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1
I N T R O D U C T I O N

1.1 the relevance of temporal information

The comprehension of real-world phenomena is often challenging, as their charac-
terization might depend on some notion of time. A resulting lack of insight may
stem from the fact that a single snapshot of a temporal process reveals only a part
of its behavior, which may be insufficient for its complete understanding. This is
the case, for example, when one contrasts a single instance of the observation of
symptoms of a patient with a chronic disease against the longitudinal view of
multiple instances of observations of symptoms: whereas the latter will offer a
temporal view of the underlying disease process, the former will not shed any
light upon disease dynamics.

In many everyday tasks, such as walking, cooking, sleeping and so on a role of
temporal information can be identified. In professional fields, such as for example
in psychiatry, the efficacy of pharmacological interventions in mental disorders
only can be properly studied when the research is supported by collecting
temporal data [3]. Such temporal information will tell for example how long it
takes before a treatment becomes effective and how long and how often a patient
should take a particular drug. Also in many other diseases, in particular those
with a chronic duration, temporal information is of paramount importance to
gain insight into speed of progress or recovery.

Thus, given the importance of information about time in everyday and pro-
fessional life, when one wishes to mathematically model processes of human
artifacts, for example cyberphysical systems, or processes in the life sciences,
usually time will be one of the parameters that need to be taken into account. It
is not surprizing that predictions about the future are often more accurate when
taking into account the history than when not relying on such information [63].
Of course, reasoning with time not only is concerned with predicting the future
given the past, but can go in any other direction: from the present going back
in time to understand the past, or from assumptions in the future going back in
time to understand which past conditions are needed to make a particular future
feasible. Whether these kinds of temporal reasoning are possible is determined
by the nature and capabilities of the mathematical models and reasoning methods
employed.
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2 introduction

In this thesis, temporal processes are modeled as stochastic processes. Such
processes typically involve one or more random variables that can be repeatedly
observed. More importantly to their characterization, however, is that past
observations have influence on future observations, which assigns to a temporal
process a sequential nature. In other words, it is not just a matter of merely
observing variables at different moments, or making repeated measurements
of variables. On the other hand, by considering the sequential nature of such
processes, additional challenges are introduced due to the increased modeling
complexities that come along.

1.2 probabilistic graphical models

An innate property of temporal processes is change, which renders them a
stochastic nature. This makes probability theory a suitable tool for modeling such
processes. Probabilistic models naturally take into account uncertainty, and can
be used for multiple purposes: to predict the behavior of process variables in the
future, discover associations between variables (e.g. which variables have more
or less influence on a certain variable), and to pinpoint causes that could explain
abnormal behavior.

Deriving models from data is a reality nowadays. This is because not only data
storage technology has advanced (e.g. hardware capacity), but also more data
is currently being generated, by means of sensor devices, content posted on the
Internet, hospitals, health care services, etc. Obtaining statistical models from
data which are expressive enough and can provide answers in reasonable running
time is, however, not trivial. One major reason is that the process variables might
interact in a very large number of ways. Without prior knowledge on the problem
at hand, there is typically no obvious way as to how to reduce the space of models
that might be of interest. In the past, researchers often relied on overly simplistic
models (see e.g. [70]) to make model building feasible.

One solution to the parsimony problem faced by researchers is found with the
adoption of probabilistic graphical models (PGMs, for short) [104, 136]. PGMs
combine probabilities with graph theory for providing a graphical representa-
tion of probability distributions. With the representation of PGMs it becomes
much easier to represent statistical properties suitable for the problem at hand.
Well-known PGMs include Bayesian networks, hidden Markov models, Markov
random fields, among others. PGMs allow for a move from probability distri-
butions, which are rich in detail, to graphs that abstract away from such details
by encoding independence relationships. This occurs by means of a qualitative
semantics entailed by the graphical structure of PGMs.

The qualitative information encoded in a PGM is appealing for domain experts,
who can read off relationships from the graph, such as whether a variable A
becomes irrelevant for the prediction of B when C is known. The graphical repre-
sentation allows for answering such queries often in a computationally efficient
way. This represents an alternative way to identify independence properties by
not relying on calculating numerical probabilities that can be computationally
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demanding. PGMs also have a quantitative semantics by assigning numerical
parameters to nodes in the graph, which allows for computing probability queries
with full detail.

When it comes to model building, a number of advantages result from using
graphs to represent distribution properties. At the domain-expert level, it is
possible to specify the desired level of restrictions on the way variables can
interact probabilistically. For example, one might say that the variables should be
independent (leading to an empty graph), or that interactions should follow a
tree-like pattern, or even specify detailed interactions. The language of graphs
is intuitive enough to allow one to easily specify such patterns. Independence
relationships between variables can also be derived in a completely algorithmic
manner without any expert knowledge, as methods have been developed for
learning the graphical structure of PGMs from data [163, 169]. A hybrid approach
is also possible by combining expert knowledge with data-driven learning.

1.3 modeling sequential behaviors

Dynamic Bayesian networks (DBNs, for short) [68, 104, 124] are well-known PGMs
used for representing temporal processes. The process that a DBN models is
assumed to be a first-order process (or memoryless), which means that the future
state of the process depends only the present state. The process is also assumed
to be time homogeneous, which means that probabilities for transitioning from
time t to time t + 1 are the same for every t ≥ 0. As a result, DBNs offer a
parsimonious representation of temporal processes by requiring the specification
of typically a small number of probability parameters. DBNs can also be seen as
extensions of discrete Markov chains to multiple variables. Example 1.1 discusses
the dynamics of a mental disorder treatment based on DBNs.

Example 1.1. Suppose we want to model the symptom dynamics of patients with psy-
chotic depression [147], which is a depressive disorder with psychotic features. On a
regular basis, two psychotic features (Delusions and Hallucinations) and Depression are
measured for each patient. Due to the DBN assumptions aforementioned, the structure of
a DBN for this problem is given by:

• A graph over the variables {Delusions, Hallucinations, Depression} indicating the
symptom interactions at t = 0.

• A graph over {Delusions(t), Hallucinations(t), Depression(t), Delusions(t+1),
Hallucinations(t+1), Depression(t+1)} indicating the transitioning interaction of
symptoms at two any time points, where t ≥ 0.

The transition structure of a DBN for patient dynamics is shown in Figure 1.1. Although
Figure 1.1 shows only one transition, this model would normally be unrolled for any
discrete time horizon {0, 1, . . .}. The transition structure and numerical parameters are
the same for every transition due to the homogeneity assumption.
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Figure 1.1: Transition structure of a dynamic Bayesian network that represents symptom
interaction of psychotic depression patients.

In Figure 1.1, an arc between two variables indicates that these variables may
be statistically dependent. On the other hand, two variables that are indirectly
linked in the graph can still be statistically dependent, however this depends on
the configuration of other variables in between them. When two variables are not
linked directly nor indirectly, they are statistically independent [136].

Each arc of a DBN can refer to an instantaneous interaction, i.e. an interaction
within the same time point, or a temporal interaction, i.e. an interaction that
occurs at different time points [104]. The temporal arcs should satisfy the natural
temporal order, i.e., there must be no arcs with direction from future to past. In
Example 1.1, the instantaneous arc from Delusions to Hallucinations indicates
that at any point where measurements were made, delusions and hallucinations
are statistically correlated. On the other hand, the temporal arcs for current
depression to future depression means that the depression score of a patient at
a certain week has influence on the patient’s depression the week after (as one
would expect in general).

What makes the model of Figure 1.1 a temporal model is the temporal arcs,
because otherwise variables at a time point t2 would be statistically independent
of any variable at time t1 < t2. The instantaneous interactions are not strictly
needed for the model to be temporal, but they are often used to represent more
complex statistical relationships.

As the process is assumed to be time homogeneous, in the model of Example
1.1 not only the graphical structure is fixed over time, but also the numerical
parameters that describe the transition probabilities. Just as the initial graph
structure, the initial numerical parameters might also differ from the transition
parameters.
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1.4 adding more expressive power

One consequence of the compactness of models as DBNs is that they capture
the average process behavior over time. This is because by having a transition
model that is time invariant, the structure and numerical parameters of a DBN
are the same for every time point. However, this might not always be desirable,
because processes might change over time. By restraining ourselves to models that
represent average behaviors, we might lose the opportunity to learn important
insight about processes.

Process change might be captured by different ways. One would expect that
real processes are in constant change. However, we would like to capture sensible
process changes in our models, which would allow us to arrive at parsimonious
explanations of the process at hand. We discuss 3 situations (or challenges) where
it is desirable to represent processes in a more expressive way.

1.4.1 Time-dependent representation

One situation where we might be interested in more expressive models occurs
when we wish to capture process change that manifests by varying variable
interaction over time. For example, if the instantaneous and temporal interactions
between Hallucinations and Depression are substantially different over time in
Example 1.1, one would likely obtain a better understanding of patient evolution
by modeling symptom interaction change in an explicit fashion.

In the case of models such as DBNs, process change could manifest as changes
in the graphical structure, numerical parameters, or both. One challenge that
arises in modeling is the identification of process change-points (or regime change)
which take into account reasonable process change assumptions.

1.4.2 Factor-dependent representation

A different way of looking at process change is by identifying latent variables.
Such factors can be seen as unmeasured quantities that are missing or difficult
to be measured [178]. Latent variables can also be seen as categories or abstract
concepts derived from observable data, such as intelligence and extraversion in
the context of human behavior [17]. In the latter case, latent variables might act
as a dimensionality reduction tool of observable data as it might be easier to
understand the data in terms of the usually more compact latent representation.

In Example 1.1, latent factors that might be associated to process change could
be medical treatment, environmental factors (age, gender, climate, etc.), genetic
expression, etc. Some of these factors might actually happen to be measured
(e.g. medication and dosage), which would allow for explicitly including them as
observable variables. At other times we are interested in learning latent concepts
from observable data, such as patient clusters in Example 1.1, which might help
us understand patient dynamics by means of a succinct representation.
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Hidden Markov models (HMMs, for short) [138, 141] are PGMs that use
latent variables to model sequential processes. HMMs can capture very complex
distributions by using a suitable latent state space [13]. The standard assumption
in HMMs is that observable variables are independent given the latent state.
However, representing complex observed behavior based on such assumption
can require too many states [76]. This is undesirable for several reasons, e.g.,
computing cost and less interpretable models.

Extensions of HMMs that are able to represent more general variable inter-
action have been proposed [12, 76, 102]. One challenge that arises is a better
understanding of how such HMMs compare in theory and in practice. Another
relevant challenge is how to generate problem insight from more expressive
HMMs which can help one understand the dynamics of processes (e.g. disease
processes) in an effective way. This is relevant because the task of interpreting
latent states is usually not straightforward.

1.4.3 Subprocess representation

A different viewpoint on process change concerns the identification of subprocesses
which deviate considerably from the main model (or main process). We refer
to ‘main process’ and ‘subprocess’ as processes associated to the model of the
whole dataset and the model of a subset of the data respectively. In this situation,
we would like to identify subsets of the data that are also representative enough,
because it is easy to come up with very specific subprocesses made out of just a
few data points (hence, not representative).

In Example 1.1, there could exist a subset of patients with certain psychotic
symptoms that have a substantially slower response to treatment than the average
patient response. We would like to identify such subsets (or subprocesses) in an
automatic fashion. However, we cannot directly identify such subprocesses by
models such as standard DBNs and HMMs.

One approach to identifying deviating subprocesses is the exceptional model
mining (EMM, for short) [57, 110], whose goal is the discovery of exceptional
models (in the sense of significantly different) associated to subsets of the data.
However, EMM has been limited to either static data or univariate temporal data
[112]. It would be desirable to extend the EMM framework for more general
temporal data.

1.5 thesis outline

This work addresses the discovery of structure from temporal data that can aid
the comprehension of the underlying processes. For convenience, this work is
divided into three parts as follows. In Chapters 3-5, we investigate the underlying
structure of processes by means of models that use latent variables. In Chapter 6,
we investigate how temporal processes can be better understood by identifying
process changepoints or regime change. Finally, in Chapter 7 we investigate
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how temporal data can be decomposed based on data subgroups that have
a substantially different characterization in terms of a set of target variables
compared to the distribution of those targets in the whole data. As a result,
Chapter 7 provides a different characterization of process structure compared to
those of other chapters.

In order to demonstrate the usefulness of the proposed methods, we use real-
world data from several domains, including medical data (e.g. primary care
and clinical trials), industrial processes and business processes. We also discuss
problem insight that can be obtained by the application of the methods to such
datasets. We summarize the content of each chapter in the following.

chapter 2 : Preliminaries, where notions on PGMs relevant for representing
temporal processes are discussed.

chapter 3 : Asymmetric hidden Markov models, where we introduce the family
of asymmetric hidden Markov models (HMM-As, for short) for representing
local structure of distributions in the hidden Markov model framework. An
algorithm for learning HMM-As from temporal data is proposed. HMM-As
are empirically evaluated based on simulated data and real-world data from
several domains. This chapter is based on the publications [25] and [23].

chapter 4 : Predicting disease dynamics: a case study of psychotic depression, in
which a methodology is proposed for aiding the generation of medical
hypotheses based on structured hidden Markov models learned from data.
The methodology is used to uncover insight on the dynamics of different
pharmacological therapies undertaken by psychotic depression patients.
This chapter is based on the publications [27] and [28].

chapter 5 : Understanding multimorbidity through clusters of hidden states, where
we analyze the problem of disease interaction and multimorbidity in terms
of patterns of transitions between latent states. We consider a study case of
patients with disorders related to atherosclerosis based on a large primary
care data, and show that multiple patient characterization can be associated
to cluster of states. This chapter is based on the publication [26].

chapter 6 : Partitioned dynamic Bayesian networks, in which we propose parti-
tioned dynamic Bayesian networks (PDBNs, for short) for representing tem-
poral processes by means of a collection of dynamic Bayesian networks.
We propose a learning algorithm for PDBNs which adds process cut-offs
in a parsimonious way. PDBNs are evaluated experimentally based on
simulations and real data. This chapter is based on the publication [24].

chapter 7 : Exceptional model mining using dynamic Bayesian networks, where we
investigate how observable data can be decomposed in a way different than
that pursed in the previous chapters. We propose a method to identify
subgroups of data that are exceptionally different than the total data based
on the framework of subgroup discovery and exceptional model mining.
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Subgroups are characterized by dynamic Bayesian networks. This chapter
is based on the paper [22], which was submitted for publication.

chapter 8 : Discussion, in which the results achieved in this work are summa-
rized and future directions to be pursued are discussed.


