
Unraveling temporal processes using probabilistic graphical models
de Paula Bueno, M.L.

Citation
De Paula Bueno, M. L. (2020, February 11). Unraveling temporal processes using probabilistic
graphical models. SIKS Dissertation Series. Retrieved from https://hdl.handle.net/1887/85168

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/85168

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/85168

Cover Page

The handle http://hdl.handle.net/1887/85168 holds various files of this Leiden University
dissertation.

Author: De Paula Bueno, M.L.
Title: Unraveling temporal processes using probabilistic graphical models
Issue Date: 2020-02-11

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/85168
https://openaccess.leidenuniv.nl/handle/1887/1�

2
P R E L I M I N A R I E S

In this chapter, we fix the notation used throughout this work and present definitions on
probabilistic graphical models that are relevant for the following chapters. We start off by
covering the basics of Bayesian networks, then move to dynamic Bayesian networks and
hidden Markov models, which extend the framework of Bayesian networks for handling
temporal problems. Learning models from data is also discussed.

2.1 notation

We first introduce the notation and a few conventions used throughout this work.
In probability theory, random variables are typically denoted by upper case letters,
such as X, while the domain of a random variable X is represented by dom(X),
which represents the set of values that X takes on [52]. A discrete random variable
is a random variable which has a finite or countably infinite domain, while a
continuous random variable has as domain a subset of the real numbers. A random
variable is associated to a probability distribution, which assigns a probability
value to each value of its domain (for discrete variables) or to real intervals of its
domain (for continuous variables).

The probability distribution of a discrete random variable X will be denoted
by P(X), and the probability of a certain value x ∈ dom(X) will be denoted
by P(X = x) or simply P(x) when no confusion can arise. The probability
distribution of a continuous random variable Y with probability density function
f (Y) is denoted by p(Y), and the probability that Y takes values on a real interval
[y1, y2] is indicated as p(y1 ≤ Y ≤ y2). A set of random variables will be denoted
by a bold face letter, e.g., X = {X1, . . . , Xn}. A probability distribution assigned
to a single random variable as in P(X) is called a univariate distribution, while the
joint distribution assigned to set of variables {X1, . . . , Xn} is called a multivariate
distribution and is denoted by P(X1, . . . , Xn) or P(X).

In temporal modeling, each variable is often measured repeatedly, such that a
variable X at time t will be referred to as X(t). This means that the domains of
X(t), for all t ≥ 0, are the same. For the discrete time points {t1, . . . , t2}, where
t2 ≥ t1 ≥ 0, the notation X(t1 :t2) will be used to refer to the set of variables
{X(t1), . . . , X(t2)}.

9

10 preliminaries

2.2 bayesian networks

2.2.1 Origin

A Bayesian network (BN, for short) is a graphical model of a multivariate proba-
bility distribution with independence constraints. Bayesian networks date back to
the 1980s [97, 104, 136]; their goal was to overcome the limitations of rule-based
expert systems from the previous decade that incorporated uncertainty in the
form of numbers that had some resemblance to probabilities [115]. One important
limitation of such AI systems was the need for representing an unrealistic number
of probabilities to perform probabilistic inference, a problem which was dealt
with by making many simplifying assumptions. While this led to a substantial
reduction in the needed number of probabilistic parameters, it also gave rise to
poor performance in solving real-world problems, for example in medical diag-
nosis [70]. By marrying probability theory with graph theory, Bayesian networks
allowed to provide the right balance in the number of probabilistic parameters
needed to realistically represent the problem domain at hand.

A Bayesian network is a two-fold representation, as it encodes both qualitative
and quantitative information about probability distributions. The qualitative
side of a Bayesian network is given by a graph, whose semantics is associated
to statistical independence statements. The quantitative side regards numerical
probabilities, which are specified following the structure of the graph. As a
result, BNs provide a compact, yet expressive way of representing probability
distributions.

2.2.2 Representation

To define Bayesian networks over a set of random variables of interest, a few
definitions are introduced first. A graph G is a pair G = (V, A), where V is a set
of objects i ∈ {1, . . . , n}, n = |V|, called nodes, and A ⊆ V×V is a set of node
pairs called edges. If G is a directed graph, then each edge of A is an ordered pair
(i, j), also represented by i → j, such that (j, i) 6∈ A. The edges are then called
directed edges or arcs. If i → j ∈ A is an arc, then i is called the parent of node j,
and j is called the child of node i. If there is a directed path from node i to node j,
then i is called the ancestor of j, whereas j is called the descendant of i.

If G is an undirected graph, then its edges are unordered pairs, i.e., if (i, j) ∈ A
then also (j, i) ∈ A, simply represented as a set {i, j}. A directed acyclic graph
(DAG, for short) is a directed graph with no cycles, i.e., there is no sequence of
arcs of the form i → j → · · · → i (first and last node in the sequence are the
same). As usual, each node i in the DAG with V = {1, . . . , n} will be associated
in a one-to-one way to a random variable Xi from the set of variables X1, . . . , Xn
for the convenience of defining a Bayesian network. In the following, we shall
refer to nodes and variables interchangeably and use Xi to refer to both the node
and the variable.

2.2 bayesian networks 11

One way to define Bayesian networks is from the notion of factorizing a joint
probability distribution according to the structure of a graph as follows.

Definition 2.1 (Factorization). Let G = (V, A) be a directed acyclic graph with nodes
V = {X1, . . . , Xn}. A joint probability distribution P over the same variables factorizes
according to G if P can be written as:

P(X) = P(X1, . . . , Xn) =
n

∏
i=1

P(Xi | π(Xi)) (2.1)

where π(Xi) refers to the parents of the node Xi in G, and each factor P(Xi | π(Xi)) is
called a conditional probability table (CPT, for short).

Definition 2.2 (Bayesian network). A Bayesian network is a pair B = (G, P), where
P is a joint probability distribution that factorizes according to a directed acyclic graph G.

The joint probability distribution P associated with a Bayesian network G
encodes conditional independences, if it holds for three mutually disjoint sets
of variables U, W, Z ⊆ X that if P(U | W, Z) = P(U | Z) for any set of values of
the variables in U, W, Z. It is said that the variables U and W are conditionally
independent (under P) given Z, written as U ⊥⊥P W | Z. The set of all conditional
independent triplets associated to a joint probability distribution P is sometimes
defined as I(P) = {(U, W, Z) | U ⊥⊥P W | Z}.

The Bayesian network graph encodes independence relationships, which can be
read off by means of a graphical property called d-separation (directed separation)
[136]. The notion of d-separation defines potential probabilistic influence between
variables based on the structure of the BN graph. This can be described by means
of the notion of active trail [104]. A sequence of nodes σ = X1, . . . , Xm in the
graph G is a trail if either Xi → Xi+1 or Xi ← Xi+1 is an arc in G on the trail σ,
i = 1, . . . , m− 1, i.e., the direction of the arcs is ignored and only the fact that
X1 is connected by the trail to Xm is taken into account. Now the trail between
X1 and Xm is called active if for any Y on the trail σ, the connections of the
neighboring nodes U and W have the following directions:

• U ← Y → W (divergent connection), U → Y → W (serial connection), or
U ← Y ←W (serial connection), and Y has not been observed, or

• U → Y ←W (convergent connection or v-structure), whereas Y or any of
its descendants have been observed.

If a trail is not active, it is called inactive.
Now consider the following three mutually disjoint sets of nodes U, W, Z ⊆ V.

If all trails between any node in U and any node in W are inactive given (possibly
empty) observations in Z, it is said that the set of nodes Z d-separates the set of
nodes U and W, written as

U ⊥⊥d
G W | Z

For the graph G we can now collect all d-separation triplets:

I(G) = {(U, W, Z) | U ⊥⊥d
G W | Z}

12 preliminaries

The above definition can be used to provide a semantics of the BN graph in
terms of independence statements that are entailed by the graph. For Bayesian
networks B = (G, P) where the distribution P factorizes according to the DAG G,
it holds that I(G) ⊆ I(P) [136]. This means that every independence that holds
in the BN graph must hold in the distribution. This explains why the interpreta-
tion of d-separation as conditional independence is meaningful. However, the
semantics makes also clear that the two independence relations I(P) and I(G)
may not coincide.

Because of d-separation, the network structure of a Bayesian network can
be seen as its qualitative part, while the quantitative part corresponds to the
probabilities encoded in the CPTs. A Bayesian network example is provided in
Example 2.1.

Example 2.1. Assume we are interested in diagnosing lung cancer, as represented by
the variable C with dom(C) = {no, yes}. Other variables of interest are smoking (S),
gender (G), and age (A), where dom(S) = {no, yes}, dom(G) = {female, male} and
dom(A) = {adult, elderly}. Figure 2.1 shows the graphical structure and the CPTs
associated to this Bayesian network. Independence relationships can be deduced from
the graphical structure, e.g., having knowledge about smoking will make age and gender
irrelevant for the prediction of lung cancer.

AgeP(adult) = 0.7 Gender P(female) = 0.55

Smoking

P(smoker | adult, female) = 0.15

P(smoker | adult, male) = 0.20

P(smoker | elderly, female) = 0.05

P(smoker | elderly, male) = 0.10

Lung cancerP(yes | smoker) = 0.1

P(yes | non-smoker) = 0.01

Figure 2.1: Bayesian network of the lung cancer example. Note that the structure and the
CPTs in this example are fictional.

One advantage of the BN framework is that in the network structure one
typically captures only the essential variable interactions, which often results in
a substantial reductions in the needed number of probabilities to be specified.
The BN of Example 2.1 requires 1 + 1 + 4 + 2 = 8 independent parameters,
while the explicit specification of the joint distribution of P(A, G, S, C) would
require 2(4) − 1 = 15 independent parameters. This advantage tends to be more
significant if one deals with BNs with more variables, or variables with larger
domains, for example.

2.3 learning bayesian networks 13

The first step to using the BN representation is usually finding a suitable
network structure for the problem at hand. One way to construct such a network
structure is by manually defining the interactions among the involved variables
that are supposed to hold in the domain, based on prior background knowledge
and supported by domain experts. In that case, it is usually easier to think of
interactions in terms of cause-effect relationships [47], although the semantics
of a Bayesian network per se does not embody a causality notion. The network
structure can also be obtained from data. In any case, once the network structure
is obtained, the parameters of the network nodes need to be estimated, which
can also be done manually [71] or algorithmically [47].

2.3 learning bayesian networks

In practical situations, prior knowledge about the problem at hand might not
be available for handcrafting a Bayesian network for the domain, for example, if
it is too expensive to be obtained, nonexistent, or is prone to be incorrect. This
motivates the need for Bayesian network learning algorithms [44, 85, 169], whose
goal is to automatically find a Bayesian network that suitably represents the
distribution associated to the data. Bayesian network learning involves two steps:
learning a network structure and learning numerical parameters. Handling each
task also depends whether the data is complete or incomplete. In this section, we
consider the case of complete data.

2.3.1 Parameter learning

In the parameter learning task, we assume the network structure is known. The
goal is to estimate the CPTs of all the variables, i.e. the distributions P(xi | π(xi))
for every xi. Let us denote by θ the set of parameters associated to the Bayesian
network which are to be estimated, and let D be a set of data points x[1], . . . , x[m]
of the form x[j] = {x1[j], . . . , xn[j]}, where xi[j] refers to the value of the variable
Xi taken in the jth data point. Each Xi is assumed to follow a categorical
distribution taking values on dom(Xi). We further assume that all data points of
D are independent and identically distributed (i.e., i.i.d. samples). The likelihood
function of the Bayesian network with structure G parameterized by θ given the
data D corresponds to the probability of D under such model and is given by:

L(θ : D) = P(x[1], . . . , x[m] : θ) (2.2)

=
m

∏
j=1

P(x[j] : θ) (2.3)

14 preliminaries

From the factorization of Bayesian networks we obtain:

L(θ : D) =
m

∏
j=1

n

∏
i=1

P(xi[j] | π(xi)[j] : θ) (2.4)

=
n

∏
i=1

P(xi[1] | π(xi)[1] : θ) . . . P(xi[j] | π(xi)[j] : θ) (2.5)

Equation 2.5 shows that the likelihood function can be decomposed into a product
of independent terms, one for each node of the network structure. If we denote
by θirk the parameter P(Xi = xk | π(Xi) = xr), then the likelihood function can
be further expanded as follows:

L(θ : D) =
n

∏
i=1

∏
xk ,xr

θ
Nirk
irk (2.6)

where Nirk is the number of times the configuration (Xi = xk, π(Xi) = xr) is
seen in D. The goal now is to find the set of parameters θ that maximize this
function, an approach known as maximum likelihood estimation (MLE, for short).
The parameters that maximize the likelihood function are denoted by θ̂. It is
usually easier to work with the logarithm of Equation 2.6, which is referred to as
the log-likelihood of the data. It is possible to show [104] that the maximization
of the log-likelihood leads to closed-form formulas for parameter learning as
follows:

θ̂irk =
Nirk
Nir

(2.7)

where Nir is the number of times the configuration (π(Xi) = xr) occurs in D.
These quantities are known as sufficient statistics, and convey the idea that each
parameter corresponds to the node’s proportional counts with respect to its
parents. Once the optimal parameters θ̂ are computed, the likelihood computed
based on θ̂ is denoted by L̂.

2.3.2 Structure learning

When the network structure is unknown, one resorts to learning the network
structure from data. The goal of structure learning is to recover the structure
of the hypothetical joint probability distribution underlying the data [50]. With
structure learning, one is able to discover the dependence structure of the domain,
which can yield insight about qualitative influences that hold in the domain, both
direct and indirect. Network structure learning is also important to make the
parameter estimation in Bayesian networks feasible, although the structure should
not be overly simplistic, otherwise relevant correlations might be missed.

The problem of structure learning can be formulated as an optimization prob-
lem [7, 42], also known as score-based approach, whose goal is to find the network
structure Ĝ that optimizes a scoring function:

Ĝ = arg max
G∈G

Score(G, D) (2.8)

2.3 learning bayesian networks 15

where G is the space of network structures, i.e. the set of directed acyclic graphs
with nodes {X1, . . . , Xn}. In general, finding optimal Bayesian networks has been
shown intractable [42, 43]. Network structures can also be learned by means of the
constraint-based approach [118, 136], which determines a network structure that is
consistent with the independence relationships that hold on the data. In the case
of constraint-based learning, the worst case requires an exponential number of
tests [118]. In the remainder of this chapter, we consider the score-based approach
and further elaborate on it.

Scoring functions for structure learning play a central role in this task and
the literature offers a variety of them. One of the simplest score functions is
the likelihood score [104], which indicates the probability of the data given the
model and was defined in Equation 2.2. In the situation of unknown structure,
the likelihood score seeks the model (i.e. graph and parameters) that maximizes
the likelihood:

maxL(G, θG : D) = max
G

[
max
θG∈Θ

L(G, θG : D)

]
(2.9)

= max
G
[
L(G, θ̂G : D)

]
(2.10)

where Θ is the space of CPTs with regard to the graph G. Hence, in order
to maximize the likelihood, one needs to find the structure Ĝ that maximizes
Equation 2.10, where each candidate structure has parameters fitted via MLE.
However, as the goal with model learning is to capture the true distribution of
the data, using the likelihood score typically has severe limitations as follows.
By adding more arcs to the network, the likelihood score never decreases and
instead tends to increase [104]. Hence, by completely fitting to the data, one is
also fitting to the noise on the data, and the resulting network tends to be a fully
connected graph. This usually leads to the problem of model overfitting, which
means that the model does not generalize well (i.e. it performs poorly on new
data).

One alternative score function is the Bayesian score, which adopts a Bayesian
approach to modeling the structure and parameters that are to be estimated. In
the Bayesian approach, one defines a structure prior P(G) and a parameter prior
P(θG | G) for the possible ways a given structure can be parameterized. For a
candidate graph G, we can apply Bayes’ rule to obtain:

P(G | D) ∝ P(D | G)P(G) (2.11)

where the denominator P(D) can be dropped because it is the same for all
the graphs. The Bayesian score is then defined by taking the logarithm of the
right-hand side of Equation 2.11:

ScoreB(G | D) = log P(D | G) + log P(G) (2.12)

16 preliminaries

In the prior P(G) one can model a prior distribution that might favor, e.g., sparser
graphs. The term P(D | G) is known as marginal likelihood as it can be written
as:

P(D | G) =
∫

θG∈Θ
P(D | θG ,G)P(θG | G)dθG (2.13)

Intuitively, the marginal likelihood weights the likelihood of the data P(D | θG ,G)
by different ways of selecting the parameters given the network G. Hence, the
marginal likelihood can be seen as an average of the likelihoods for the structure
G, as opposed to the maximum likelihood score, which looks only at the score
that maximizes the term P(D | θG ,G). The Bayesian score tends to favor simpler
structures if little data is available for learning [104], which provides a mechanism
to combat overfitting. By using Dirichlet priors on all parameters of the network,
it is possible to show [104] that an approximation of the Bayesian score results
in the so-called Bayesian information criterion (BIC, for short), which is given as
follows:

BIC(G | D) = −2 · logL(θ̂G : D) + K · log m (2.14)

where K is the number of parameters of the network structure G, and m is the
size of the dataset.

The goal now is to find the structure G that minimizes the BIC score, where the
term K · log m in Equation 2.14 acts as a penalty term. Equation 2.14 suggests that
the problem of structure learning can be seen as a model selection problem [182],
where one wishes to find the network structure that balances goodness-of-fit
(the likelihood term) and model size. The scoring function is then coupled to a
search procedure, which is often a heuristic procedure such as tabu search [77],
hill climbing, simulated annealing, among others [152], resulting in sub-optimal
network structures obtained in feasible running time.

Although heuristic procedures are often used in BN structure learning, re-
search has shown that optimal structure learning can be done efficiently in some
situations [31, 158]. Some techniques are able to scale to problems with hun-
dreds variables [50]. Research has also shown that it is possible to predict which
algorithms would be more suitable for optimal learning of a given instance [116].

2.3.3 Decomposable scores

In structure learning, a key computational property is that of decomposability. A
score is decomposable if it is defined locally per node [50]. This allows for the
score of a candidate Bayesian network B , also referred to as its global score, to be
given as a sum of local scores, one for each variable:

Score(B) = ∑
Xi∈X

Score(Xi, πB (Xi)) (2.15)

where πB (Xi) refers to the parents of Xi in B . Decomposable scores allow for the
efficient evaluation of small changes to the structure, such as arc removal and arc

2.4 dynamic bayesian networks 17

addition, as such operations affect only the associated local scores. As a result, by
exploiting this property, structure learning algorithms can scale reasonably well.
Many scores commonly used in structure learning are decomposable, where the
BIC is one such score [50].

2.4 dynamic bayesian networks

In this section we discuss extensions of Bayesian networks for modeling temporal
processes by means of dynamic Bayesian networks (DBNs, for short). Learning
DBNs from data is also discussed.

2.4.1 Representation

Dynamic Bayesian networks [68, 124] extend Bayesian networks for modeling tem-
poral processes where uncertainty plays an important role. We restrain ourselves
to dynamic systems in which all the variables of a set X = {X1, . . . , Xn} are mea-
sured together and repeatedly over time, which is represented by X(0), X(1),
Further, the time interval between two measurements X(t) and X(t+1), for any
t ≥ 0, is assumed fixed. This means that in such dynamic systems the sequential
behavior of the involved variables is abstracted from the absolute time of their
measurement.

In order to keep the model compact, a few additional assumptions about the
process involved in the generation of X are often considered [104], which we
describe as follows.

Definition 2.3 (Markovian dynamic system). A dynamic system over the variables X
is first-order Markovian (or simply Markovian) if, for all t ≥ 0,

P(X(t+1) | X(0:t)) = P(X(t+1) | X(t)) (2.16)

The Markovian assumption means that predicting the future state of the process
depends only on its current state and not on previous states it has assumed. In
this case, the process is also said to be memoryless. Another useful property is
given as follows.

Definition 2.4 (Time-homogeneous dynamic system). A dynamic system over the
variables X is time homogeneous (or time invariant) if P(X(t+1) | X(t)) is the same for
every t ≥ 0.

Dynamic Bayesian networks provide a representation for Markovian time-
homogeneous dynamic systems grounded on graphical models as defined next.

Definition 2.5 (Dynamic Bayesian network). A dynamic Bayesian network is a Marko-
vian time-homogeneous system (B0,B→) over X, where:

• B0 = (G0, P0) is a Bayesian network over the variables X(0) called initial network.

18 preliminaries

• B→ = (G→, P→) is a Bayesian network over the variables {X(t), X(t+1)} called
transition network. The variables of X(t) have no parents in the transition network.

The transition network can also be seen as a conditional Bayesian network [104],
because it suffices to define the distribution P(X(t+1) | X(t)) for defining this
network. Although DBNs can be defined as semi-infinite systems [68], in practice
one reasons with a finite horizon {0, . . . , T}. In this case, the DBN is unrolled
so that a joint distribution over the process duration is specified as follows: the
structure and parameters of all the nodes at time t = 0 come from the initial
model, while the structure and parameters for any node X(t)

i , where t > 0, come
from the transition model.

From the previous definitions and assumptions, the joint distribution of a DBN
over a time horizon {0, . . . , T} is as follows:

P(X(0:T)) = P(X(0))
T−1

∏
t=0

P(X(t+1) | X(t)) (2.17)

=
n

∏
i=1

P0(X(0)
i | π(X(0)

i))
T−1

∏
t=0

n

∏
i=1

P→(X(t+1)
i | π(X(t+1)

i)) (2.18)

where in Equation 2.18 it is shown that the joint can be written in a modular way
based on the factorization provided by the distributions P0 and P→. An example
of DBN for a medical problem is described in Example 2.2.

Example 2.2. In a disease process, two symptoms (denoted by A and B) and the adminis-
tered drug quantity (denoted by D) are observed at regular time intervals for each patient.
A DBN is used to model patient evolution, where the structure of the initial model B0
and the transition model B→ are shown at the top of Figure 2.2. From B0 and B→, an
unrolled DBN over six time points can be obtained, as shown at the bottom of Figure 2.2.

In the transition model of a DBN the set of arcs from a variable at time t to a
variable at time t + 1 are often called intra-temporal arcs, e.g., the arcs B(0) → D(0)

and A(1) → B(1) in Example 2.2. On the other hand, arcs between variables from
the same time point are called inter-temporal arcs, such as A(0) → A(1) in this
example.

2.4.2 Learning

Learning DBNs is to a considerable extent similar to learning (static) Bayesian
networks. Let us consider a training set D of m i.i.d. sequences, where the jth
sequence has observations of the form x[j](0), . . . , x[j](mj). For convenience, we
denote by D0 the initial slices of D, which amount to m observations, whereas we
denote by D→ the transition instances of D, which amount to m′ observations,
where m′ = ∑m

i=1 mi. The initial model B0 and the transition model B→ are
learned from D0 and D→ respectively.

2.5 hidden markov models 19

t = 0

A

B

D

(a) Initial structure in B0

t+1

A

B

D

t + 1

A

B

D

(b) Transition structure in B→
A(0)

B(0)

D(0)

A(1)

B(1)

D(1)

A(2)

B(2)

D(2)

A(3)

B(3)

D(3)

A(4)

B(4)

D(4)

A(5)

B(5)

D(5)

(c) Unrolled DBN for six time points.

Figure 2.2: An example of DBN for a disease process. The CPTs of B0 and B→ are not
shown.

In an MLE approach, by a similar reasoning as done with static Bayesian
networks (Section 2.3.1) it can be shown [68] that the BIC of a DBN (B0,B→) with
structure G = (G0,G→) is given by:

BIC(G : D) = BIC0 + BIC→ (2.19)

where

BIC0 = −2 · logL(θ̂G0 : D0) + K0 · log m (2.20)

and

BIC→ = −2 · logL(θ̂G→ : D→) + K→ · log m′ (2.21)

such that K0 and K→ denote the number of parameters of the initial and transition
models respectively.

Equation 2.21 in fact uses the conditional log-likelihood of the transition in-
stances, which is given by logL(θ̂G→ : D→) = ∑m

j=1 ∑t log P(x[j](t+1) | x[j](t)). By
maximizing the BIC of B0 and the BIC of B→ independently, the BIC of the
complete DBN is maximized as well.

2.5 hidden markov models

In several situations, we might be interested in modeling latent (or hidden) vari-
ables, which allow for capturing unmeasured quantities related to the observed

20 preliminaries

quantities [178]. This might provide improved understanding of the problem at
hand, along with other potential advantages such as simplified model structure
[67] and better model fit [179].

In this section, we discuss hidden Markov models (HMMs, for short), which
can be seen as instances of DBNs from a representation perspective. We focus on
several representation aspects of HMMs, while learning is covered in the next
section.

2.5.1 Model architectures

In a general problem setting, we denote by X = {X1, . . . , Xn} the set of observable
features, and we assume that there is a set of state variables S = {S1, . . . , S`}
that we do not observe and are involved in the generation of X over time. In
such problem, we are interested in a temporal model that can be constructed
and used feasibly, yet is realistic and insightful. To this end, different sets of
assumptions are very often used, taking also into account domain characteristics.
As a consequence, the variety of existing HMMs renders different probabilistic in-
teractions between X and S (by interaction we refer to unconditional probabilistic
dependence).

A general HMM framework is illustrated in Figure 2.3 [25], where the exact
form of interactions within states and within observables is abstracted. We start
by defining the HMM which captures the interactions denoted by solid lines in
Figure 2.3 and can be seen as a basis for several other HMMs.

time

hidden variables

observables

higher-order
interactions

states-observables
interactions

autoregressions

t− 1 t

S1, . . . , Sl

X1, . . . , Xn

S1, . . . , Sl

X1, . . . , Xn

. . .

. . .

. . .

. . .

t− 2, . . . , 0

t− 2, . . . , 0

t− 2, . . . , 0

Figure 2.3: An abstracted general HMM with hidden variables {S1, . . . , S`} and observ-
ables {X1, . . . , Xn}. Solid arcs indicate interactions present in the independent
HMM and related models.

Definition 2.6 (Hidden Markov model). A hidden Markov model is a Markovian
time-homogeneous system λ = (A, B, υ) over {S, X}, where:

2.5 hidden markov models 21

• A = P(S(t+1) | S(t)) is the transition distribution

• B = P(X(t) | S(t)) is the emission distribution

• υ = P(S(0)) is the initial state distribution

and dom(S) = {s1, . . . , sk} is called the state space of the model.

The above definition is based on those of dynamic systems given in Section 2.4,
except that in an HMM we repeatedly measure not only observables X, but also a
latent variable S. In this case, there is a single latent variable per time point, hence
S = {S}. It is customary to view A as a matrix [aij], B as a set {bj(k)}sj∈dom(S),
and υ as a vector [υ(si)], where:

aij = P(S(t+1) = sj | S(t) = si) (2.22)

bj(k) = P(X(t) = xk | S(t) = sj) (2.23)

υ(i) = P(S(0) = si) (2.24)

The above notation will be useful when describing HMM learning (see Section
2.6.2). By unrolling an HMM over a finite time horizon {0, . . . , T}, and from the
given assumptions and definitions, the joint distribution of an HMM is:

P(X(0:T), S(0:T)) = P(S(0))
T

∏
t=0

P(X(t) | S(t))
T−1

∏
t=0

P(S(t+1) | S(t)) (2.25)

A well-known class of HMMs is the independent HMM (HMM-I, for short) [102,
138, 141], in which the observables at a given time point are assumed conditionally
independent given the state. This additional assumption means that P(X(t)

i |
X(t)

j , S(t)) = P(X(t)
i | S(t)) whenever P(X(t)

j , S(t)) > 0, for all t ≥ 0 and i 6= j.
Based on the previous assumptions, the joint distribution of an HMM-I is as

follows:

P(X(0:T), S(0:T)) = P(S(0))
T

∏
t=0

n

∏
i=1

P(X(t)
i | S(t))

T−1

∏
t=0

P(S(t+1) | S(t)) (2.26)

2.5.2 Families of HMMs

By relaxing the assumptions of the independent HMM based on the general
architecture shown in Figure 2.3, different families of HMMs can be derived, as
summarized in Figure 2.4. The emissions of a standard HMM can be defined as:

P(X | S) =
n

∏
i=1

P(Xi | S, π−(Xi)) (2.27)

22 preliminaries

where π−(Xi) denotes the set of parents of Xi excluding the state, and it depends
on the Bayesian network associated to the feature space. In the literature, the
standard HMM is also known as HMM/BN [119].

Symmetric
HMMs

Single
chain

Standard HMMs [119]
Generalize HMM-Is: intra-temporal interactions
via arbitrary Bayesian network

Independent HMMs [141]

Autoregressive HMMs [99]
Generalize HMM-Is for allowing direct inter-
temporal interactions between observables

Input-Output HMMs [11]
Generalize HMM-Is for multiple state-transition
distributions

Multiple
chains

Factorial HMMs [76]
Generalize HMM-Is for multiple chains. Chains
do not interact directly.

Probabilistic modularity
Chain
of states

Family

Figure 2.4: HMM families, where intra-temporal interactions refer to probabilistic interac-
tion among observables from the same time point, while inter-temporal interac-
tions refer to interactions between distinct time points.

The models from Figure 2.4 can be distinguished based on a number of factors,
where probabilistic modularity, i.e. the sets of variables that are directly connected
in the model, has a major importance. For example, the very high modularity
of HMM-Is requires that the state variable summarize more history information,
which can imply larger state spaces [76], as opposed to autoregressive HMMs,
where the direct interaction between observables is prone to reduce the burden
over the hidden states. On the other hand, as autoregressive HMMs might require
more parameters, they are prone to be less stable. This illustrates that there can
be several trade-offs when a decision must be made about the design of an HMM.

2.6 learning with latent variables 23

2.5.3 Learning

Learning HMMs often reduces to parameter learning, because the structure of
models such as the independent HMM and input-output HMM is defined before-
hand. However, structure learning might be needed, e.g., for learning standard
HMMs and autoregressive HMMs if one wants to decide which autoregressions
should be present based on the data. Due to the presence of latent variables,
learning HMMs is addressed differently than discussed so far and will be covered
in more detail in Section 2.6.

2.6 learning with latent variables

In many real-life situations the data might have variables with missing values
due to several reasons, e.g., when patients drop out of treatment, do not carry
out a measurement or forget to register the result of a measurement, or when a
sensor breaks down. At other times, we might be interested in modeling latent
(or hidden) variables, i.e., the situation when no values have been observed for a
variable, which is the case of probabilistic models such as HMMs. Dealing with
missing values or with situations when all values of a variable are missing is
done by similar algorithms. In this section we discuss learning of models with
latent variables.

Learning Bayesian networks with latent variables is more difficult than the
case of complete data, as closed-form solutions are in general not available
[15, 21]. Iterative methods are often used, including gradient-based methods
[104] and the expectation maximization algorithm (EM, for short) [53, 65, 67].
More recently, research has shown that in some situations parameter learning of
Bayesian networks with latent variables can be done in closed form [21], while
structure learning has been done by approximating predictive distributions, also
in an iteration-free approach [143].

2.6.1 The expectation-maximization algorithm

In the situation of latent variables, the space of variables is given by a set of
observables X together with a set of latent variables S. Then, the log-likelihood
function of model parameters θ given a probabilistic structure P(X : θ) and data
on X can be written as:

logL(θ : x) = log P(x : θ) = log ∑
s

P(x, s : θ) (2.28)

The presence of the summation inside the logarithm makes it difficult to optimize
Equation 2.28 analytically, because the marginal P(x : θ) might not belong to the
exponential family even if P(x, s : θ) does [15]. The expectation maximization
algorithm is an alternative approach for finding the maximum likelihood in
an iterative way. In EM, we refer to X as the incomplete data, and X ∪ S as the
complete data. However, as we do not have access to the complete data, EM

24 preliminaries

resorts to the expected likelihood of the complete data. A general description
of the EM procedure is provided in Algorithm 1. In the context of (dynamic)
Bayesian networks, the described EM algorithm assumes the network structure is
known and the goal is to perform parameter estimation, thus θ refers to model
parameters.

Algorithm 1 Expectation-maximization algorithm.

Input: D: a set of data points of the form X = {X1, . . . , Xn}; S = {S1, . . . , S`}:
a set of latent variables.
Output: θ: model parameters for the distribution P(x, s).

1: Choose initial model parameters θold.
2: repeat
3: E step: Compute P(s | x : θold)
4: M step: Compute θnew as follows:

θnew ← arg max
θ

Q(θ, θold) (2.29)

where Q(θ, θold)
def
= Es

[
log P(x, s : θ) | x : θold

]
(2.30)

= ∑
s

P(s | x : θold) log P(x, s : θ) (2.31)

θold ← θnew (2.32)

5: until convergence of the log-likelihood or the model parameters is achieved
6: return θnew

The goal of Algorithm 1 is to maximize the expected log-likelihood with
regard to the latent states (Equation 2.30) in an iterative way. Algorithm 1 starts
with initial model parameters θ0, which is often randomly generated. Then,
EM calculates the term of Equation 2.30 regarding the current parameters, i.e.
P(s | x : θold), which is known as the E step. Once this is done, it is possible to
evaluate candidate model parameters for the expected log-likelihood. The goal
now is to find new model parameters that optimizes this expectation, which is
known as the M step. The process of generating new model parameter estimates
from the current one is repeated until no improvement is possible, which means
that a local maxima or a saddle point of the likelihood function has been achieved
[65]. It is possible to show [15] that each cycle of E and M steps generates a new
model that is at least as good as the previous one.

2.6 learning with latent variables 25

2.6.2 The Baum-Welch algorithm

Models with latent variables such as HMMs are often learned by means of the
EM algorithm, which is also known as the Baum-Welch algorithm in this context
[141]. In this section, we consider the learning of HMMs with fixed structure,
for which learning reduces to parameter learning. We use independent HMMs
to illustrate the necessary calculations. These involve estimating the parameters
θ, which include the emission distributions P(X(t)

i | S(t)), with Xi ∈ X and
dom(S) = {s1, . . . , sk}, the transitions P(S(t+1) | S(t)) and the initial probabilities
P(S(0)).

We consider the same learning setting as that of learning DBNs (Section 2.4.2),
but in order to simplify the notation, we consider that the data D consists of
a single sequence over {0, . . . , T}. This can be easily extended to the case of
multiple i.i.d. sequences. Let us denote by θold the parameters of current HMM-I
and by θ the parameters of new HMM-I to be obtained. The Q function of
Equation 2.30 for HMMs becomes:

Q(θ, θold) = ∑
s(0:T)

P(s(0:T), x(0:T) : θold) · log P(x(0:T), s(0:T) : θ) (2.33)

For convenience, in Equation 2.33 the joint P(s, x : θold) was used. It holds that
P(s, x : θold) = P(x : θold)P(s | x : θold), thus one can use either the joint or the
conditional probability for this development because they are independent of θ.
By substituting the joint of HMMs (Equation 2.26) into Equation 2.33, we obtain:

Q(θ, θold) = ∑
s(0:T)

P(s(0:T), x(0:T) : θold) · log P(s(0))

+ ∑
s(0:T)

P(s(0:T), x(0:T) : θold)

(
T

∑
t=0

n

∑
i=1

log P(X(t)
i | s(t))

)

+ ∑
s(0:T)

P(s(0:T), x(0:T) : θold)

(
T−1

∑
t=0

log P(s(t+1) | s(t))

)
(2.34)

In order to maximize such Q function, one can maximize each term independently.
The term referring to the initial distribution can be written as:

∑
s(0:T)

P(s(0:T), x(0:T) : θold) · log P(s(0)) (2.35)

= ∑
s(0:T)

P(s(0:T), x(0:T) : θold) · log υ(i) (2.36)

By setting the derivative with respect to υ(i) to zero, and introducing the
Lagrange α multiplier to ensure the constraint ∑k

i=1 υ(i) = 1 we obtain:

∂

∂υ

(
∑

s(0:T)

P(s(0:T), x(0:T) : θold) · log υ(i)− α(
k

∑
i=1

υ(i)− 1)

)
= 0 (2.37)

26 preliminaries

It is possible to show [14] that this results in:

υ(i) =
P(x(0:T), s(0)i : θold)

P(x(0:T) : θold)
(2.38)

By similar reasoning we obtain the transitions and emissions:

aij =
∑T−1

i=0 P(x(0:T), s(t)i , s(t+1)
j : θold)

∑T−1
i=0 P(x(0:T), s(t)i : θold)

(2.39)

bj(k) =
∑T

i=0 P(x(0:T), s(t)j : θold) · 1(k)

∑T
i=0 P(x(0:T), s(t)j : θold)

(2.40)

where 1(k) = 1 if X(t) = xk, and 0 otherwise.
In order to actually compute the above probabilities, some useful quantities

are defined:

γt(i)
def
= P(s(t)i | x(0:T) : θold) (2.41)

ξt(i, j) def
= P(s(t)i , s(t+1)

j | x(0:T) : θold) (2.42)

In many families of HMMs, the γ and ξ values can be efficiently computed by
the forward-backward procedure based on dynamic programming [14, 15]. This
fact is important for keeping the EM iterations efficient. Then, it is possible to
show [141] that parameter update leads to θnew = (A, B, v) given by:

υ(i) = γ0(i) (2.43)

aij =
∑T−1

t=0 ξt(i, j)

∑T−1
t=0 γt(i)

(2.44)

bj(k) =
∑T

t=0 γt(j) · 1(k)
∑T

t=0 γt(j)
(2.45)

2.6.3 Number of latent states

One important hyperparameter of HMMs is the number of latent states. It is
often the case that this hyperparameter is not known in advance, hence one can
resort to estimating it using data. Information-theoretic criteria, such as AIC and
BIC, can be used for this task [35, 138], with the advantage of low computational
cost, something that is important for tasks as Bayesian-network structure learning.

2.6 learning with latent variables 27

Selecting the number of states can also be done by means of cross validation.
While cross validation is typically more costly than penalized scoring functions,
with cross validation one is able to directly estimate the performance of the model
on new data, which allows for dealing with overfitting. A particular advantage
of cross validation in HMMs is that it avoids assumptions made by penalized
scoring functions, which require that the actual distribution of the data belongs
to one of the models being compared [35].

One approach for selecting the number of states by means of cross validation
is by incrementally increasing the number of states until model generalization
stabilizes or deteriorates [102, 144]. To evaluate a model with q states by means
of k-fold cross-validation, the training data is obtained from (k− 1)/k percent of
sequences, while the validation data is obtained from the remaining sequences.
The average log-likelihood of validation data is reported as the performance of
the model, which can then be compared against, e.g., a model with q + 1 states.

2.6.4 Structure learning with missing data

It is often the case that models with latent variables also need to have some of
their structure estimated from data. For example, more general HMMs which
adopt less restrictive assumptions on the probabilistic interaction among variables
(see Figure 2.4) might require structure learning on the emission space, if there is
no a priori domain knowledge about typical interactions. Using an inadequate
or too restrictive model structure can considerably limit model emissions, which
has been considered important for allowing HMMs to properly capture complex
distributions [12, 102, 123] since it governs how observations are emitted to the
external world.

In the situation of learning with latent variables and unknown structure, one
can resort to an extension of the EM algorithm called structural EM (SEM, for
short) [65, 67]. This is the case of Bayesian networks with latent variables
and unknown structure, as well as standard HMMs (Equation 2.27), where the
emission distribution follows an arbitrary Bayesian network, thus the observable
variables might not be independent given the state.

In the following development, we consider that the model to be learned is a
Bayesian network with structure G and parameters θ (for convenience, we use θ
instead of P in this algorithm). The SEM procedure is described as follows:

1. Choose B0 = (G(0), θ(0)) randomly

2. Loop for n = 0, 1, . . . until convergence:

a) Find Gnew, as follows:

Gnew ← arg max
G

Q((G, θG), (Gold, θold)) (2.46)

where

28 preliminaries

Q(B ,Bold)
def
= Es

[
log P(x, s : B)− Pen(B , x) | x,Bold

]
(2.47)

b) Let θnew ← arg maxθ Q((Gnew, θ), (Gold, θold))

One important insight of SEM is placing structure learning inside EM calcu-
lations. In the SEM procedure, each iteration involves structure learning and
parameter learning, both based on expected counts. The expected counts are
based on probabilities computed over the current model Bold. In step(a), structure
learning is executed based on the expected counts of the current parameters θold.
As SEM involves selecting model structure, an additional factor is included in
the expected score to penalize for model complexity. Once this is done, in step(b)
new parameters θnew are computed for this structure Gnew. Note that step(b) can
be seen as the parametric part of SEM.

It is possible to show [65] that in order to guarantee convergence it is sufficient
to find a BN Bnew with improved score compared to the BN found on the previous
SEM iteration, instead of maximizing the expected score shown above. This is
useful because it is often the case that heuristic search is used for obtaining Bnew,
which does not guarantee that in each iteration the expected score is maximized.

