific BN associated to s, we define
the following conditional distribution:

P(X | s) = Ps(X) (3.2)

=
n

∏
i=1

Ps(Xi | πs(Xi)) (3.3)

where πs(Xi) denotes the parent set of Xi as dictated by the state-specific BN Bs =
(Gs, Ps), in which Gs denotes its graphical structure and Ps its conditional probability
tables.

The previous definitions map hidden states to BNs, thus conveniently allowing
multiple sets of parents for the features in X, one for each state-specific BN.
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Definition 3.3 (Asymmetric hidden Markov model). An asymmetric hidden Markov
model over the random variables (X, S) is a dynamic system λ = (M→, M↓, M0), where
M0 is an initial distribution P(S(0)), M→ is a transition distribution P(S(t+1) | S(t)),
and M↓ is an emission distribution given by

P(X(t) | S(t)) = PS(t)(X(t)) (3.4)

From the definitions shown above, HMM-As are able to capture more qualita-
tive independences in their topology than HMMs. Yet, HMM-As will share a few
assumptions with HMMs, namely: the Markovian property and time-invariance.
A third assumption that will also hold in HMM-As establishes that the inter-
temporal interaction between features must occur via state variables. Hence,
given these assumptions, an unrolled HMM-A over the time horizon {0, . . . , T}
has the following joint distribution:

P(S(0:T), X(0:T)) = P(S(0))
T−1

∏
t=0

P(S(t+1) | S(t))

·
T

∏
t=0

n

∏
i=1

PS(t)(X(t)
i | πS(t)(Xi)) (3.5)

We note that standard HMMs (see Section 2.5.2) are therefore special cases
of HMM-As, since in the standard HMMs every state is associated to the same
Bayesian-network structure, i.e. Gsi = Gsj for every si, sj ∈ dom(S). An HMM-
A can be also visualized as a probabilistic automaton, providing an intuitive
representation for states and transitions, as Example 3.1 shows.

Example 3.1. On a regular basis, measurements of print quality (PQ), room temperature
(RT), ink type (IT), and media type (MT) are taken for an industrial printer. An
HMM-AM1 for this problem has hidden states that dictate the underlying dynamics,
named ‘normal’, ‘failing mode one’, and ‘failing mode two’, denoted by s1, s2, and
s3 respectively. M1 is shown in Figure 3.1 as a probabilistic automaton, which runs
by alternating taking probabilistic transitions and emitting multivariate observations
(PQ(t), RT(t), IT(t), MT(t)) according to the states which it traverses.

3.3.2 Parameterization

The conditional probability table of each observable Xi in HMMs has the form
P(Xi | S, π−(Xi)), where π− refers to the other parents excluding the state. On
the other hand, in HMM-As observables have their parameters associated to
state-specific BNs, whose CPTs do not explicitly show the states. Nevertheless,
CPTs in the standard sense can easily be obtained from HMM-As, as illustrated
next.

Example 3.2. In the HMM-AM1 (see Example 3.1), the conditional probability tables
that are rendered for its feature set are shown in Figure 3.2.
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Start

RT IT MT

PQ

s2

RT IT MT

PQ

s1

RT IT MT

PQ

s3

p1→1

p1→2

p2→2

p2→1

p2→3

p3→3

p3→2

p3→1

p1
p2 p3

Figure 3.1: Probabilistic automaton representation for HMM-AM1 (dashed arcs indicate
initial transitions; zero probabilities are not shown). State-specific BNs are
shown in rounded rectangles.

π Parameters
s1, RT, IT, MT θPQ|s1 ,RT,IT,MT
s2 θPQ|s2
s3, IT θPQ|s3 ,IT

(a) Node PQ

π Parameters
s1 θRT|s1
s2 θRT|s2
s3 θRT|s3

(b) Node RT
π Parameters
s1 θIT|s1
s2, RT θIT|s2 ,RT
s3, RT, MT θIT|s3 ,RT,MT

(c) Node IT

π Parameters
s1 θMT|s1
s2 θMT|s2
s3 θMT|s3

(d) Node MT

Figure 3.2: Parameterization of probability tables for HMM-AM1.

Given the HMM-AM1, it is possible to obtain a standard HMM that represents
its distribution over the feature space by turning the asymmetric independences
of M1 into non-asymmetric independences, by taking the minimal directed
acyclic graph (DAG) that includes all the dependences of the states inM1. Let
us refer to such a model as simulating HMM, which is illustrated next.

Example 3.3. LetM′
1 be a standard HMM for simulating the HMM-AM1, such that

both models have the same number of states. M1 includes asymmetric independences
such as (PQ ⊥⊥ RT | s2), which does not hold neither in s1 nor in s3. This leads to
the conditional dependence (PQ 6⊥⊥ RT | S), which therefore holds in the simulating
HMM M′

1. Similarly, in M1 it holds that IT and MT are independent in s1 and s2
only, hence, it must hold (IT 6⊥⊥ MT | S) in the simulating HMM. As a consequence,
the structure of emissions inM′

1 is denser than the state-specific ones fromM1, as it
can be noted from Figure 3.3a showing the emission structure ofM′

1.
It is worth noting that, e.g., the CPT for IT is P(IT | S, RT, MT), although direct

dependence between IT and {RT, MT} exists only when S is s3 inM1, which means
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that redundancies will exist in this CPT, as shown in Figure 3.3b. Finally, the total
number of independent emission parameters inM1 is 24: 11 from s1, 5 from s2, and 8
from s3. On the other hand, inM′

1 there are 42 independent parameters, obtained by
computing the size of the CPT for each variable.

. . . S

ITRT MT

PQ

. . .

(a) Graphical structure (emissions only).
CPT inM′

1 Parameters inM1
P(MT | S) θMT|S
P(RT | S) θRT|S
P(IT | MT, RT, s1) θIT|s1
P(IT | MT, RT, s2) θIT|s2 ,RT
P(IT | MT, RT, s3) θIT|s3 ,MT,RT
P(PQ | RT, IT, MT, s1) θPQ|s1 ,RT,IT,MT
P(PQ | RT, IT, MT, s2) θPQ|s2
P(PQ | RT, IT, MT, s3) θPQ|s3 ,IT

(b) Conditional probability tables.

Figure 3.3: Standard HMMM′1 that simulates the HMM-AM1.

Two points with further implications follow from Example 3.3. As HMM-As
allow for savings in the representation size due to the direct representation of
asymmetries in the distribution, one can readily take advantage of these for
speeding up probabilistic inference. Secondly, in HMM-As where a few states
induce small amounts of dependences (e.g. state s2 in M1), the CPTs of the
corresponding standard HMM will be large enough to cover the amount of
dependences resulting from the union of all state-specific dependences of the
original HMM-A. If there is a great disparity in the amount of asymmetries
among the states of the HMM-A, the standard HMM will likely require more
probabilistic parameters as well. As a consequence, standard HMMs are prone to
reveal less insight into practical problems.

3.3.3 Representation aspects

In the following, we discuss how standard and independent HMMs can represent
HMM-A distributions, and the effects of such procedure on the state space of the
former model families.
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3.3.3.1 Relationship with standard HMMs

We provided in Example 3.3 an intuition on how to obtain a standard HMM
able to simulate a particular HMM-A, i.e. an HMM that represents the same
distribution over the space of observables. Intuitively, the simulating HMM is
prone to have a denser structure compared to the individual states of the original
HMM-A, which in the limit reaches a fully connected structure. This is the main
idea used in Proposition 3.1 and its proof (see the Appendix) to show that a
standard HMM can be obtained from a given HMM-A in the general case. This
result also indicates that the simulating HMM does not need additional states for
the simulation.

Proposition 3.1. LetM be an asymmetric HMM with k states over the observables X,
where each Xi ∼ Multinomial, i = 1, . . . , n. Then, there exists a standard HMMM′

with k states over the same observables which simulatesM, i.e. P′(X(0:T)) = P(X(0:T)),
where P and P′ denote the joint distributions ofM andM′ over X respectively.

Although the proof of Proposition 3.1 uses an argument based on full connectiv-
ity, this is not strictly necessary as the structure on the simulating HMM depends
on the amount and form of asymmetries in the original HMM-A. Nevertheless,
as Figure 3.3b shows, parameter redundancy at the level of states is likely to
occur in the standard HMM, preventing inference from readily benefiting from
distribution asymmetries, as such redundancies are encoded in the CPTs, which
is not the case in HMM-As.

3.3.3.2 Relationship with independent HMMs

While standard HMMs can simulate HMM-As using the same number of states,
it is straightforward to see that independent HMMs are not able to do so in
the general case. It turns out, however, that the simulation process becomes
possible at the cost of expanding the state space of HMM-Is. Intuitively, the more
general independence assertions in each state of a given HMM-A must be broken
into multiple and naively-structured states. We show this result by means of
Proposition 3.2.

Proposition 3.2. LetM be an asymmetric HMM with k states over the observables X,
where each Xi ∼ Bernoulli, i = 1, . . . , n. Then, there exists an independent HMMM′

with k′ states over the same observables, such thatM′ simulatesM and k′ ≤ k2n.

It is straightforward to extend Proposition 3.2 for the more general case of
multinomial observables. The proof of Proposition 3.2 (see Appendix 3.A) pro-
vides a method for simulating HMM-A distributions by means of HMM-Is, and
it also shows an upper bound on the number of states required by the HMM-I. In
practice, the amount of dependences per state and the numerical parameteriza-
tion of the structured model can greatly vary, hence the number of states that a
simulating HMM-I requires tends to be lower than the bound, although it can
still be much higher than the original number of states of the original HMM-
A. Nevertheless, as we further show in this work, a substantial increase in the
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state space can be expected when simulating lowly- and moderately-structured
distributions.

3.4 learning

In this section, we present a learning algorithm for HMM-As. We discuss
computational costs for this and other families of HMMs as well.

3.4.1 Learning setting

In order to learn HMM-As, we assume that state variables are not observed and
the graphical structure for emission distributions is unknown. In this case, i.e.
learning under missing data and unknown structure, the likelihood function of
the observed data is non-decomposable by the graphical structure [15], which
makes analytical methods impossible. The structural expectation-maximization
(see Section 2.6.4) is often employed in these settings, which serves as a basis for
the learning procedure we develop for HMM-As.

The learning setting is score-based and is as follows. Consider a dataset D of m
i.i.d. complete sequences, where the ith sequence has the form x[i](0), . . . , x[i](mi).
Given an integer k, we aim to learn an HMM-A with k states that best fits D. As
in the structural EM, HMM-A learning is based on the idea of placing structure
learning in each cycle of E and M steps. The learning procedure for learning
HMM-As is described next, together with a discussion on its cost.

3.4.2 Expectation step

In the E step the current model λold is used for computing two expected statistics:
the expected occupancy of each state (denoted by γ), and the expected transitions
between any two states (denoted by ξ). For the sake of exposition, we show
derivations for the expected statistics considering a single sequence with length
{0, . . . , T}, which is straightforward to extend for multiple sequences as the
sequences are assumed i.i.d. We repeat below the notation of expected statistics
given in Section 2.6.2 for convenience:

γt(j) def
= P(S(t) = sj | D : λold) (3.6)

ξt(i, j) def
= P(S(t) = si, S(t+1) = sj | D : λold) (3.7)

Based on the assumptions regarding the HMM-A topology, it is possible to
show that the expected statistics can be given by means of the so-called forward
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and backward variables [141], denoted by α and β respectively, similarly to regular
HMMs:

γt(j) =
αt(j) · βt(j)

∑k
i=1 αt(i) · βt(i)

(3.8)

ξt(i, j) =
αt(i) · aij · bj(x(t+1)) · βt+1(j)

∑k
p=1 ∑k

q=1 αt(p) · apq · bq(x(t+1)) · βt+1(q)
(3.9)

where aij denotes the transition probability from state si to state sj, and bj(x(t+1))

denotes the emission probability of x(t+1) according to state sj. The forward and
backward variables are defined as follows:

αt(j) def
= P(S(t) = sj, x(0:t) : λold) (3.10)

=

[
k

∑
i=1

αt−1(i) · aij

]
bj(x(t)) (3.11)

βt(i)
def
= P(x(t+1:T) | S(t) = si : λold) (3.12)

=
k

∑
j=1

aij · bj(x(t+1)) · βt+1(j) (3.13)

where the basis of recursion is defined as α0(i) = υibi(x(0)) and βT(i) = 1 for
all i = 1, . . . , k, where υi denotes the initial probability of state si. The variables
α and β can be computed efficiently by means of dynamic programming, as
illustrated by Proposition 3.3.

Proposition 3.3. The computation of one E-step iteration for one sequence in asymmetric
HMMs takes O(Tk3n) time.

It is straightforward to see that the cost of the E step in HMM-As is, in fact, the
same as that of several other families of HMMs, including the independent and
standard HMMs. We also note that the cost is strongly influenced by the number
of states (which grows in a cubic fashion, whereas the other terms grow linearly).

3.4.3 Maximization step

In the M step, we obtain a new model λnew based on the expected statistics
previously computed. However, as opposed to the standard EM, the M step for
HMM-As can no longer be computed efficiently in its exact form, as the graphical
structure on the feature space is unknown, which relates to the intractable
problem of finding the optimal structure of a Bayesian network (see Section 2.3.2).
In fact, this efficiency can only be attained by very few families of HMMs, where
the independent HMMs is the main one; even some models that do not capture
asymmetries, e.g. the standard HMMs, also lose this property since the structure
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is unknown (even though it is shared by all the states). To learn feature-space
structures with reasonable quality, one often relies on approximate approaches.

In order to devise the update procedure for HMM-As, let us consider the
expected score in SEM [14, 65]. The expected score for a candidate model λ is
the expectation of the complete data likelihood taken with respect to the hidden
states conditional on the current model λold:

Q(λ, λold) = Es(0:T)

[
log P(x(0:T), s(0:T) : λ)− Pen(λ) | x(0:T) : λold]

= ∑
s(0:T)

P(s(0:T) | x(0:T) : λold) · log P(x(0:T), s(0:T) : λ)

− Pen(λ) (3.14)

The expectation is taken with respect to the latent state. Note that
P(x(0:T), s(0:T) | λ) factorizes according to the structure of the HMM-A (see
Equation 3.5), thus:

Q(λ, λold) = ∑
s(0:T)

P(s(0:T) | x(0:T) : λold)

· log

[
P(s(0))

T−1

∏
t=0

P(s(t+1) | s(t))
T

∏
t=0

P(x(t) | s(t))

]
− Pen(λ) (3.15)

Q(λ, λold) = ∑
s(0:T)

log P(s(0))P(s(0:T) | x(0:T) : λold)

+ ∑
s(0:T)

(
T−1

∑
t=0

log P(s(t+1) | s(t))

)
P(s(0:T) | x(0:T) : λold)

+ ∑
s(0:T)

(
T

∑
t=0

log P(x(t) | s(t))

)
P(s(0:T) | x(0:T) : λold)

− Pen(λ) (3.16)

Equation 3.15 suggests that each term of the expected score can be optimized
separately. The result is the parameter updating in the SEM process as follows.

3.4.3.1 Structure learning

In Equation 3.15, we identify the term associated to the emissions as:

∑
s(0:T)

(
T

∑
t=0

log P(x(t) | s(t))

)
· P(s(0:T) | x(0:T) : λold)− Pen(M↓)

=
k

∑
j=1

T

∑
t=0

log P(x(t) | s(t)j ) · P(s(t)j | x(0:T) : λold)− Pen(M↓)

=
k

∑
j=1

T

∑
t=0

γt(j) · log P(x(t) | s(t)j )− Pen(M↓) (3.17)
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The emissions term (Equation 3.17) can be further decomposed per state, because
the state-specific networks are independent of each other. The advantage now is
that each state-specific network can be locally learned. In this work, the penalty term
is defined according to the BIC score (see Section 2.3.2). Thus, for a state sj, its
fraction from the emissions term is:

T

∑
t=0

γt(j) log P(x(t) | s(t)j )− Pen(M↓; sj)

=
T

∑
t=0

γt(j) log P(x(t) | s(t)j )− Kj log(T + 1)
2

(3.18)

where Kj is the number of parameters in the model for state sj. In HMM-As
we wish to learn state-specific graphical structures in the M step, hence we run
structure learning for each of the k states separately. In practice, structure learning
often relies on approximate methods for exploring the search space of structures
in feasible time and yet providing reasonable solutions.

In this work, we consider the tabu search [77] (TS, for short) to explore the
candidate space of structures, which is a polynomial-time procedure based on
hill-climbing search. A TS iteration explores the neighborhood of the current
solution (initially an empty network) by adding, deleting or reversing an arc from
this solution. The current solution is added to the tabu list, which stores the
10 most recently explored networks, in this implementation. Furthermore, only
neighborhood solutions that are not in the tabu list are added to the neighborhood
set (initially empty). Once the neighborhood set has been updated, the best of its
solutions is taken out and set in the next iteration as the current solution. The
new current solution might not be better than the previous one, however, this is
allowed for no more than 10 consecutive iterations.

During the tabu search for the sj state, the corresponding term in Equation
3.18 is used to compare candidate structures. Once the stopping criterion is
reached in TS, the best structure that has been seen is returned. Stopping criteria
include, e.g., testing whether the neighborhood set is empty, or testing if more
than 10 iterations without improvement have passed. Given the described steps
for TS, the cost of each structure learning run is bounded by a polynomial cost
on the method’s hyperparameters aforementioned and the number of observable
features.

3.4.3.2 Parameter update

After obtaining a model structure for λ, it is possible to show that maximizing
the expected score (Equation 3.15) leads to the following update formula for the
transition probabilities:

âij =
∑T−1

t=0 ξt(i, j)

∑T−1
t=0 γt(i)

(3.19)

The update of the emission probabilities, in turn, is more involved than in
standard EM, as the feature space is multivariate and each feature can have other
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parents beyond the state variable. Furthermore, the parent set for a given feature
can vary among states. Nevertheless, we can take advantage of the fact that the
state-specific BNs allow us to factorize the joint distribution of the feature set X,
thus we can update the probability tables for one variable at a time. For state sj
and feature X, we update the corresponding probability tables as follows:

b̂j(X = x, πj(X) = y) =
∑T

t=0 γt(j) · 1(x(t), πj(X)(t) = y)

∑T
t=0 γt(j) · 1(πj(X)(t) = y)

(3.20)

where 1 is the indicator function. As in the case of arbitrary Bayesian networks,
the cost of this calculation strongly depends on the connectivity of the network,
being exponential in the number of features in the worst case. However, if the
parent sets have moderate sizes, this can be very reasonable in practice.

As a final remark in learning HMM families, we note that a simpler version
of this M step is needed for learning standard HMMs. In that case, structure
learning is executed only once, as all the states will share a single structure.
Analogously, updating the parameters in standard HMMs can still be costly due
to the reasons previously discussed.

3.5 assessment via simulations

In this section, we aim to understand how unstructured, structured, and
asymmetry-aware models cope with data generated from structured distributions.
We also intend to analyze the effect of different amounts of data in model quality.
To this end, we generated data from HMM-A distributions to simulate different
scenarios. The model selection procedure used to learn models is described, as
well as the data generation process, and finally the obtained results are discussed.

3.5.1 Model selection

In order to learn models that generalize best, we considered a model selection
procedure to determine state spaces balancing complexity and overfitting avoid-
ance as follows. Given a sequence dataset D, models are learned incrementally by
increasing the number of states until overfitting occurs, which corresponds to the
point where model score no longer increases. Model scoring is based on a 10-fold
cross-validation: for each fold, a model is learned using training data (90% of the
data) and its log-likelihood over validation data (the remaining data) is computed;
after processing all the folds, the mean log-likelihood is taken, corresponding
to the final score. To better assess learning, we learn 30 initial models for each
k states, and select the one that generalizes the best to represent models with
k states. Once the number of states has been determined, the final model L is
learned using the entire dataset and those initial parameters, and it is evaluated
by means of 60 independent datasets (not used in learning nor validation; each
independent dataset has 2,000 sequences with length 20 each).
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Each learned model L is evaluated by comparing likelihoods as follows. Let
R be the true model used to sample D, then we define the fit quality of L as
logLR − logLL, where logLR and logLL denote the mean log-likelihood of the
models R and L over testing data respectively. This fit quality can be interpreted
as the logarithm of the number of times the likelihood of the true model R is
in comparison with the likelihood of the learned model L (in non-logarithmic
scale). Hence, if the difference equals zero, it indicates that L and R fit equally
well, while a difference larger than zero indicates that L fits worse than R. Thus,
learned models with log-likelihood difference closer to 0 are preferred. We finally
note that this procedure allows us to compare models learned with different
amounts of data, as they are evaluated over the same testing datasets.

3.5.2 Datasets

Datasets were sampled from random HMM-As, which were generated taking into
account that many real-life networks have an average degree between 2 and 4 per
node (i.e. the sum of in- and out-degrees). This is the case, for example, in well-
known BNs, such as alarm, pathfinder, asia, and insurance [151]. Hence, in order
to generate ground truth models having state-specific BNs with a reasonable, and
yet realistic structure, the maximum degree of each node on each network was
set to 3.

In order to build a random HMM-A with k states, its initial and transition
matrices are sampled from Dirichlet distributions with concentration parameters
all set to 1. Thus, valid distributions are obtained, i.e. matrices with rows
that sum to 1 [69]. The emissions are Bayesian networks made of uniformly
sampled DAGs [122, 151], whose nodes have the aforementioned maximum
degree. All observables are modeled as random variables following Bernoulli
distributions, whose parameters are sampled from Dirichlet distributions as
before. We note that this procedure is also used to generate the initial models
used in learning (see Section 3.5.1), except that no maximum degree is set. Finally,
in the constructed scenarios the following quantities were considered: number of
features n ∈ {3, 6, 10, 14, 18}, the state space dimension of true models k ∈ {2, 6},
and the amount of sequential data as 50 sequences (each with length of 10 time
points), 200 sequences (10 time points) and 1,000 sequences (20 time points).

3.5.3 Results for symmetric models

Figure 3.4 shows the log-likelihood differences between asymmetric and symmet-
ric HMMs based on simulated data (here, HMM-S refers to standard HMM). We
first note that, as expected, all the classes of models obtained better fit when more
data is provided, which is influenced by the fact that more states can be learned
prior to overfitting. The results also suggest that independent and standard
HMMs were not able to provide the same model quality as HMM-As, even when
the highest amounts of data were provided to all the three models. Hence, it
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seems reasonable to expect that much more data would be needed in order to
learn models that fit as well as the learned HMM-As (in this case, using 1,000

sequences). Concerning the scarcer datasets (note that the larger datasets are 40×
larger than the smaller ones), HMM-As achieved superior model quality on most
cases. This allows us to conclude that HMM-As showed a good compromise in a
varied range of dataset sizes, which can be explained by its flexibility on learning
more or less dense feature-space structures depending on the situation.
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Figure 3.4: Fit of asymmetric and symmetric HMMs learned in simulations. Datasets
sampled from true models have 50 sequences (length 10 time points, ), 200

sequences (length 10 time points, ♦), and 1,000 sequences (length 20 time points,
). Note that scales on Y axes differ.

In terms of scaling, e.g. when modeling more observables, the additional struc-
ture of HMM-As avoided pitfalls that can hinder independent and standard
HMMs: HMM-Is will tend to increase their state space, while standard HMMs
will tend to model denser feature-space graphical structures. As a consequence,
in most cases these symmetric models approach overfitting with much less model
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quality than HMM-As. In other words, despite the representational equivalence
between HMM-As and independent and standard HMMs in theory, such sym-
metric models can be limited in practice. These claims are further supported
by results in Table 3.2 showing the corresponding state space dimensions, and
Figures 3.5a-3.5b showing the number of parameters.

Table 3.2 shows the dimension of state spaces associated to learned models, sug-
gesting that approximating HMM-A distributions required independent HMM
with state spaces substantially larger than the true models’ spaces, while this
was not the case for standard HMMs. Nevertheless, as Figures 3.5a-3.5b show,
the number of parameters in these two families were substantially higher than
those of learned HMM-As, specially when more features were involved. With
regard to running time in learning, Figures 3.6a and 3.6b show that, somewhat
surprisingly, learning HMM-Is was more costly in most cases than HMM-As:
although learning HMM-As is done via structural EM, its combination with
search heuristics and smaller space state was in practice more efficient than the
EM used to learn HMM-Is.

n HMM-I HMM-S HMM-A n HMM-I HMM-S HMM-A
3 3 2 2 3 3 3 3

6 3 2 2 6 3 2 2

10 6 2 2 10 6 2 3

14 5 2 2 14 7 2 4

18 5 2 2 18 7 2 5

Number of states in true models = 2 Number of states in true models = 6

(a) Dataset size = 50 sequences.
n HMM-I HMM-S HMM-A n HMM-I HMM-S HMM-A
3 4 2 2 3 4 4 4

6 7 3 2 6 6 3 3

10 10 2 2 10 11 3 8

14 9 2 2 14 13 2 6

18 13 2 2 18 15 3 6

Number of states in true models = 2 Number of states in true models = 6

(b) Dataset size = 200 sequences.
n HMM-I HMM-S HMM-A n HMM-I HMM-S HMM-A
3 3 2 2 3 6 6 6

6 13 2 2 6 15 6 7

10 21 2 2 10 27 6 7

14 27 2 2 14 37 3 6

18 37 2 2 18 45 3 6

Number of states in true models = 2 Number of states in true models = 6

(c) Dataset size = 1,000 sequences.

Table 3.2: State spaces of asymmetric and symmetric HMMs learned in simulations.

3.5.4 Results for asymmetric models

Figure 3.7 shows the fit quality results for HMM-As and Chow-Liu HMMs
(HMM-CLs). These results indicate that restricting the feature space to trees
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Figure 3.5: HMM-As and symmetric HMMs learned from simulated data: number of
parameters for different cases.

● ● ● ● ●● ● ● ● ●● ● ● ● ●●

●

●

●

●

●
●

●
●

●

● ● ● ●
●

3 6 10 14 18

4

486

968

1450

1932

Features 

M
ea

n
 l

ea
rn

in
g
 t

im
e 

(s
ec

o
n
d
s)

HMM−I

HMM−S

HMM−A

(a) Number of states in true models = 2.

● ● ● ● ●
● ● ● ● ●● ● ● ● ●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

3 6 10 14 18

4

588

1171

1755

2338

Features 

M
ea

n
 l

ea
rn

in
g
 t

im
e 

(s
ec

o
n
d
s)

HMM−I

HMM−S

HMM−A

(b) Number of states in true models = 6.

Figure 3.6: HMM-As and symmetric HMMs learned from simulated data: mean learning
time in seconds.

prevented HMM-CLs from achieving model quality as high as that by HMM-As
on most of the considered scenarios. This is more evident in the cases involving
more observables, where the learned HMM-As reached the most superior model
quality compared to HMM-CLs, which is likely influenced by the size of the
possible graphical structures for emissions, a situation which HMM-As can better
handle since HMM-As are not restricted to trees. On the other hand, HMM-CLs
are prone to be more efficient in practice, since learning Chow-Liu trees can
be done efficiently per EM iteration [102]. Similarly to the symmetric models
case, HMM-As could be trained with less data, and yet provided similar or
better model quality than HMM-CLs – although here to a lesser extent when
the data generating process had a higher number of hidden states. Furthermore,
extending the state spaces of HMM-CLs resulted in better models, however, prior
to overfitting these achieved lower quality than HMM-As.
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Figure 3.7: Fit of asymmetric and Chow-Liu HMMs learned in simulations. Datasets
sampled from true models have 50 sequences (length 10 time points, ), 200

sequences (length 10 time points, ♦), and 1,000 sequences (length 20 time points,
). Note that scales on Y axes differ.

A comparison based on Figures 3.4 and 3.7 suggests that modeling state-
specific structures, whether by means of general asymmetries as HMM-As do or
tree-shaped ones as HMM-CLs do, led to better results than those of symmetric
models. HMM-As needed in general fewer states or fewer parameters than
symmetric HMMs, which also holds for HMM-CLs with respect to symmetric
HMMs, as shown in Table 3.3 and Figure 3.8. Hence, the results of this section
suggest a somewhat consistent conclusion: capturing the distribution underlying
data generated by more structured processes is more adequate by means of
models that capture distribution specificities associated to the hidden states.
Although symmetric models can in theory capture such distributions, whether
by an increase of their state spaces or by modeling denser emissions structure, in
many realistic situations – where data is often limited – the asymmetric models
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exhibited several advantages and better handled the complexity versus quality
trade-off.

n HMM-CL HMM-A n HMM-CL HMM-A
3 2 2 3 3 3

6 2 2 6 2 2

10 2 2 10 3 3

14 3 2 14 4 4

18 2 2 18 4 5

k in true models = 2 k in true models = 6

(a) Dataset size = 50 sequences.

n HMM-CL HMM-A n HMM-CL HMM-A
3 2 2 3 4 4

6 3 2 6 3 3

10 4 2 10 6 8

14 3 2 14 6 6

18 3 2 18 7 6

k in true models = 2 k in true models = 6

(b) Dataset size = 200 sequences.

n HMM-CL HMM-A n HMM-CL HMM-A
3 2 2 3 7 6

6 4 2 6 8 7

10 7 2 10 7 7

14 9 2 14 15 6

18 8 2 18 21 6

k in true models = 2 k in true models = 6

(c) Dataset size = 1,000 sequences.

Table 3.3: State spaces of HMM-As and HMM-CLs learned in simulations (k denotes
number of states).
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Figure 3.8: HMM-As and HMM-CLs learned from simulated data: number of parameters
for different cases.
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3.6 experiments with real-world datasets

In this section, we describe experiments for learning symmetric HMMs, HMM-
CLs and HMM-As from real-world datasets originated from several domains.
In order to empirically determine state spaces and assess the learned models,
we used a procedure similar to the one described in Section 3.5. It differs in
that real-life datasets are split in two parts: one for selecting models via 10-fold
cross-validation (using 80% of the data), and the remaining portion for assessment
of generalization.

3.6.1 Datasets

The datasets considered in this section are summarized in Table 3.4 and described
next.

Dataset n Description Sequence data
Volvo 3 Event logs of software incidents 151 (50)
Rabobank 6 Event logs of software incidents 500 (30)
Airquality 12 Urban pollution monitoring 40 (48)
Printer R1 7 Performance of printing nozzles and mainte-

nance activity
27 (15)

Printer R2 7 Performance of printing nozzles and mainte-
nance activity

52 (15)

Printer R3 7 Performance of printing nozzles and mainte-
nance activity

58 (15)

Table 3.4: Summary of real-world datasets. The sequence data column shows the number of
sequences together with sequence duration in parenthesis.

3.6.1.1 Business process data

The business process dataset consists of event-log records on software incidents
related to, e.g., software bugs, hardware problems, among others within the
scope of ICT company departments. In general, these datasets are often used
for process mining, covering tasks such as conformance checking (i.e. checking
whether the business process specification complies with the running process),
process discovery and process enhancement [1]. Learning business models as
done in process mining field often intends to capture the underlying sequential
behavior of actions within events. Thus, given a collection of events, business
models are fitted to this data in order to represent different ways in which an
event can develop over its lifetime.

As opposed to business models (e.g. workflow-like models), where one often
wants to understand the internals of events, in this section we learn a complemen-
tary behavior from event-logs data in the form of influences among events. As
this is less evident from data and involves multivariate observations (since events
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are typically composed of several features), this is a challenging problem, for
which this section offers an HMM-based solution. We considered two datasets
from the BPI (business process intelligence) challenge, described as follows.

volvo dataset The Volvo IT Belgium dataset [166] consists of event logs
of software incident registered during the period of 2011-2012. Each data point
describes an incident by means of three features: incident impact, push to front
(i.e. whether the incident was handled by a service desk team or required other
specialized teams as well), and country (referring to whether the incident involved
employees from different nationalities). The Volvo data was split in sequences
such that each sequence has approximately 5 days of incidents.

rabobank dataset The Rabobank Group ICT dataset [55] consists of event-
log records of software incidents over the period of 2011-2014, however from a
different software domain than the Volvo dataset. We considered the part of the
data related to interactions, which registers the first contact between a user of a
software component and a service desk team. An interaction call can lead to an
incident or not. Each interaction is described in the Rabobank dataset by a set of
six features: type of involved item (e.g. application, hardware, network-related
issues), impact (in case of service disruption), priority, category (i.e. whether the
event refers to a request for information or an incident), first call (i.e. whether
the interaction could be solved by service desk team or led to an incident for
further resolution), and handle time (i.e. the amount of time to resolve the service
disruption).

Learning HMM-As for business processes aims in first place to provide well
fitted models, but also aims to discover different dynamics that might govern the
generation of incidents and interactions. This can then be turned into practical
knowledge, e.g., to assist decision makers when devising more effective and
resource-saving business processes. We shall discuss more on this in Section 3.6.3.

3.6.1.2 Airquality data

The Airquality dataset contains data on gas pollutants in the context of urban
pollution monitoring [172]. The feature set is composed by two different sources of
information: a set of reference pollutant concentrations provided by conventional
stations, and a set of measurements provided by a multi-sensor device. Originally,
the Airquality dataset was used to evaluate and calibrate sensor devices for
estimating the concentration of pollutants, as a technological means for low cost
and convenient air monitoring across urban spaces. In the original paper [172],
simple positive correlations among sensors data were found to influence the
prediction accuracy, hence we provide a complementary analysis to how these
correlations develop in a sequential way. We considered a feature set with 12

variables corresponding to the original measurements, which were discretized for
the experiments in this section. The records for the variable for the ground-truth



50 asymmetric hidden markov models

non-methane hydrocarbons were not considered, as they were absent in most of
the cases.

3.6.1.3 Printers data

We also considered data to support understanding the behavior of modern,
complex engineered artifacts (also called cyber-physical systems), for which
we use a large-scale printer as a case study. Whereas engineers understand
the functioning of the individual components in considerable depth and detail,
as a consequence of their intricate design they find it much more difficult to
understand the behavior of the artifacts at a certain level of abstraction, as well as
their interaction. In order to learn the temporal behavior of such systems, data
was gathered from three printers of the same printer family, where the usage of
the printers differs as function of time, and as function of the print jobs being
rendered. In this case study, we focus in particular on one component – the
nozzle – that aims at jetting ink on the paper. The behavior of nozzles as function
of time depends on several factors, such as the quantity of ink used, time since
last maintenance and some environmental parameters.

The logs that were considered consist of a 1-year record of nozzle-related
factors continuously monitored. We considered a key maintenance action that is
performed by the machine from time to time, and gathered data on nozzle-related
components between each maintenance occurrence, such that each (multivariate)
observation includes the following features: interval duration (i.e. the length
of time since the previous maintenance action), total workload, frequency of
another related maintenance action, and color-related features. The goal of our
experiment is to discover relations between features and how it influences the
proper functioning of the nozzles.

3.6.2 Results

We first report results on fit quality based on model selection, where Figure 3.9
shows the mean validation log-likelihoods in function of the number of states.
These results show that the structural simplicity of independent HMMs could
be compensated to some extent by learning larger state spaces, and thus model
quality similar to that attained by more structured models (i.e. standard HMMs
and HMM-As) could be achieved. However, this was not possible in all the cases,
in particular in the business process datasets. In these cases, prior to achieving
overfitting the structured models had a much better fit, suggesting that in some
cases the presence of non-trivial structure over observables can be deemed crucial
in order to obtain good models.

With respect to the structured models, contrasting standard HMMs with HMM-
As indicates that HMM-As achieved superior fit on some cases (e.g. Airquality
and Rabobank) and similar model quality on the remaining ones. The learned
HMM-As better fitted the data than Chow-Liu HMMs in general as well. It
is interesting to note that HMM-CLs impose tree structures to its emissions,
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something that might not be always beneficial. For example, in the Volvo and
Airquality cases, the results suggest that even a symmetric model as the HMM-S
was able to provide better results than HMM-CLs, which is interesting as the
HMM-S does not necessarily learn a connected structure for the emissions space.
In general, it can also be observed from Figure 3.9 that structured models as
standard HMMs and Chow-Liu HMMs overfit much more easily than HMM-As,
suggesting that HMM-As provide more parsimonious solutions to these real
problems.

As Figure 3.9 shows, dynamic Bayesian networks (DBNs) were also learned
from the real-world datasets, whose results indicate that DBNs provided con-
sistently inferior model quality than HMMs. Although these results are not
directly related to comparing HMMs, they suggest that modeling autoregressions
alone (as in DBNs) is not a guarantee for good fit in real-life datasets: modeling
multiple (and possibly structured) distributions via hidden states can be more
powerful, yet no autoregressions are modeled by these HMMs. A question that
could be of interest is whether including autoregressions in HMM-As would
bring real benefits to such models.

Having discussed the dynamics of model quality based on validation log-
likelihoods experiments, we now use these results to select and learn models
in order to discuss problem insight, as well as to assess their generalization. To
this end, we select models in a flexible way: we pursue models with the highest
fit, except when there are multiple models with similar quality, in which case
we select the models with the lowest dimension. After finishing this, we learn
models with the selected dimension using the entire datasets and measure their
likelihood with testing data (i.e. data that was not used in cross-validation).

The models learned for generalization assessment are summarized in Table
3.5. As there is no ground-truth model for the real-world datasets, to facilitate
comparison we used normalized log-likelihoods as follows:

NLL =
− logL(B)

c
(3.21)

where logL(B) is the log-likelihood of the model B , and c is a normalizing
constant given by c = mTn, with m being the number of sequences, T the
sequence length, and n the number of features in the dataset.

As Table 3.5 shows, HMM-As generalized consistently better than symmetric
HMMs and Chow-Liu HMMs. We further computed 95% confidence intervals
(CIs) for these models as shown in Table 3.6, in order to check for the robustness of
the generalization assessment (intervals were obtained by means of bootstrapping
the testing datasets for 2,000 times in each case). The CIs show that HMM-As
could provide significantly better model quality on most scenarios of business
process and Airquality cases. Significance in favor of HMM-As was also obtained
in the printers cases, although HMM-As can be considered better than Chow-Liu
HMMs in these cases but not significantly. This is explained by the fact that the
HMM-A states are all virtually associated to forests that are sparser than trees, as
in Printer R3 (Figure 3.14) and Printers R1 and R2 as well [23].
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(e) Airquality.
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(f) Printer R3.

Figure 3.9: Cross-validation log-likelihoods achieved by DBNs, symmetric, Chow-Liu, and
asymmetric HMMs in real-world datasets. Each point represents the mean
validation log-likelihood over 10 folds.

From the results on real-data discussed in this section, it seems fair to conclude
that not only more structure is beneficial for HMMs to better capture real-life
problems, but also the right additional structure as provided by HMM-As by
their state-specific Bayesian-network distributions. The number of parameters
in HMM-As was consistently lower than those of standard HMMs, independent
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HMM-I HMM-S HMM-CL HMM-A
Dataset k NLL #Pa. k NLL #Pa. k NLL #Pa. k NLL #Pa.
Volvo 8 65.2 87 5 64.7* 59 6 65.2 65 5 64.7* 50

Rabobank 10 48.5* 159 5 48.7 214 6 48.5* 101 4 48.5* 73

Airquality 8 32.9 159 8 32.1 623 8 35.4 247 6 31.3* 170

Printer R1 5 49.8 59 3 48.7 53 3 46.6 47 3 46.0* 36

Printer R2 4 60.5 43 3 61.7 65 3 60.4 47 3 59.9* 43

Printer R3 4 48.0 43 3 46.0 56 3 46.4 47 3 45.7* 36

Table 3.5: Generalization assessment of learned models on real-world datasets. Notation:
k denotes the number of states, NLL the normalized log-likelihood, and #Pa.
the number of parameters. Results that generalized the best are bold-faced and
followed by an asterisk.

Dataset
Asymmetric vs. Inde-
pendent

Asymmetric vs. Stan-
dard

Asymmetric vs.
Chow-Liu

Volvo [-0.86, -0.11]** [−0.14, 0.29]†S [-0.78, -0.21]**

Rabobank [−0.15, 0.15] [−0.47, 0.06]∗A [−0.02, 0.26]†CL

Airquality [-3.17, -0.17]** [−3.08, 0.61]∗A [-10.30, -1.77]**

Printer R1 [−10.35, 0.46]∗A [−7.88, 0.37]∗A [−1.32, 0.05]∗A

Printer R2 [−1.53, 0.74]∗A [-4.16, -0.38]** [−1.58, 1.11]∗A

Printer R3 [-4.79, -0.3]** [−1.67, 0.26]∗A [−3.35, 3.48]

Table 3.6: 95% bootstrap confidence intervals for the differences on generalization assess-
ment (real-world datasets). Negative values indicate better fits for HMM-As.
Notation: ∗∗ = HMM-A is significantly better; ∗A = HMM-A is better but not to
a significant extent; †X = model X is better but not to a significant extent.

HMMs and Chow-Liu HMMs, suggesting that diverse local structure exists which
could be discovered by HMM-As.

3.6.3 Problem insight

We discuss in this section problem insight that can be gained from the learned
HMM-As. We stress that from a fundamental perspective, where Bayesian
networks are tools to facilitate reasoning with statistical independences, the fact
that HMM-As can provide multiple graphical structures to explain how dynamic
systems evolve over time (e.g. a business process) represents additional insight by
its very nature. This contrasts to symmetric HMMs, where all those specificities
are lost (or hidden across a number of CPTs at most), thus much less insight is
likely to be gained.
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3.6.3.1 Business process models

Figure 3.10 shows the HMM-A learned from the Rabobank case (CPTs are not
shown). The model shows that Type is unconditionally independent of Impact
and Priority on the bottom right-most state, while this is not the case on the
top right-most state. This structural information might be used, e.g., to further
develop different policies for scheduling different types of interactions in different
moments: if the system is assumed to be in the bottom right-most state, a more
flexible scheduling might be possible, where different types of interactions do not
need to be handled by priority or impact, but instead could be handled by the
expected time to be solved (due to the relationship with Handletime). On the other
hand, if the system is in the bottom left-most state, Type is still unconditionally
independent of Impact, but its unconditional independence of Priority no longer
holds: in fact, such state seems to act as a bridge for the two aforementioned
states.

The aforementioned problem insight cannot be derived from the (almost fully
connected) graphical structure of the learned HMM-S partially shown in Figure
3.11, nor from the learned HMM-I. At a higher level of abstraction, HMM-As also
allow for new insight obtained by combining the local state properties with state-
transition probabilities: this shows that batches made of few software-incident
events that share independence properties are produced over time.

Figure 3.12 shows the HMM-A learned from the Volvo dataset. As in the
Rabobank case, this HMM-A is made of different graphical structures that lead
to different independence relations, whereas the standard HMM has a fully
connected structure as shown in Figure 3.13. Finally, we note that in asymmetric
models, not only probabilistic relationships change, but also the structure in each
state, providing evidence that these models capture an additional facet of the
different stages the underlying dynamic system can transit to.

3.6.3.2 Printers model

Figure 3.14 shows the HMM-A learned from Printer R3 dataset (the other printer
models were discussed elsewhere [23]). This model suggests that the behavior
of such large-scale printer alternates between two modes in the long run, which
can be distinguished based on how the color rates C1, C2, C3, and C4 interact
with the other observables. For example, once the printer is assumed to be in the
right-most top state, one could decide on whether the number of maintenance
performed could be altered in order to save resources, as this variable will not
affect the colors’ performance. However, this is probably not the case for most of
the colors if the printer is in the center state, where those colors do interact with
other observables. The standard HMM learned for this printer is shown in Figure
3.15, lacking from such specific alternation behavior that could be discovered
by means of the HMM-A, as the colors variables are connected to all the other
observables (whether directly or not).
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Figure 3.10: HMM-A learned from the Rabobank dataset. Dashed arcs indicate initial
probabilities.
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Figure 3.11: Graphical structure for emissions of the standard HMM learned from
Rabobank dataset.

3.7 related work

Analyses of the sensitivity of Bayesian networks to parameter change are relatively
numerous [34, 72, 130], however that does not seem to be the case when it comes
to the sensitivity to the graphical structure. There is some research on how model
structure affects accuracy in medical diagnosis problems [131], where the authors
have shown that the accuracy was not significantly sensitive for disturbances on
model structure, considering certain medical cases and diagnostic criteria. In the
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Figure 3.12: HMM-A learned from Volvo dataset.
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Figure 3.13: Graphical structure for emissions of the standard HMM learned from Volvo
dataset.

context of HMMs, however, the results shown in this chapter suggest a different
conclusion: with respect to model fit, modeling additional and specific (by means
of distribution asymmetries) seemed very important for achieving better model
quality. Nevertheless, these conclusions are not necessarily contradictory in
principle, as the employed criteria differ and so do the type of models. As in
HMMs the state space dimension is a rather important parameter, modeling
non-trivial structure that can lead to smaller state space seems crucial to such
models, while this might not be the case for some static Bayesian networks. In
fact, it is a general belief in the Bayesian networks field that non-trivial structure
matters for better handling real-world problems [51, 67, 150].

In this work, we attempted to provide a better understanding of the effects of
modeling asymmetries on the feature space in HMMs, which is somewhat lacking
in the literature. This involved a more thorough comparison of HMM-As with
several families of HMMs: this included not only independent HMMs, but also
standard HMMs and Chow-Liu HMMs, the latter being able to model simpler
asymmetries than HMM-As. Finally, the chapter showed experiments involving
models of DBNs, which are typically learned without hidden or latent variables.
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Figure 3.15: Graphical structure for emissions of the standard HMM learned from Printer
R3 dataset.

3.8 conclusions

In this chapter, we proposed a new family of HMMs called asymmetric hidden
Markov models. HMM-As explicitly capture distribution asymmetries inher-
ent to many real-world problems, by means of associating individual hidden
states to arbitrary Bayesian networks. We showed that, in principle, symmetric
HMMs (e.g. independent and standard HMMs) can have their state space or
emissions structure arbitrarily extended for representing structured distributions.
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Nevertheless, empirical results showed that this capability was not enough for
guaranteeing comparable model quality, due to model overfitting (because of
too many states or too dense emission structures). A similar conclusion holds
for Chow-Liu HMMs, suggesting that going beyond tree-shaped asymmetries as
done by HMM-As can be beneficial.

In some real-world cases, adding structure, either via symmetric or asymmetric
models, allowed for relevant model quality improvement, while the simplest
model (i.e. the independent HMM) was good enough in other cases. This model
selection issue could be adequately addressed by HMM-As, which provide
enough flexibility to reduce the need for selecting a particular HMM architecture
a priori.

Computationally, learning HMM-As introduces an additional burden due to
structure learning, compared to symmetric HMMs. Nevertheless, experiments
indicated that good-quality HMM-As with compact state spaces could be obtained
by using graphical structures found by common search heuristics. Hence, in
practice learning HMM-As using structural EM resulted in fact in shorter running
times compared to learning symmetric HMMs using standard EM in many cases.
Furthermore, HMM-As learned from real-world datasets with varied sizes and
number of observables were shown to bring additional problem insight that
cannot be readily obtained from symmetric HMMs.

Several paths for further research can be considered. To some extent, HMM-As
can be seen as tools for summarizing hidden Markov models with larger states
spaces into models with more compact state spaces, as shown in the real-world
experiments. We would like to further evaluate whether HMM-As act as model
summarizers in more general settings, e.g. when the data generation mechanism
has no explicit asymmetries (as in HMM-Is), and when it consists of different
kinds of asymmetries (such as autoregressions, as in dynamic multinets).

It could be also of interest to exploit the sensitivity of differences between
state-specific networks, e.g., along the lines of sensitivity analysis research. This
could help, e.g., to eliminate too specific arcs that do not significantly contribute
to model quality, thus allowing for more compact models. As we observed in real-
world experiments and in simulations, several advantages obtained with HMM-
As were more prominent when the problem had higher number of observables.
Hence, we intend to further investigate such scaling aspect, as well as consider
other real-world cases with more features and different types of observables (e.g.
continuous and hybrid ones). Finally, we would like to compare the identification
of asymmetries in sequential models as HMM-As with other approaches, such as
knowledge compilation [39] and dynamic chain event graphs [5].

3.a proofs

Proof of Proposition 3.1. LetM be the given HMM-A andM′ be a standard HMM,
where both models are defined over (X, S). We constructM′ for simulatingM as
follows. Let GF be directed acyclic graph over X that is also fully connected. Add
an arc from S to each Xi ∈ X, and define the result as the graphical structure of
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the emissions ofM′. By the chain rule from probability theory, a fully connected
structure can represent any probability distribution, hence, the distribution of
each state inM can be represented by a state inM′ by adequately parameterizing
the CPTs on the emissions of M′. This allows us to obtain P′(X(t) | s(t)) =
P(X(t) | s(t)), for every state s ∈ dom(S).

Finally, we set the initial and transition distributions of M′ to the same as
those fromM. Thus, we conclude that P′(X(0:T), S(0:T)) = P(X(0:T), S(0:T)).

Proof of Proposition 3.2. We construct in the following an independent HMMM′

for simulating a given asymmetric HMMM with k states. The observables are
assumed to follow Bernoulli distributions each (an extension to multinomial
distribution is straightforward). We denote by P and P′ the joint distributions
over (X(0:T), S(0:T)) of M and M′ respectively. Note that the state-specific BN
associated to any state inM is a BN over n variables, hence its joint distribution
can be completely characterized with at most 2n − 1 independent parameters,
where we denote by θx the parameter associated to the assignment x. For each
θx from state si, we define a state siθx inM′, as well as emission distributions of

the form P′(Xi = > | siθx)
def
= 1 whenever (Xi = >) holds in x. Following this

procedure for all state-specific BNs from all states will result in k2n states in total
inM′. This finishes the construction of the emission distribution forM′.

The remaining distributions ofM′ are constructed by scaling the corresponding
distributions inM with the probability of each joint assignment of X as follows.
For the initial distribution, we define

P′(s(0)iθx
)

def
= P(s(0)i )P(x(t) | s(t)i )

for each state si from M and assignment x. On the other hand, we define the
transitions inM′ as

P′(s(t+1)
jθx

| s(t)iθX
)

def
= P(s(t+1)

j | s(t)i )P(x(t+1) | s(t+1)
j )

where siθX refers to any state originated from si. Here the instantiation of X in θX
is irrelevant: taking a transition from si to sj is independent of the observation
emitted by si, since si is observed.

It is straightforward to verify that this construction produces a valid probability
distribution, and it assures that P′(X(0:T)) = P(X(0:T)). As a side note, while
dom(X) does not change in the simulated model M′, this is not the case for
dom(S), as opposed to the simulation of Proposition 3.1.

Proof of Proposition 3.3. The dynamic programming procedure for computing the
expected statistics of one sequence stores the values of α in a (T + 1)× k matrix,
also known as lattice (or trellis) structure. The computation of a single α value has
the cost of O(k + n) time as follows. In Equation 3.10, the summation amounts
to O(k) as long as the transition distribution is encoded as a k× k matrix. The
emissions in Equation 3.10, in turn, can be computed in O(n) time assuming
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each state-specific BN is conveniently encoded (e.g. using a graph traversal with
look-up tables for the parameters), allowing one to compute the probability of
any joint event in linear time. Thus, the total cost for each α value is O(n + k),
hence the entire lattice for one sequence takes O(Tk(k + n)) time. We build a
lattice for β as well, however the total cost per cell in this case changes to O(nk).
Thus, the total cost for the lattice of β is O(Tk2n).

Once the lattices for α and for β are done, we compute the expected statistic
ξ. Based on Equation 3.9, computing one ξ value amounts to O(k2n), thus an
entire ξ lattice for one sequence takes O(Tk3n) time. Finally, note that we can
compute the expected statistic γ by means of γt(i) = ∑k

j=1 ξt(i, j), thus the lattice
for γ requires O(Tk2) time by using the lattice of ξ.

The computation of all the lattices for an observation sequence is a sequential
process in which the cost of ξ’s lattice dominates over the rest. Hence, the total
cost of one E-step iteration for one sequence in HMM-As amounts toO(Tk3n).


