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1
I N T R O D U C T I O N

1.1 the relevance of temporal information

The comprehension of real-world phenomena is often challenging, as their charac-
terization might depend on some notion of time. A resulting lack of insight may
stem from the fact that a single snapshot of a temporal process reveals only a part
of its behavior, which may be insufficient for its complete understanding. This is
the case, for example, when one contrasts a single instance of the observation of
symptoms of a patient with a chronic disease against the longitudinal view of
multiple instances of observations of symptoms: whereas the latter will offer a
temporal view of the underlying disease process, the former will not shed any
light upon disease dynamics.

In many everyday tasks, such as walking, cooking, sleeping and so on a role of
temporal information can be identified. In professional fields, such as for example
in psychiatry, the efficacy of pharmacological interventions in mental disorders
only can be properly studied when the research is supported by collecting
temporal data [3]. Such temporal information will tell for example how long it
takes before a treatment becomes effective and how long and how often a patient
should take a particular drug. Also in many other diseases, in particular those
with a chronic duration, temporal information is of paramount importance to
gain insight into speed of progress or recovery.

Thus, given the importance of information about time in everyday and pro-
fessional life, when one wishes to mathematically model processes of human
artifacts, for example cyberphysical systems, or processes in the life sciences,
usually time will be one of the parameters that need to be taken into account. It
is not surprizing that predictions about the future are often more accurate when
taking into account the history than when not relying on such information [63].
Of course, reasoning with time not only is concerned with predicting the future
given the past, but can go in any other direction: from the present going back
in time to understand the past, or from assumptions in the future going back in
time to understand which past conditions are needed to make a particular future
feasible. Whether these kinds of temporal reasoning are possible is determined
by the nature and capabilities of the mathematical models and reasoning methods
employed.

1



2 introduction

In this thesis, temporal processes are modeled as stochastic processes. Such
processes typically involve one or more random variables that can be repeatedly
observed. More importantly to their characterization, however, is that past
observations have influence on future observations, which assigns to a temporal
process a sequential nature. In other words, it is not just a matter of merely
observing variables at different moments, or making repeated measurements
of variables. On the other hand, by considering the sequential nature of such
processes, additional challenges are introduced due to the increased modeling
complexities that come along.

1.2 probabilistic graphical models

An innate property of temporal processes is change, which renders them a
stochastic nature. This makes probability theory a suitable tool for modeling such
processes. Probabilistic models naturally take into account uncertainty, and can
be used for multiple purposes: to predict the behavior of process variables in the
future, discover associations between variables (e.g. which variables have more
or less influence on a certain variable), and to pinpoint causes that could explain
abnormal behavior.

Deriving models from data is a reality nowadays. This is because not only data
storage technology has advanced (e.g. hardware capacity), but also more data
is currently being generated, by means of sensor devices, content posted on the
Internet, hospitals, health care services, etc. Obtaining statistical models from
data which are expressive enough and can provide answers in reasonable running
time is, however, not trivial. One major reason is that the process variables might
interact in a very large number of ways. Without prior knowledge on the problem
at hand, there is typically no obvious way as to how to reduce the space of models
that might be of interest. In the past, researchers often relied on overly simplistic
models (see e.g. [70]) to make model building feasible.

One solution to the parsimony problem faced by researchers is found with the
adoption of probabilistic graphical models (PGMs, for short) [104, 136]. PGMs
combine probabilities with graph theory for providing a graphical representa-
tion of probability distributions. With the representation of PGMs it becomes
much easier to represent statistical properties suitable for the problem at hand.
Well-known PGMs include Bayesian networks, hidden Markov models, Markov
random fields, among others. PGMs allow for a move from probability distri-
butions, which are rich in detail, to graphs that abstract away from such details
by encoding independence relationships. This occurs by means of a qualitative
semantics entailed by the graphical structure of PGMs.

The qualitative information encoded in a PGM is appealing for domain experts,
who can read off relationships from the graph, such as whether a variable A
becomes irrelevant for the prediction of B when C is known. The graphical repre-
sentation allows for answering such queries often in a computationally efficient
way. This represents an alternative way to identify independence properties by
not relying on calculating numerical probabilities that can be computationally
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demanding. PGMs also have a quantitative semantics by assigning numerical
parameters to nodes in the graph, which allows for computing probability queries
with full detail.

When it comes to model building, a number of advantages result from using
graphs to represent distribution properties. At the domain-expert level, it is
possible to specify the desired level of restrictions on the way variables can
interact probabilistically. For example, one might say that the variables should be
independent (leading to an empty graph), or that interactions should follow a
tree-like pattern, or even specify detailed interactions. The language of graphs
is intuitive enough to allow one to easily specify such patterns. Independence
relationships between variables can also be derived in a completely algorithmic
manner without any expert knowledge, as methods have been developed for
learning the graphical structure of PGMs from data [163, 169]. A hybrid approach
is also possible by combining expert knowledge with data-driven learning.

1.3 modeling sequential behaviors

Dynamic Bayesian networks (DBNs, for short) [68, 104, 124] are well-known PGMs
used for representing temporal processes. The process that a DBN models is
assumed to be a first-order process (or memoryless), which means that the future
state of the process depends only the present state. The process is also assumed
to be time homogeneous, which means that probabilities for transitioning from
time t to time t + 1 are the same for every t ≥ 0. As a result, DBNs offer a
parsimonious representation of temporal processes by requiring the specification
of typically a small number of probability parameters. DBNs can also be seen as
extensions of discrete Markov chains to multiple variables. Example 1.1 discusses
the dynamics of a mental disorder treatment based on DBNs.

Example 1.1. Suppose we want to model the symptom dynamics of patients with psy-
chotic depression [147], which is a depressive disorder with psychotic features. On a
regular basis, two psychotic features (Delusions and Hallucinations) and Depression are
measured for each patient. Due to the DBN assumptions aforementioned, the structure of
a DBN for this problem is given by:

• A graph over the variables {Delusions, Hallucinations, Depression} indicating the
symptom interactions at t = 0.

• A graph over {Delusions(t), Hallucinations(t), Depression(t), Delusions(t+1),
Hallucinations(t+1), Depression(t+1)} indicating the transitioning interaction of
symptoms at two any time points, where t ≥ 0.

The transition structure of a DBN for patient dynamics is shown in Figure 1.1. Although
Figure 1.1 shows only one transition, this model would normally be unrolled for any
discrete time horizon {0, 1, . . .}. The transition structure and numerical parameters are
the same for every transition due to the homogeneity assumption.



4 introduction

Time t

Delusions

Depression

Hallucinations

Time t + 1

Delusions

Depression

Hallucinations

Figure 1.1: Transition structure of a dynamic Bayesian network that represents symptom
interaction of psychotic depression patients.

In Figure 1.1, an arc between two variables indicates that these variables may
be statistically dependent. On the other hand, two variables that are indirectly
linked in the graph can still be statistically dependent, however this depends on
the configuration of other variables in between them. When two variables are not
linked directly nor indirectly, they are statistically independent [136].

Each arc of a DBN can refer to an instantaneous interaction, i.e. an interaction
within the same time point, or a temporal interaction, i.e. an interaction that
occurs at different time points [104]. The temporal arcs should satisfy the natural
temporal order, i.e., there must be no arcs with direction from future to past. In
Example 1.1, the instantaneous arc from Delusions to Hallucinations indicates
that at any point where measurements were made, delusions and hallucinations
are statistically correlated. On the other hand, the temporal arcs for current
depression to future depression means that the depression score of a patient at
a certain week has influence on the patient’s depression the week after (as one
would expect in general).

What makes the model of Figure 1.1 a temporal model is the temporal arcs,
because otherwise variables at a time point t2 would be statistically independent
of any variable at time t1 < t2. The instantaneous interactions are not strictly
needed for the model to be temporal, but they are often used to represent more
complex statistical relationships.

As the process is assumed to be time homogeneous, in the model of Example
1.1 not only the graphical structure is fixed over time, but also the numerical
parameters that describe the transition probabilities. Just as the initial graph
structure, the initial numerical parameters might also differ from the transition
parameters.
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1.4 adding more expressive power

One consequence of the compactness of models as DBNs is that they capture
the average process behavior over time. This is because by having a transition
model that is time invariant, the structure and numerical parameters of a DBN
are the same for every time point. However, this might not always be desirable,
because processes might change over time. By restraining ourselves to models that
represent average behaviors, we might lose the opportunity to learn important
insight about processes.

Process change might be captured by different ways. One would expect that
real processes are in constant change. However, we would like to capture sensible
process changes in our models, which would allow us to arrive at parsimonious
explanations of the process at hand. We discuss 3 situations (or challenges) where
it is desirable to represent processes in a more expressive way.

1.4.1 Time-dependent representation

One situation where we might be interested in more expressive models occurs
when we wish to capture process change that manifests by varying variable
interaction over time. For example, if the instantaneous and temporal interactions
between Hallucinations and Depression are substantially different over time in
Example 1.1, one would likely obtain a better understanding of patient evolution
by modeling symptom interaction change in an explicit fashion.

In the case of models such as DBNs, process change could manifest as changes
in the graphical structure, numerical parameters, or both. One challenge that
arises in modeling is the identification of process change-points (or regime change)
which take into account reasonable process change assumptions.

1.4.2 Factor-dependent representation

A different way of looking at process change is by identifying latent variables.
Such factors can be seen as unmeasured quantities that are missing or difficult
to be measured [178]. Latent variables can also be seen as categories or abstract
concepts derived from observable data, such as intelligence and extraversion in
the context of human behavior [17]. In the latter case, latent variables might act
as a dimensionality reduction tool of observable data as it might be easier to
understand the data in terms of the usually more compact latent representation.

In Example 1.1, latent factors that might be associated to process change could
be medical treatment, environmental factors (age, gender, climate, etc.), genetic
expression, etc. Some of these factors might actually happen to be measured
(e.g. medication and dosage), which would allow for explicitly including them as
observable variables. At other times we are interested in learning latent concepts
from observable data, such as patient clusters in Example 1.1, which might help
us understand patient dynamics by means of a succinct representation.
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Hidden Markov models (HMMs, for short) [138, 141] are PGMs that use
latent variables to model sequential processes. HMMs can capture very complex
distributions by using a suitable latent state space [13]. The standard assumption
in HMMs is that observable variables are independent given the latent state.
However, representing complex observed behavior based on such assumption
can require too many states [76]. This is undesirable for several reasons, e.g.,
computing cost and less interpretable models.

Extensions of HMMs that are able to represent more general variable inter-
action have been proposed [12, 76, 102]. One challenge that arises is a better
understanding of how such HMMs compare in theory and in practice. Another
relevant challenge is how to generate problem insight from more expressive
HMMs which can help one understand the dynamics of processes (e.g. disease
processes) in an effective way. This is relevant because the task of interpreting
latent states is usually not straightforward.

1.4.3 Subprocess representation

A different viewpoint on process change concerns the identification of subprocesses
which deviate considerably from the main model (or main process). We refer
to ‘main process’ and ‘subprocess’ as processes associated to the model of the
whole dataset and the model of a subset of the data respectively. In this situation,
we would like to identify subsets of the data that are also representative enough,
because it is easy to come up with very specific subprocesses made out of just a
few data points (hence, not representative).

In Example 1.1, there could exist a subset of patients with certain psychotic
symptoms that have a substantially slower response to treatment than the average
patient response. We would like to identify such subsets (or subprocesses) in an
automatic fashion. However, we cannot directly identify such subprocesses by
models such as standard DBNs and HMMs.

One approach to identifying deviating subprocesses is the exceptional model
mining (EMM, for short) [57, 110], whose goal is the discovery of exceptional
models (in the sense of significantly different) associated to subsets of the data.
However, EMM has been limited to either static data or univariate temporal data
[112]. It would be desirable to extend the EMM framework for more general
temporal data.

1.5 thesis outline

This work addresses the discovery of structure from temporal data that can aid
the comprehension of the underlying processes. For convenience, this work is
divided into three parts as follows. In Chapters 3-5, we investigate the underlying
structure of processes by means of models that use latent variables. In Chapter 6,
we investigate how temporal processes can be better understood by identifying
process changepoints or regime change. Finally, in Chapter 7 we investigate
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how temporal data can be decomposed based on data subgroups that have
a substantially different characterization in terms of a set of target variables
compared to the distribution of those targets in the whole data. As a result,
Chapter 7 provides a different characterization of process structure compared to
those of other chapters.

In order to demonstrate the usefulness of the proposed methods, we use real-
world data from several domains, including medical data (e.g. primary care
and clinical trials), industrial processes and business processes. We also discuss
problem insight that can be obtained by the application of the methods to such
datasets. We summarize the content of each chapter in the following.

chapter 2 : Preliminaries, where notions on PGMs relevant for representing
temporal processes are discussed.

chapter 3 : Asymmetric hidden Markov models, where we introduce the family
of asymmetric hidden Markov models (HMM-As, for short) for representing
local structure of distributions in the hidden Markov model framework. An
algorithm for learning HMM-As from temporal data is proposed. HMM-As
are empirically evaluated based on simulated data and real-world data from
several domains. This chapter is based on the publications [25] and [23].

chapter 4 : Predicting disease dynamics: a case study of psychotic depression, in
which a methodology is proposed for aiding the generation of medical
hypotheses based on structured hidden Markov models learned from data.
The methodology is used to uncover insight on the dynamics of different
pharmacological therapies undertaken by psychotic depression patients.
This chapter is based on the publications [27] and [28].

chapter 5 : Understanding multimorbidity through clusters of hidden states, where
we analyze the problem of disease interaction and multimorbidity in terms
of patterns of transitions between latent states. We consider a study case of
patients with disorders related to atherosclerosis based on a large primary
care data, and show that multiple patient characterization can be associated
to cluster of states. This chapter is based on the publication [26].

chapter 6 : Partitioned dynamic Bayesian networks, in which we propose parti-
tioned dynamic Bayesian networks (PDBNs, for short) for representing tem-
poral processes by means of a collection of dynamic Bayesian networks.
We propose a learning algorithm for PDBNs which adds process cut-offs
in a parsimonious way. PDBNs are evaluated experimentally based on
simulations and real data. This chapter is based on the publication [24].

chapter 7 : Exceptional model mining using dynamic Bayesian networks, where we
investigate how observable data can be decomposed in a way different than
that pursed in the previous chapters. We propose a method to identify
subgroups of data that are exceptionally different than the total data based
on the framework of subgroup discovery and exceptional model mining.
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Subgroups are characterized by dynamic Bayesian networks. This chapter
is based on the paper [22], which was submitted for publication.

chapter 8 : Discussion, in which the results achieved in this work are summa-
rized and future directions to be pursued are discussed.



2
P R E L I M I N A R I E S

In this chapter, we fix the notation used throughout this work and present definitions on
probabilistic graphical models that are relevant for the following chapters. We start off by
covering the basics of Bayesian networks, then move to dynamic Bayesian networks and
hidden Markov models, which extend the framework of Bayesian networks for handling
temporal problems. Learning models from data is also discussed.

2.1 notation

We first introduce the notation and a few conventions used throughout this work.
In probability theory, random variables are typically denoted by upper case letters,
such as X, while the domain of a random variable X is represented by dom(X),
which represents the set of values that X takes on [52]. A discrete random variable
is a random variable which has a finite or countably infinite domain, while a
continuous random variable has as domain a subset of the real numbers. A random
variable is associated to a probability distribution, which assigns a probability
value to each value of its domain (for discrete variables) or to real intervals of its
domain (for continuous variables).

The probability distribution of a discrete random variable X will be denoted
by P(X), and the probability of a certain value x ∈ dom(X) will be denoted
by P(X = x) or simply P(x) when no confusion can arise. The probability
distribution of a continuous random variable Y with probability density function
f (Y) is denoted by p(Y), and the probability that Y takes values on a real interval
[y1, y2] is indicated as p(y1 ≤ Y ≤ y2). A set of random variables will be denoted
by a bold face letter, e.g., X = {X1, . . . , Xn}. A probability distribution assigned
to a single random variable as in P(X) is called a univariate distribution, while the
joint distribution assigned to set of variables {X1, . . . , Xn} is called a multivariate
distribution and is denoted by P(X1, . . . , Xn) or P(X).

In temporal modeling, each variable is often measured repeatedly, such that a
variable X at time t will be referred to as X(t). This means that the domains of
X(t), for all t ≥ 0, are the same. For the discrete time points {t1, . . . , t2}, where
t2 ≥ t1 ≥ 0, the notation X(t1 :t2) will be used to refer to the set of variables
{X(t1), . . . , X(t2)}.

9
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2.2 bayesian networks

2.2.1 Origin

A Bayesian network (BN, for short) is a graphical model of a multivariate proba-
bility distribution with independence constraints. Bayesian networks date back to
the 1980s [97, 104, 136]; their goal was to overcome the limitations of rule-based
expert systems from the previous decade that incorporated uncertainty in the
form of numbers that had some resemblance to probabilities [115]. One important
limitation of such AI systems was the need for representing an unrealistic number
of probabilities to perform probabilistic inference, a problem which was dealt
with by making many simplifying assumptions. While this led to a substantial
reduction in the needed number of probabilistic parameters, it also gave rise to
poor performance in solving real-world problems, for example in medical diag-
nosis [70]. By marrying probability theory with graph theory, Bayesian networks
allowed to provide the right balance in the number of probabilistic parameters
needed to realistically represent the problem domain at hand.

A Bayesian network is a two-fold representation, as it encodes both qualitative
and quantitative information about probability distributions. The qualitative
side of a Bayesian network is given by a graph, whose semantics is associated
to statistical independence statements. The quantitative side regards numerical
probabilities, which are specified following the structure of the graph. As a
result, BNs provide a compact, yet expressive way of representing probability
distributions.

2.2.2 Representation

To define Bayesian networks over a set of random variables of interest, a few
definitions are introduced first. A graph G is a pair G = (V, A), where V is a set
of objects i ∈ {1, . . . , n}, n = |V|, called nodes, and A ⊆ V×V is a set of node
pairs called edges. If G is a directed graph, then each edge of A is an ordered pair
(i, j), also represented by i → j, such that (j, i) 6∈ A. The edges are then called
directed edges or arcs. If i → j ∈ A is an arc, then i is called the parent of node j,
and j is called the child of node i. If there is a directed path from node i to node j,
then i is called the ancestor of j, whereas j is called the descendant of i.

If G is an undirected graph, then its edges are unordered pairs, i.e., if (i, j) ∈ A
then also (j, i) ∈ A, simply represented as a set {i, j}. A directed acyclic graph
(DAG, for short) is a directed graph with no cycles, i.e., there is no sequence of
arcs of the form i → j → · · · → i (first and last node in the sequence are the
same). As usual, each node i in the DAG with V = {1, . . . , n} will be associated
in a one-to-one way to a random variable Xi from the set of variables X1, . . . , Xn
for the convenience of defining a Bayesian network. In the following, we shall
refer to nodes and variables interchangeably and use Xi to refer to both the node
and the variable.
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One way to define Bayesian networks is from the notion of factorizing a joint
probability distribution according to the structure of a graph as follows.

Definition 2.1 (Factorization). Let G = (V, A) be a directed acyclic graph with nodes
V = {X1, . . . , Xn}. A joint probability distribution P over the same variables factorizes
according to G if P can be written as:

P(X) = P(X1, . . . , Xn) =
n

∏
i=1

P(Xi | π(Xi)) (2.1)

where π(Xi) refers to the parents of the node Xi in G, and each factor P(Xi | π(Xi)) is
called a conditional probability table (CPT, for short).

Definition 2.2 (Bayesian network). A Bayesian network is a pair B = (G, P), where
P is a joint probability distribution that factorizes according to a directed acyclic graph G.

The joint probability distribution P associated with a Bayesian network G
encodes conditional independences, if it holds for three mutually disjoint sets
of variables U, W, Z ⊆ X that if P(U | W, Z) = P(U | Z) for any set of values of
the variables in U, W, Z. It is said that the variables U and W are conditionally
independent (under P) given Z, written as U ⊥⊥P W | Z. The set of all conditional
independent triplets associated to a joint probability distribution P is sometimes
defined as I(P) = {(U, W, Z) | U ⊥⊥P W | Z}.

The Bayesian network graph encodes independence relationships, which can be
read off by means of a graphical property called d-separation (directed separation)
[136]. The notion of d-separation defines potential probabilistic influence between
variables based on the structure of the BN graph. This can be described by means
of the notion of active trail [104]. A sequence of nodes σ = X1, . . . , Xm in the
graph G is a trail if either Xi → Xi+1 or Xi ← Xi+1 is an arc in G on the trail σ,
i = 1, . . . , m− 1, i.e., the direction of the arcs is ignored and only the fact that
X1 is connected by the trail to Xm is taken into account. Now the trail between
X1 and Xm is called active if for any Y on the trail σ, the connections of the
neighboring nodes U and W have the following directions:

• U ← Y → W (divergent connection), U → Y → W (serial connection), or
U ← Y ←W (serial connection), and Y has not been observed, or

• U → Y ←W (convergent connection or v-structure), whereas Y or any of
its descendants have been observed.

If a trail is not active, it is called inactive.
Now consider the following three mutually disjoint sets of nodes U, W, Z ⊆ V.

If all trails between any node in U and any node in W are inactive given (possibly
empty) observations in Z, it is said that the set of nodes Z d-separates the set of
nodes U and W, written as

U ⊥⊥d
G W | Z

For the graph G we can now collect all d-separation triplets:

I(G) = {(U, W, Z) | U ⊥⊥d
G W | Z}
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The above definition can be used to provide a semantics of the BN graph in
terms of independence statements that are entailed by the graph. For Bayesian
networks B = (G, P) where the distribution P factorizes according to the DAG G,
it holds that I(G) ⊆ I(P) [136]. This means that every independence that holds
in the BN graph must hold in the distribution. This explains why the interpreta-
tion of d-separation as conditional independence is meaningful. However, the
semantics makes also clear that the two independence relations I(P) and I(G)
may not coincide.

Because of d-separation, the network structure of a Bayesian network can
be seen as its qualitative part, while the quantitative part corresponds to the
probabilities encoded in the CPTs. A Bayesian network example is provided in
Example 2.1.

Example 2.1. Assume we are interested in diagnosing lung cancer, as represented by
the variable C with dom(C) = {no, yes}. Other variables of interest are smoking (S),
gender (G), and age (A), where dom(S) = {no, yes}, dom(G) = {female, male} and
dom(A) = {adult, elderly}. Figure 2.1 shows the graphical structure and the CPTs
associated to this Bayesian network. Independence relationships can be deduced from
the graphical structure, e.g., having knowledge about smoking will make age and gender
irrelevant for the prediction of lung cancer.

AgeP(adult) = 0.7 Gender P(female) = 0.55

Smoking

P(smoker | adult, female) = 0.15

P(smoker | adult, male) = 0.20

P(smoker | elderly, female) = 0.05

P(smoker | elderly, male) = 0.10

Lung cancerP(yes | smoker) = 0.1

P(yes | non-smoker) = 0.01

Figure 2.1: Bayesian network of the lung cancer example. Note that the structure and the
CPTs in this example are fictional.

One advantage of the BN framework is that in the network structure one
typically captures only the essential variable interactions, which often results in
a substantial reductions in the needed number of probabilities to be specified.
The BN of Example 2.1 requires 1 + 1 + 4 + 2 = 8 independent parameters,
while the explicit specification of the joint distribution of P(A, G, S, C) would
require 2(4) − 1 = 15 independent parameters. This advantage tends to be more
significant if one deals with BNs with more variables, or variables with larger
domains, for example.
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The first step to using the BN representation is usually finding a suitable
network structure for the problem at hand. One way to construct such a network
structure is by manually defining the interactions among the involved variables
that are supposed to hold in the domain, based on prior background knowledge
and supported by domain experts. In that case, it is usually easier to think of
interactions in terms of cause-effect relationships [47], although the semantics
of a Bayesian network per se does not embody a causality notion. The network
structure can also be obtained from data. In any case, once the network structure
is obtained, the parameters of the network nodes need to be estimated, which
can also be done manually [71] or algorithmically [47].

2.3 learning bayesian networks

In practical situations, prior knowledge about the problem at hand might not
be available for handcrafting a Bayesian network for the domain, for example, if
it is too expensive to be obtained, nonexistent, or is prone to be incorrect. This
motivates the need for Bayesian network learning algorithms [44, 85, 169], whose
goal is to automatically find a Bayesian network that suitably represents the
distribution associated to the data. Bayesian network learning involves two steps:
learning a network structure and learning numerical parameters. Handling each
task also depends whether the data is complete or incomplete. In this section, we
consider the case of complete data.

2.3.1 Parameter learning

In the parameter learning task, we assume the network structure is known. The
goal is to estimate the CPTs of all the variables, i.e. the distributions P(xi | π(xi))
for every xi. Let us denote by θ the set of parameters associated to the Bayesian
network which are to be estimated, and let D be a set of data points x[1], . . . , x[m]
of the form x[j] = {x1[j], . . . , xn[j]}, where xi[j] refers to the value of the variable
Xi taken in the jth data point. Each Xi is assumed to follow a categorical
distribution taking values on dom(Xi). We further assume that all data points of
D are independent and identically distributed (i.e., i.i.d. samples). The likelihood
function of the Bayesian network with structure G parameterized by θ given the
data D corresponds to the probability of D under such model and is given by:

L(θ : D) = P(x[1], . . . , x[m] : θ) (2.2)

=
m

∏
j=1

P(x[j] : θ) (2.3)
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From the factorization of Bayesian networks we obtain:

L(θ : D) =
m

∏
j=1

n

∏
i=1

P(xi[j] | π(xi)[j] : θ) (2.4)

=
n

∏
i=1

P(xi[1] | π(xi)[1] : θ) . . . P(xi[j] | π(xi)[j] : θ) (2.5)

Equation 2.5 shows that the likelihood function can be decomposed into a product
of independent terms, one for each node of the network structure. If we denote
by θirk the parameter P(Xi = xk | π(Xi) = xr), then the likelihood function can
be further expanded as follows:

L(θ : D) =
n

∏
i=1

∏
xk ,xr

θ
Nirk
irk (2.6)

where Nirk is the number of times the configuration (Xi = xk, π(Xi) = xr) is
seen in D. The goal now is to find the set of parameters θ that maximize this
function, an approach known as maximum likelihood estimation (MLE, for short).
The parameters that maximize the likelihood function are denoted by θ̂. It is
usually easier to work with the logarithm of Equation 2.6, which is referred to as
the log-likelihood of the data. It is possible to show [104] that the maximization
of the log-likelihood leads to closed-form formulas for parameter learning as
follows:

θ̂irk =
Nirk
Nir

(2.7)

where Nir is the number of times the configuration (π(Xi) = xr) occurs in D.
These quantities are known as sufficient statistics, and convey the idea that each
parameter corresponds to the node’s proportional counts with respect to its
parents. Once the optimal parameters θ̂ are computed, the likelihood computed
based on θ̂ is denoted by L̂.

2.3.2 Structure learning

When the network structure is unknown, one resorts to learning the network
structure from data. The goal of structure learning is to recover the structure
of the hypothetical joint probability distribution underlying the data [50]. With
structure learning, one is able to discover the dependence structure of the domain,
which can yield insight about qualitative influences that hold in the domain, both
direct and indirect. Network structure learning is also important to make the
parameter estimation in Bayesian networks feasible, although the structure should
not be overly simplistic, otherwise relevant correlations might be missed.

The problem of structure learning can be formulated as an optimization prob-
lem [7, 42], also known as score-based approach, whose goal is to find the network
structure Ĝ that optimizes a scoring function:

Ĝ = arg max
G∈G

Score(G, D) (2.8)
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where G is the space of network structures, i.e. the set of directed acyclic graphs
with nodes {X1, . . . , Xn}. In general, finding optimal Bayesian networks has been
shown intractable [42, 43]. Network structures can also be learned by means of the
constraint-based approach [118, 136], which determines a network structure that is
consistent with the independence relationships that hold on the data. In the case
of constraint-based learning, the worst case requires an exponential number of
tests [118]. In the remainder of this chapter, we consider the score-based approach
and further elaborate on it.

Scoring functions for structure learning play a central role in this task and
the literature offers a variety of them. One of the simplest score functions is
the likelihood score [104], which indicates the probability of the data given the
model and was defined in Equation 2.2. In the situation of unknown structure,
the likelihood score seeks the model (i.e. graph and parameters) that maximizes
the likelihood:

maxL(G, θG : D) = max
G

[
max
θG∈Θ

L(G, θG : D)

]
(2.9)

= max
G
[
L(G, θ̂G : D)

]
(2.10)

where Θ is the space of CPTs with regard to the graph G. Hence, in order
to maximize the likelihood, one needs to find the structure Ĝ that maximizes
Equation 2.10, where each candidate structure has parameters fitted via MLE.
However, as the goal with model learning is to capture the true distribution of
the data, using the likelihood score typically has severe limitations as follows.
By adding more arcs to the network, the likelihood score never decreases and
instead tends to increase [104]. Hence, by completely fitting to the data, one is
also fitting to the noise on the data, and the resulting network tends to be a fully
connected graph. This usually leads to the problem of model overfitting, which
means that the model does not generalize well (i.e. it performs poorly on new
data).

One alternative score function is the Bayesian score, which adopts a Bayesian
approach to modeling the structure and parameters that are to be estimated. In
the Bayesian approach, one defines a structure prior P(G) and a parameter prior
P(θG | G) for the possible ways a given structure can be parameterized. For a
candidate graph G, we can apply Bayes’ rule to obtain:

P(G | D) ∝ P(D | G)P(G) (2.11)

where the denominator P(D) can be dropped because it is the same for all
the graphs. The Bayesian score is then defined by taking the logarithm of the
right-hand side of Equation 2.11:

ScoreB(G | D) = log P(D | G) + log P(G) (2.12)



16 preliminaries

In the prior P(G) one can model a prior distribution that might favor, e.g., sparser
graphs. The term P(D | G) is known as marginal likelihood as it can be written
as:

P(D | G) =
∫

θG∈Θ
P(D | θG ,G)P(θG | G)dθG (2.13)

Intuitively, the marginal likelihood weights the likelihood of the data P(D | θG ,G)
by different ways of selecting the parameters given the network G. Hence, the
marginal likelihood can be seen as an average of the likelihoods for the structure
G, as opposed to the maximum likelihood score, which looks only at the score
that maximizes the term P(D | θG ,G). The Bayesian score tends to favor simpler
structures if little data is available for learning [104], which provides a mechanism
to combat overfitting. By using Dirichlet priors on all parameters of the network,
it is possible to show [104] that an approximation of the Bayesian score results
in the so-called Bayesian information criterion (BIC, for short), which is given as
follows:

BIC(G | D) = −2 · logL(θ̂G : D) + K · log m (2.14)

where K is the number of parameters of the network structure G, and m is the
size of the dataset.

The goal now is to find the structure G that minimizes the BIC score, where the
term K · log m in Equation 2.14 acts as a penalty term. Equation 2.14 suggests that
the problem of structure learning can be seen as a model selection problem [182],
where one wishes to find the network structure that balances goodness-of-fit
(the likelihood term) and model size. The scoring function is then coupled to a
search procedure, which is often a heuristic procedure such as tabu search [77],
hill climbing, simulated annealing, among others [152], resulting in sub-optimal
network structures obtained in feasible running time.

Although heuristic procedures are often used in BN structure learning, re-
search has shown that optimal structure learning can be done efficiently in some
situations [31, 158]. Some techniques are able to scale to problems with hun-
dreds variables [50]. Research has also shown that it is possible to predict which
algorithms would be more suitable for optimal learning of a given instance [116].

2.3.3 Decomposable scores

In structure learning, a key computational property is that of decomposability. A
score is decomposable if it is defined locally per node [50]. This allows for the
score of a candidate Bayesian network B , also referred to as its global score, to be
given as a sum of local scores, one for each variable:

Score(B) = ∑
Xi∈X

Score(Xi, πB (Xi)) (2.15)

where πB (Xi) refers to the parents of Xi in B . Decomposable scores allow for the
efficient evaluation of small changes to the structure, such as arc removal and arc
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addition, as such operations affect only the associated local scores. As a result, by
exploiting this property, structure learning algorithms can scale reasonably well.
Many scores commonly used in structure learning are decomposable, where the
BIC is one such score [50].

2.4 dynamic bayesian networks

In this section we discuss extensions of Bayesian networks for modeling temporal
processes by means of dynamic Bayesian networks (DBNs, for short). Learning
DBNs from data is also discussed.

2.4.1 Representation

Dynamic Bayesian networks [68, 124] extend Bayesian networks for modeling tem-
poral processes where uncertainty plays an important role. We restrain ourselves
to dynamic systems in which all the variables of a set X = {X1, . . . , Xn} are mea-
sured together and repeatedly over time, which is represented by X(0), X(1), . . ..
Further, the time interval between two measurements X(t) and X(t+1), for any
t ≥ 0, is assumed fixed. This means that in such dynamic systems the sequential
behavior of the involved variables is abstracted from the absolute time of their
measurement.

In order to keep the model compact, a few additional assumptions about the
process involved in the generation of X are often considered [104], which we
describe as follows.

Definition 2.3 (Markovian dynamic system). A dynamic system over the variables X
is first-order Markovian (or simply Markovian) if, for all t ≥ 0,

P(X(t+1) | X(0:t)) = P(X(t+1) | X(t)) (2.16)

The Markovian assumption means that predicting the future state of the process
depends only on its current state and not on previous states it has assumed. In
this case, the process is also said to be memoryless. Another useful property is
given as follows.

Definition 2.4 (Time-homogeneous dynamic system). A dynamic system over the
variables X is time homogeneous (or time invariant) if P(X(t+1) | X(t)) is the same for
every t ≥ 0.

Dynamic Bayesian networks provide a representation for Markovian time-
homogeneous dynamic systems grounded on graphical models as defined next.

Definition 2.5 (Dynamic Bayesian network). A dynamic Bayesian network is a Marko-
vian time-homogeneous system (B0,B→) over X, where:

• B0 = (G0, P0) is a Bayesian network over the variables X(0) called initial network.
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• B→ = (G→, P→) is a Bayesian network over the variables {X(t), X(t+1)} called
transition network. The variables of X(t) have no parents in the transition network.

The transition network can also be seen as a conditional Bayesian network [104],
because it suffices to define the distribution P(X(t+1) | X(t)) for defining this
network. Although DBNs can be defined as semi-infinite systems [68], in practice
one reasons with a finite horizon {0, . . . , T}. In this case, the DBN is unrolled
so that a joint distribution over the process duration is specified as follows: the
structure and parameters of all the nodes at time t = 0 come from the initial
model, while the structure and parameters for any node X(t)

i , where t > 0, come
from the transition model.

From the previous definitions and assumptions, the joint distribution of a DBN
over a time horizon {0, . . . , T} is as follows:

P(X(0:T)) = P(X(0))
T−1

∏
t=0

P(X(t+1) | X(t)) (2.17)

=
n

∏
i=1

P0(X(0)
i | π(X(0)

i ))
T−1

∏
t=0

n

∏
i=1

P→(X(t+1)
i | π(X(t+1)

i )) (2.18)

where in Equation 2.18 it is shown that the joint can be written in a modular way
based on the factorization provided by the distributions P0 and P→. An example
of DBN for a medical problem is described in Example 2.2.

Example 2.2. In a disease process, two symptoms (denoted by A and B) and the adminis-
tered drug quantity (denoted by D) are observed at regular time intervals for each patient.
A DBN is used to model patient evolution, where the structure of the initial model B0
and the transition model B→ are shown at the top of Figure 2.2. From B0 and B→, an
unrolled DBN over six time points can be obtained, as shown at the bottom of Figure 2.2.

In the transition model of a DBN the set of arcs from a variable at time t to a
variable at time t + 1 are often called intra-temporal arcs, e.g., the arcs B(0) → D(0)

and A(1) → B(1) in Example 2.2. On the other hand, arcs between variables from
the same time point are called inter-temporal arcs, such as A(0) → A(1) in this
example.

2.4.2 Learning

Learning DBNs is to a considerable extent similar to learning (static) Bayesian
networks. Let us consider a training set D of m i.i.d. sequences, where the jth
sequence has observations of the form x[j](0), . . . , x[j](mj). For convenience, we
denote by D0 the initial slices of D, which amount to m observations, whereas we
denote by D→ the transition instances of D, which amount to m′ observations,
where m′ = ∑m

i=1 mi. The initial model B0 and the transition model B→ are
learned from D0 and D→ respectively.
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t = 0
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D

(a) Initial structure in B0

t+1
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(c) Unrolled DBN for six time points.

Figure 2.2: An example of DBN for a disease process. The CPTs of B0 and B→ are not
shown.

In an MLE approach, by a similar reasoning as done with static Bayesian
networks (Section 2.3.1) it can be shown [68] that the BIC of a DBN (B0,B→) with
structure G = (G0,G→) is given by:

BIC(G : D) = BIC0 + BIC→ (2.19)

where

BIC0 = −2 · logL(θ̂G0 : D0) + K0 · log m (2.20)

and

BIC→ = −2 · logL(θ̂G→ : D→) + K→ · log m′ (2.21)

such that K0 and K→ denote the number of parameters of the initial and transition
models respectively.

Equation 2.21 in fact uses the conditional log-likelihood of the transition in-
stances, which is given by logL(θ̂G→ : D→) = ∑m

j=1 ∑t log P(x[j](t+1) | x[j](t)). By
maximizing the BIC of B0 and the BIC of B→ independently, the BIC of the
complete DBN is maximized as well.

2.5 hidden markov models

In several situations, we might be interested in modeling latent (or hidden) vari-
ables, which allow for capturing unmeasured quantities related to the observed
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quantities [178]. This might provide improved understanding of the problem at
hand, along with other potential advantages such as simplified model structure
[67] and better model fit [179].

In this section, we discuss hidden Markov models (HMMs, for short), which
can be seen as instances of DBNs from a representation perspective. We focus on
several representation aspects of HMMs, while learning is covered in the next
section.

2.5.1 Model architectures

In a general problem setting, we denote by X = {X1, . . . , Xn} the set of observable
features, and we assume that there is a set of state variables S = {S1, . . . , S`}
that we do not observe and are involved in the generation of X over time. In
such problem, we are interested in a temporal model that can be constructed
and used feasibly, yet is realistic and insightful. To this end, different sets of
assumptions are very often used, taking also into account domain characteristics.
As a consequence, the variety of existing HMMs renders different probabilistic in-
teractions between X and S (by interaction we refer to unconditional probabilistic
dependence).

A general HMM framework is illustrated in Figure 2.3 [25], where the exact
form of interactions within states and within observables is abstracted. We start
by defining the HMM which captures the interactions denoted by solid lines in
Figure 2.3 and can be seen as a basis for several other HMMs.

time

hidden variables

observables

higher-order
interactions

states-observables
interactions

autoregressions

t− 1 t

S1, . . . , Sl

X1, . . . , Xn

S1, . . . , Sl

X1, . . . , Xn

. . .

. . .

. . .

. . .

t− 2, . . . , 0

t− 2, . . . , 0

t− 2, . . . , 0

Figure 2.3: An abstracted general HMM with hidden variables {S1, . . . , S`} and observ-
ables {X1, . . . , Xn}. Solid arcs indicate interactions present in the independent
HMM and related models.

Definition 2.6 (Hidden Markov model). A hidden Markov model is a Markovian
time-homogeneous system λ = (A, B, υ) over {S, X}, where:
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• A = P(S(t+1) | S(t)) is the transition distribution

• B = P(X(t) | S(t)) is the emission distribution

• υ = P(S(0)) is the initial state distribution

and dom(S) = {s1, . . . , sk} is called the state space of the model.

The above definition is based on those of dynamic systems given in Section 2.4,
except that in an HMM we repeatedly measure not only observables X, but also a
latent variable S. In this case, there is a single latent variable per time point, hence
S = {S}. It is customary to view A as a matrix [aij], B as a set {bj(k)}sj∈dom(S),
and υ as a vector [υ(si)], where:

aij = P(S(t+1) = sj | S(t) = si) (2.22)

bj(k) = P(X(t) = xk | S(t) = sj) (2.23)

υ(i) = P(S(0) = si) (2.24)

The above notation will be useful when describing HMM learning (see Section
2.6.2). By unrolling an HMM over a finite time horizon {0, . . . , T}, and from the
given assumptions and definitions, the joint distribution of an HMM is:

P(X(0:T), S(0:T)) = P(S(0))
T

∏
t=0

P(X(t) | S(t))
T−1

∏
t=0

P(S(t+1) | S(t)) (2.25)

A well-known class of HMMs is the independent HMM (HMM-I, for short) [102,
138, 141], in which the observables at a given time point are assumed conditionally
independent given the state. This additional assumption means that P(X(t)

i |
X(t)

j , S(t)) = P(X(t)
i | S(t)) whenever P(X(t)

j , S(t)) > 0, for all t ≥ 0 and i 6= j.
Based on the previous assumptions, the joint distribution of an HMM-I is as

follows:

P(X(0:T), S(0:T)) = P(S(0))
T

∏
t=0

n

∏
i=1

P(X(t)
i | S(t))

T−1

∏
t=0

P(S(t+1) | S(t)) (2.26)

2.5.2 Families of HMMs

By relaxing the assumptions of the independent HMM based on the general
architecture shown in Figure 2.3, different families of HMMs can be derived, as
summarized in Figure 2.4. The emissions of a standard HMM can be defined as:

P(X | S) =
n

∏
i=1

P(Xi | S, π−(Xi)) (2.27)
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where π−(Xi) denotes the set of parents of Xi excluding the state, and it depends
on the Bayesian network associated to the feature space. In the literature, the
standard HMM is also known as HMM/BN [119].

Symmetric
HMMs

Single
chain

Standard HMMs [119]
Generalize HMM-Is: intra-temporal interactions
via arbitrary Bayesian network

Independent HMMs [141]

Autoregressive HMMs [99]
Generalize HMM-Is for allowing direct inter-
temporal interactions between observables

Input-Output HMMs [11]
Generalize HMM-Is for multiple state-transition
distributions

Multiple
chains

Factorial HMMs [76]
Generalize HMM-Is for multiple chains. Chains
do not interact directly.

Probabilistic modularity
Chain
of states

Family

Figure 2.4: HMM families, where intra-temporal interactions refer to probabilistic interac-
tion among observables from the same time point, while inter-temporal interac-
tions refer to interactions between distinct time points.

The models from Figure 2.4 can be distinguished based on a number of factors,
where probabilistic modularity, i.e. the sets of variables that are directly connected
in the model, has a major importance. For example, the very high modularity
of HMM-Is requires that the state variable summarize more history information,
which can imply larger state spaces [76], as opposed to autoregressive HMMs,
where the direct interaction between observables is prone to reduce the burden
over the hidden states. On the other hand, as autoregressive HMMs might require
more parameters, they are prone to be less stable. This illustrates that there can
be several trade-offs when a decision must be made about the design of an HMM.
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2.5.3 Learning

Learning HMMs often reduces to parameter learning, because the structure of
models such as the independent HMM and input-output HMM is defined before-
hand. However, structure learning might be needed, e.g., for learning standard
HMMs and autoregressive HMMs if one wants to decide which autoregressions
should be present based on the data. Due to the presence of latent variables,
learning HMMs is addressed differently than discussed so far and will be covered
in more detail in Section 2.6.

2.6 learning with latent variables

In many real-life situations the data might have variables with missing values
due to several reasons, e.g., when patients drop out of treatment, do not carry
out a measurement or forget to register the result of a measurement, or when a
sensor breaks down. At other times, we might be interested in modeling latent
(or hidden) variables, i.e., the situation when no values have been observed for a
variable, which is the case of probabilistic models such as HMMs. Dealing with
missing values or with situations when all values of a variable are missing is
done by similar algorithms. In this section we discuss learning of models with
latent variables.

Learning Bayesian networks with latent variables is more difficult than the
case of complete data, as closed-form solutions are in general not available
[15, 21]. Iterative methods are often used, including gradient-based methods
[104] and the expectation maximization algorithm (EM, for short) [53, 65, 67].
More recently, research has shown that in some situations parameter learning of
Bayesian networks with latent variables can be done in closed form [21], while
structure learning has been done by approximating predictive distributions, also
in an iteration-free approach [143].

2.6.1 The expectation-maximization algorithm

In the situation of latent variables, the space of variables is given by a set of
observables X together with a set of latent variables S. Then, the log-likelihood
function of model parameters θ given a probabilistic structure P(X : θ) and data
on X can be written as:

logL(θ : x) = log P(x : θ) = log ∑
s

P(x, s : θ) (2.28)

The presence of the summation inside the logarithm makes it difficult to optimize
Equation 2.28 analytically, because the marginal P(x : θ) might not belong to the
exponential family even if P(x, s : θ) does [15]. The expectation maximization
algorithm is an alternative approach for finding the maximum likelihood in
an iterative way. In EM, we refer to X as the incomplete data, and X ∪ S as the
complete data. However, as we do not have access to the complete data, EM
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resorts to the expected likelihood of the complete data. A general description
of the EM procedure is provided in Algorithm 1. In the context of (dynamic)
Bayesian networks, the described EM algorithm assumes the network structure is
known and the goal is to perform parameter estimation, thus θ refers to model
parameters.

Algorithm 1 Expectation-maximization algorithm.

Input: D: a set of data points of the form X = {X1, . . . , Xn}; S = {S1, . . . , S`}:
a set of latent variables.
Output: θ: model parameters for the distribution P(x, s).

1: Choose initial model parameters θold.
2: repeat
3: E step: Compute P(s | x : θold)
4: M step: Compute θnew as follows:

θnew ← arg max
θ

Q(θ, θold) (2.29)

where Q(θ, θold)
def
= Es

[
log P(x, s : θ) | x : θold

]
(2.30)

= ∑
s

P(s | x : θold) log P(x, s : θ) (2.31)

θold ← θnew (2.32)

5: until convergence of the log-likelihood or the model parameters is achieved
6: return θnew

The goal of Algorithm 1 is to maximize the expected log-likelihood with
regard to the latent states (Equation 2.30) in an iterative way. Algorithm 1 starts
with initial model parameters θ0, which is often randomly generated. Then,
EM calculates the term of Equation 2.30 regarding the current parameters, i.e.
P(s | x : θold), which is known as the E step. Once this is done, it is possible to
evaluate candidate model parameters for the expected log-likelihood. The goal
now is to find new model parameters that optimizes this expectation, which is
known as the M step. The process of generating new model parameter estimates
from the current one is repeated until no improvement is possible, which means
that a local maxima or a saddle point of the likelihood function has been achieved
[65]. It is possible to show [15] that each cycle of E and M steps generates a new
model that is at least as good as the previous one.
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2.6.2 The Baum-Welch algorithm

Models with latent variables such as HMMs are often learned by means of the
EM algorithm, which is also known as the Baum-Welch algorithm in this context
[141]. In this section, we consider the learning of HMMs with fixed structure,
for which learning reduces to parameter learning. We use independent HMMs
to illustrate the necessary calculations. These involve estimating the parameters
θ, which include the emission distributions P(X(t)

i | S(t)), with Xi ∈ X and
dom(S) = {s1, . . . , sk}, the transitions P(S(t+1) | S(t)) and the initial probabilities
P(S(0)).

We consider the same learning setting as that of learning DBNs (Section 2.4.2),
but in order to simplify the notation, we consider that the data D consists of
a single sequence over {0, . . . , T}. This can be easily extended to the case of
multiple i.i.d. sequences. Let us denote by θold the parameters of current HMM-I
and by θ the parameters of new HMM-I to be obtained. The Q function of
Equation 2.30 for HMMs becomes:

Q(θ, θold) = ∑
s(0:T)

P(s(0:T), x(0:T) : θold) · log P(x(0:T), s(0:T) : θ) (2.33)

For convenience, in Equation 2.33 the joint P(s, x : θold) was used. It holds that
P(s, x : θold) = P(x : θold)P(s | x : θold), thus one can use either the joint or the
conditional probability for this development because they are independent of θ.
By substituting the joint of HMMs (Equation 2.26) into Equation 2.33, we obtain:

Q(θ, θold) = ∑
s(0:T)

P(s(0:T), x(0:T) : θold) · log P(s(0))

+ ∑
s(0:T)

P(s(0:T), x(0:T) : θold)

(
T

∑
t=0

n

∑
i=1

log P(X(t)
i | s(t))

)

+ ∑
s(0:T)

P(s(0:T), x(0:T) : θold)

(
T−1

∑
t=0

log P(s(t+1) | s(t))

)
(2.34)

In order to maximize such Q function, one can maximize each term independently.
The term referring to the initial distribution can be written as:

∑
s(0:T)

P(s(0:T), x(0:T) : θold) · log P(s(0)) (2.35)

= ∑
s(0:T)

P(s(0:T), x(0:T) : θold) · log υ(i) (2.36)

By setting the derivative with respect to υ(i) to zero, and introducing the
Lagrange α multiplier to ensure the constraint ∑k

i=1 υ(i) = 1 we obtain:

∂

∂υ

(
∑

s(0:T)

P(s(0:T), x(0:T) : θold) · log υ(i)− α(
k

∑
i=1

υ(i)− 1)

)
= 0 (2.37)
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It is possible to show [14] that this results in:

υ(i) =
P(x(0:T), s(0)i : θold)

P(x(0:T) : θold)
(2.38)

By similar reasoning we obtain the transitions and emissions:

aij =
∑T−1

i=0 P(x(0:T), s(t)i , s(t+1)
j : θold)

∑T−1
i=0 P(x(0:T), s(t)i : θold)

(2.39)

bj(k) =
∑T

i=0 P(x(0:T), s(t)j : θold) · 1(k)

∑T
i=0 P(x(0:T), s(t)j : θold)

(2.40)

where 1(k) = 1 if X(t) = xk, and 0 otherwise.
In order to actually compute the above probabilities, some useful quantities

are defined:

γt(i)
def
= P(s(t)i | x(0:T) : θold) (2.41)

ξt(i, j) def
= P(s(t)i , s(t+1)

j | x(0:T) : θold) (2.42)

In many families of HMMs, the γ and ξ values can be efficiently computed by
the forward-backward procedure based on dynamic programming [14, 15]. This
fact is important for keeping the EM iterations efficient. Then, it is possible to
show [141] that parameter update leads to θnew = (A, B, v) given by:

υ(i) = γ0(i) (2.43)

aij =
∑T−1

t=0 ξt(i, j)

∑T−1
t=0 γt(i)

(2.44)

bj(k) =
∑T

t=0 γt(j) · 1(k)
∑T

t=0 γt(j)
(2.45)

2.6.3 Number of latent states

One important hyperparameter of HMMs is the number of latent states. It is
often the case that this hyperparameter is not known in advance, hence one can
resort to estimating it using data. Information-theoretic criteria, such as AIC and
BIC, can be used for this task [35, 138], with the advantage of low computational
cost, something that is important for tasks as Bayesian-network structure learning.
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Selecting the number of states can also be done by means of cross validation.
While cross validation is typically more costly than penalized scoring functions,
with cross validation one is able to directly estimate the performance of the model
on new data, which allows for dealing with overfitting. A particular advantage
of cross validation in HMMs is that it avoids assumptions made by penalized
scoring functions, which require that the actual distribution of the data belongs
to one of the models being compared [35].

One approach for selecting the number of states by means of cross validation
is by incrementally increasing the number of states until model generalization
stabilizes or deteriorates [102, 144]. To evaluate a model with q states by means
of k-fold cross-validation, the training data is obtained from (k− 1)/k percent of
sequences, while the validation data is obtained from the remaining sequences.
The average log-likelihood of validation data is reported as the performance of
the model, which can then be compared against, e.g., a model with q + 1 states.

2.6.4 Structure learning with missing data

It is often the case that models with latent variables also need to have some of
their structure estimated from data. For example, more general HMMs which
adopt less restrictive assumptions on the probabilistic interaction among variables
(see Figure 2.4) might require structure learning on the emission space, if there is
no a priori domain knowledge about typical interactions. Using an inadequate
or too restrictive model structure can considerably limit model emissions, which
has been considered important for allowing HMMs to properly capture complex
distributions [12, 102, 123] since it governs how observations are emitted to the
external world.

In the situation of learning with latent variables and unknown structure, one
can resort to an extension of the EM algorithm called structural EM (SEM, for
short) [65, 67]. This is the case of Bayesian networks with latent variables
and unknown structure, as well as standard HMMs (Equation 2.27), where the
emission distribution follows an arbitrary Bayesian network, thus the observable
variables might not be independent given the state.

In the following development, we consider that the model to be learned is a
Bayesian network with structure G and parameters θ (for convenience, we use θ
instead of P in this algorithm). The SEM procedure is described as follows:

1. Choose B0 = (G(0), θ(0)) randomly

2. Loop for n = 0, 1, . . . until convergence:

a) Find Gnew, as follows:

Gnew ← arg max
G

Q((G, θG), (Gold, θold)) (2.46)

where
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Q(B ,Bold)
def
= Es

[
log P(x, s : B)− Pen(B , x) | x,Bold

]
(2.47)

b) Let θnew ← arg maxθ Q((Gnew, θ), (Gold, θold))

One important insight of SEM is placing structure learning inside EM calcu-
lations. In the SEM procedure, each iteration involves structure learning and
parameter learning, both based on expected counts. The expected counts are
based on probabilities computed over the current model Bold. In step(a), structure
learning is executed based on the expected counts of the current parameters θold.
As SEM involves selecting model structure, an additional factor is included in
the expected score to penalize for model complexity. Once this is done, in step(b)
new parameters θnew are computed for this structure Gnew. Note that step(b) can
be seen as the parametric part of SEM.

It is possible to show [65] that in order to guarantee convergence it is sufficient
to find a BN Bnew with improved score compared to the BN found on the previous
SEM iteration, instead of maximizing the expected score shown above. This is
useful because it is often the case that heuristic search is used for obtaining Bnew,
which does not guarantee that in each iteration the expected score is maximized.
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A S Y M M E T R I C H I D D E N M A R K O V M O D E L S

In this chapter, we introduce asymmetric hidden Markov models, which generalize the
emission distributions of HMMs to arbitrary Bayesian-network distributions, allowing
for state-specific graphical structures defined over the feature space. As a consequence,
HMM-As are able to render more compact state spaces, thus from a learning perspective
HMM-As can better cope with model overfitting compared to other HMM architectures.
We study representation properties of asymmetric and symmetric HMMs, as well as
provide a learning algorithm for HMM-As. Empirical results based on simulated and
real-world data from several domains show the effectiveness of modeling more general
asymmetries as done by HMM-As and the insight that such models can yield.

3.1 introduction

In many dynamic systems, complex patterns of observations are emitted over
time. It is often the case that parts of the underlying process are not observed,
e.g. because it is too difficult or impossible. This situation imposes challenges for
capturing the interactions between observable features. Hidden Markov models
are often employed as models for dynamic systems, having been successful in
speech recognition and synthesis domain [119, 141, 168]. HMMs have also been
applied to problems such as gene prediction and biological sequences [60, 165],
information retrieval [64, 155], and business processes [148]. However, it has
been also recognized that HMMs might face limitations to properly capture
distributions when limited data is available [13, 75, 119]. Furthermore, HMMs in
practice often have a single chain of states and impose a naive structure over the
feature space, which on the one hand alleviates learning and inference costs, but
on the other hand gives rise to larger state spaces that can lead to learning issues
(e.g. model overfitting) and unsatisfactory problem insight.

Research has been dedicated to extending HMMs for representing more struc-
tural information, aiming to render more useful and accurate models, e.g. factorial
HMMs [76], hierarchical HMMs [62], HMM/BN [119], and autoregressive HMMs
[139]. Nevertheless, these extensions do not capture more specialized indepen-
dences, often referred to as asymmetric independences or local structure [73],
i.e. independences that hold for subsets of values of the involved variables. In
the context of graphical models, the representation of asymmetries dates back

29
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to Bayesian multinets [73] and similarity networks [84], and had its importance
recognized for allowing better probabilistic inference [19, 32, 173], learning [66,
137], and for improving problem insight [102] as well.

In the context of HMMs, however, research on capturing asymmetries has been
much more limited, with a focus mostly on autoregressive models. Such models
include the representation of higher-order autoregressive interactions by means
of dynamic multinets [12], tree-based interactions on the observables space by
means of Chow-Liu HMMs [102], and a combination of first-order autoregressions
and tree-based interactions as implemented by conditional Chow-Liu HMMs
[12]. Therefore, a model able to capture more general asymmetries on the
observables space is needed. The literature also lacks a better understanding of the
implications of employing asymmetry models in time series settings. To address
these research aspects, we propose asymmetric hidden Markov models (HMM-As). In
HMM-As observations are emitted according to state-specific Bayesian-network
distributions, thus these models are able to represent independences that are not
represented in symmetric HMMs.

The contributions of this chapter are as follows. We first define HMM-As,
and compare its representation aspects with families of symmetric HMMs with
respect to their state space dimensions. Then, we discuss a learning algorithm for
HMM-As, which is based on the structural expectation-maximization framework
[53, 65], and additionally analyze computational costs associated to symmetric
and asymmetric HMMs. A set of varied simulations is then presented, with
special attention to the effect of different dataset sizes and number of underlying
structured states when learning symmetric and asymmetric models. Finally,
we discuss experiments based on real-world datasets, where we take a close
look at the obtained models in order to gain additional insight supported by
HMM-As. Such empirical results indicate that HMM-As can be successfully used
to obtaining new insight from real-life problems from several domains, including
business processes, monitoring of urban pollution, and industrial processes.

The remainder of this chapter is organized as follows. In Section 3.2 we provide
basic notions on distribution asymmetries and HMMs that represent asymmetries.
In Section 3.3 we define HMM-As and relate them to other HMMs. In Section
3.4 a learning procedure for HMM-As is introduced. Section 3.5 reports results
based on simulated data, while Section 3.6 reports results based on real-world
data and discusses problem insight. In Section 3.7 the related work is discussed.
The summary and future work are discussed in Section 3.8.

3.2 basic notions

In Chapter 2, we discussed different classes of HMMs, which included the most
common one, i.e., the independent HMM, as well as other HMMs. It is worth
noting that the HMMs shown in Figure 2.4 do not capture asymmetries in the
distribution, i.e. independences that are valid for some values within the domains
of the variables. Such independences can be formally defined by the notion of
context-specific independences, which we define next, based on [19].
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Definition 3.1 (Contextual independence). Let P be a probability distribution over
the sets of random variables V, W, U, and C, which are pairwise disjoint. We say
that V is contextually independent of W given U and the context c ∈ dom(C) if
(V ⊥⊥P W | c, U) for all values of V, W, and U.

Context-specific independences are able to capture independence statements
that are not captured with conditional independence statements. In the context
of HMMs, the context is typically given by values of the state variables(s), and
we shall refer to such statements as asymmetric independences in this chapter.

A summary of HMMs that represent distribution asymmetries is given in Table
3.1. For such HMMs, each state s ∈ dom(S) determines the parent set of each
observable, thus leading to asymmetric independences of the form:

(V(t) ⊥⊥P W(t) | s(t), U) (3.1)

where V, W ⊆ X. The set U depends on the state s at t, and it determines the
model architecture. For example, in Chow-Liu HMMs U ⊆ X(t), whereas in
dynamic multinets U ⊆ X(0:t−1).

Model Chain of
states

Distribution asymmetries Learning

Dynamic Multinet [12] Single Higher-order autoregressions be-
tween observables. No intra-
temporal correlations.

Discriminative
(classification)

Chow-Liu HMM [102] Single Intra-temporal interactions mod-
eled by tree distributions.

Generative

Conditional
Chow-Liu HMM [102]

Single First-order autoregressions and
tree-based intra-temporal interac-
tions.

Generative

Activator DBN [123] No chain Autoregressions and intra-
temporal interactions between
observables.

Not available

Asymmetric HMM
(this chapter)

Single Intra-temporal interactions mod-
eled by arbitrary Bayesian network
distributions.

Generative

Table 3.1: HMM families which represent independence asymmetries.

Representing distribution asymmetries is important for inference and learning,
however, as Figure 2.4 and Table 3.1 show, research to represent asymmetries
has been much narrower in the context of HMMs. This is justified by the
sequential nature and the role played by hidden states in HMMs, which imposes
other challenges when compared to the static case. We further discuss work on
representing distribution asymmetries in HMMs as follows.

As Table 3.1 indicates, systematic approaches for learning Chow-Liu HMMs are
available by means of a generative-based learning. However, the representation
of state-specific asymmetries in such HMMs is limited to trees, which can be



32 asymmetric hidden markov models

harmful especially when the feature space has more features, and thus many
more structures become available. On the other hand, dynamic multinets directly
model potentially longer-history correlations by means of autoregressions. Yet,
no instantaneous (i.e. intra-temporal) interactions are captured, which makes
them closer to the original ideas of autoregressive HMMs [99, 139] by not fully
exploring the graphical structure.

The learning approach of the previous asymmetry-aware HMMs is targeted at
specific tasks, namely, classification. Thus, there is a need for models that can
represent more general asymmetries within the feature space, yet in a compact
manner to avoid the need for large amounts of data. Furthermore, the literature
lacks a better understanding of the representation capacities of the independent
HMM and other, structured HMMs with respect to state space dimensions and
model fit when the data generation process has varying amount of structure.

3.3 asymmetric hidden markov models

Asymmetric hidden Markov models generalize HMMs by allowing the emission
distributions to represent additional qualitative independence per state. In
the following we define HMM-As by first defining the association between
states and Bayesian-network distributions, followed by a discussion on model
parameterization.

3.3.1 Model specification

In order to define asymmetries in HMMs, we consider that hidden states induce
local models over the observables. This notion can be conveniently represented
by conditional Bayesian networks [104], in which a distribution P(X | S) is
defined for the observables X and the state S. As standard conditional BNs
provide a single factorization of X for all s ∈ dom(S), we extend this notion for
accommodating more general state-specific models as follows.

Definition 3.2 (State-specific Bayesian network). Let X and S be random variables.
For each s ∈ dom(S), we associate a Bayesian network over X called state-specific
Bayesian network for s. If Bs = (Ps, Gs) is the state-specific BN associated to s, we define
the following conditional distribution:

P(X | s) = Ps(X) (3.2)

=
n

∏
i=1

Ps(Xi | πs(Xi)) (3.3)

where πs(Xi) denotes the parent set of Xi as dictated by the state-specific BN Bs =
(Gs, Ps), in which Gs denotes its graphical structure and Ps its conditional probability
tables.

The previous definitions map hidden states to BNs, thus conveniently allowing
multiple sets of parents for the features in X, one for each state-specific BN.
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Definition 3.3 (Asymmetric hidden Markov model). An asymmetric hidden Markov
model over the random variables (X, S) is a dynamic system λ = (M→, M↓, M0), where
M0 is an initial distribution P(S(0)), M→ is a transition distribution P(S(t+1) | S(t)),
and M↓ is an emission distribution given by

P(X(t) | S(t)) = PS(t)(X(t)) (3.4)

From the definitions shown above, HMM-As are able to capture more qualita-
tive independences in their topology than HMMs. Yet, HMM-As will share a few
assumptions with HMMs, namely: the Markovian property and time-invariance.
A third assumption that will also hold in HMM-As establishes that the inter-
temporal interaction between features must occur via state variables. Hence,
given these assumptions, an unrolled HMM-A over the time horizon {0, . . . , T}
has the following joint distribution:

P(S(0:T), X(0:T)) = P(S(0))
T−1

∏
t=0

P(S(t+1) | S(t))

·
T

∏
t=0

n

∏
i=1

PS(t)(X(t)
i | πS(t)(Xi)) (3.5)

We note that standard HMMs (see Section 2.5.2) are therefore special cases
of HMM-As, since in the standard HMMs every state is associated to the same
Bayesian-network structure, i.e. Gsi = Gsj for every si, sj ∈ dom(S). An HMM-
A can be also visualized as a probabilistic automaton, providing an intuitive
representation for states and transitions, as Example 3.1 shows.

Example 3.1. On a regular basis, measurements of print quality (PQ), room temperature
(RT), ink type (IT), and media type (MT) are taken for an industrial printer. An
HMM-AM1 for this problem has hidden states that dictate the underlying dynamics,
named ‘normal’, ‘failing mode one’, and ‘failing mode two’, denoted by s1, s2, and
s3 respectively. M1 is shown in Figure 3.1 as a probabilistic automaton, which runs
by alternating taking probabilistic transitions and emitting multivariate observations
(PQ(t), RT(t), IT(t), MT(t)) according to the states which it traverses.

3.3.2 Parameterization

The conditional probability table of each observable Xi in HMMs has the form
P(Xi | S, π−(Xi)), where π− refers to the other parents excluding the state. On
the other hand, in HMM-As observables have their parameters associated to
state-specific BNs, whose CPTs do not explicitly show the states. Nevertheless,
CPTs in the standard sense can easily be obtained from HMM-As, as illustrated
next.

Example 3.2. In the HMM-AM1 (see Example 3.1), the conditional probability tables
that are rendered for its feature set are shown in Figure 3.2.
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Start

RT IT MT

PQ

s2

RT IT MT

PQ

s1

RT IT MT

PQ

s3

p1→1

p1→2

p2→2

p2→1

p2→3

p3→3

p3→2

p3→1

p1
p2 p3

Figure 3.1: Probabilistic automaton representation for HMM-AM1 (dashed arcs indicate
initial transitions; zero probabilities are not shown). State-specific BNs are
shown in rounded rectangles.

π Parameters
s1, RT, IT, MT θPQ|s1 ,RT,IT,MT
s2 θPQ|s2
s3, IT θPQ|s3 ,IT

(a) Node PQ

π Parameters
s1 θRT|s1
s2 θRT|s2
s3 θRT|s3

(b) Node RT
π Parameters
s1 θIT|s1
s2, RT θIT|s2 ,RT
s3, RT, MT θIT|s3 ,RT,MT

(c) Node IT

π Parameters
s1 θMT|s1
s2 θMT|s2
s3 θMT|s3

(d) Node MT

Figure 3.2: Parameterization of probability tables for HMM-AM1.

Given the HMM-AM1, it is possible to obtain a standard HMM that represents
its distribution over the feature space by turning the asymmetric independences
of M1 into non-asymmetric independences, by taking the minimal directed
acyclic graph (DAG) that includes all the dependences of the states inM1. Let
us refer to such a model as simulating HMM, which is illustrated next.

Example 3.3. LetM′
1 be a standard HMM for simulating the HMM-AM1, such that

both models have the same number of states. M1 includes asymmetric independences
such as (PQ ⊥⊥ RT | s2), which does not hold neither in s1 nor in s3. This leads to
the conditional dependence (PQ 6⊥⊥ RT | S), which therefore holds in the simulating
HMM M′

1. Similarly, in M1 it holds that IT and MT are independent in s1 and s2
only, hence, it must hold (IT 6⊥⊥ MT | S) in the simulating HMM. As a consequence,
the structure of emissions inM′

1 is denser than the state-specific ones fromM1, as it
can be noted from Figure 3.3a showing the emission structure ofM′

1.
It is worth noting that, e.g., the CPT for IT is P(IT | S, RT, MT), although direct

dependence between IT and {RT, MT} exists only when S is s3 inM1, which means
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that redundancies will exist in this CPT, as shown in Figure 3.3b. Finally, the total
number of independent emission parameters inM1 is 24: 11 from s1, 5 from s2, and 8
from s3. On the other hand, inM′

1 there are 42 independent parameters, obtained by
computing the size of the CPT for each variable.

. . . S

ITRT MT

PQ

. . .

(a) Graphical structure (emissions only).
CPT inM′

1 Parameters inM1
P(MT | S) θMT|S
P(RT | S) θRT|S
P(IT | MT, RT, s1) θIT|s1
P(IT | MT, RT, s2) θIT|s2 ,RT
P(IT | MT, RT, s3) θIT|s3 ,MT,RT
P(PQ | RT, IT, MT, s1) θPQ|s1 ,RT,IT,MT
P(PQ | RT, IT, MT, s2) θPQ|s2
P(PQ | RT, IT, MT, s3) θPQ|s3 ,IT

(b) Conditional probability tables.

Figure 3.3: Standard HMMM′1 that simulates the HMM-AM1.

Two points with further implications follow from Example 3.3. As HMM-As
allow for savings in the representation size due to the direct representation of
asymmetries in the distribution, one can readily take advantage of these for
speeding up probabilistic inference. Secondly, in HMM-As where a few states
induce small amounts of dependences (e.g. state s2 in M1), the CPTs of the
corresponding standard HMM will be large enough to cover the amount of
dependences resulting from the union of all state-specific dependences of the
original HMM-A. If there is a great disparity in the amount of asymmetries
among the states of the HMM-A, the standard HMM will likely require more
probabilistic parameters as well. As a consequence, standard HMMs are prone to
reveal less insight into practical problems.

3.3.3 Representation aspects

In the following, we discuss how standard and independent HMMs can represent
HMM-A distributions, and the effects of such procedure on the state space of the
former model families.
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3.3.3.1 Relationship with standard HMMs

We provided in Example 3.3 an intuition on how to obtain a standard HMM
able to simulate a particular HMM-A, i.e. an HMM that represents the same
distribution over the space of observables. Intuitively, the simulating HMM is
prone to have a denser structure compared to the individual states of the original
HMM-A, which in the limit reaches a fully connected structure. This is the main
idea used in Proposition 3.1 and its proof (see the Appendix) to show that a
standard HMM can be obtained from a given HMM-A in the general case. This
result also indicates that the simulating HMM does not need additional states for
the simulation.

Proposition 3.1. LetM be an asymmetric HMM with k states over the observables X,
where each Xi ∼ Multinomial, i = 1, . . . , n. Then, there exists a standard HMMM′

with k states over the same observables which simulatesM, i.e. P′(X(0:T)) = P(X(0:T)),
where P and P′ denote the joint distributions ofM andM′ over X respectively.

Although the proof of Proposition 3.1 uses an argument based on full connectiv-
ity, this is not strictly necessary as the structure on the simulating HMM depends
on the amount and form of asymmetries in the original HMM-A. Nevertheless,
as Figure 3.3b shows, parameter redundancy at the level of states is likely to
occur in the standard HMM, preventing inference from readily benefiting from
distribution asymmetries, as such redundancies are encoded in the CPTs, which
is not the case in HMM-As.

3.3.3.2 Relationship with independent HMMs

While standard HMMs can simulate HMM-As using the same number of states,
it is straightforward to see that independent HMMs are not able to do so in
the general case. It turns out, however, that the simulation process becomes
possible at the cost of expanding the state space of HMM-Is. Intuitively, the more
general independence assertions in each state of a given HMM-A must be broken
into multiple and naively-structured states. We show this result by means of
Proposition 3.2.

Proposition 3.2. LetM be an asymmetric HMM with k states over the observables X,
where each Xi ∼ Bernoulli, i = 1, . . . , n. Then, there exists an independent HMMM′

with k′ states over the same observables, such thatM′ simulatesM and k′ ≤ k2n.

It is straightforward to extend Proposition 3.2 for the more general case of
multinomial observables. The proof of Proposition 3.2 (see Appendix 3.A) pro-
vides a method for simulating HMM-A distributions by means of HMM-Is, and
it also shows an upper bound on the number of states required by the HMM-I. In
practice, the amount of dependences per state and the numerical parameteriza-
tion of the structured model can greatly vary, hence the number of states that a
simulating HMM-I requires tends to be lower than the bound, although it can
still be much higher than the original number of states of the original HMM-
A. Nevertheless, as we further show in this work, a substantial increase in the
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state space can be expected when simulating lowly- and moderately-structured
distributions.

3.4 learning

In this section, we present a learning algorithm for HMM-As. We discuss
computational costs for this and other families of HMMs as well.

3.4.1 Learning setting

In order to learn HMM-As, we assume that state variables are not observed and
the graphical structure for emission distributions is unknown. In this case, i.e.
learning under missing data and unknown structure, the likelihood function of
the observed data is non-decomposable by the graphical structure [15], which
makes analytical methods impossible. The structural expectation-maximization
(see Section 2.6.4) is often employed in these settings, which serves as a basis for
the learning procedure we develop for HMM-As.

The learning setting is score-based and is as follows. Consider a dataset D of m
i.i.d. complete sequences, where the ith sequence has the form x[i](0), . . . , x[i](mi).
Given an integer k, we aim to learn an HMM-A with k states that best fits D. As
in the structural EM, HMM-A learning is based on the idea of placing structure
learning in each cycle of E and M steps. The learning procedure for learning
HMM-As is described next, together with a discussion on its cost.

3.4.2 Expectation step

In the E step the current model λold is used for computing two expected statistics:
the expected occupancy of each state (denoted by γ), and the expected transitions
between any two states (denoted by ξ). For the sake of exposition, we show
derivations for the expected statistics considering a single sequence with length
{0, . . . , T}, which is straightforward to extend for multiple sequences as the
sequences are assumed i.i.d. We repeat below the notation of expected statistics
given in Section 2.6.2 for convenience:

γt(j) def
= P(S(t) = sj | D : λold) (3.6)

ξt(i, j) def
= P(S(t) = si, S(t+1) = sj | D : λold) (3.7)

Based on the assumptions regarding the HMM-A topology, it is possible to
show that the expected statistics can be given by means of the so-called forward
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and backward variables [141], denoted by α and β respectively, similarly to regular
HMMs:

γt(j) =
αt(j) · βt(j)

∑k
i=1 αt(i) · βt(i)

(3.8)

ξt(i, j) =
αt(i) · aij · bj(x(t+1)) · βt+1(j)

∑k
p=1 ∑k

q=1 αt(p) · apq · bq(x(t+1)) · βt+1(q)
(3.9)

where aij denotes the transition probability from state si to state sj, and bj(x(t+1))

denotes the emission probability of x(t+1) according to state sj. The forward and
backward variables are defined as follows:

αt(j) def
= P(S(t) = sj, x(0:t) : λold) (3.10)

=

[
k

∑
i=1

αt−1(i) · aij

]
bj(x(t)) (3.11)

βt(i)
def
= P(x(t+1:T) | S(t) = si : λold) (3.12)

=
k

∑
j=1

aij · bj(x(t+1)) · βt+1(j) (3.13)

where the basis of recursion is defined as α0(i) = υibi(x(0)) and βT(i) = 1 for
all i = 1, . . . , k, where υi denotes the initial probability of state si. The variables
α and β can be computed efficiently by means of dynamic programming, as
illustrated by Proposition 3.3.

Proposition 3.3. The computation of one E-step iteration for one sequence in asymmetric
HMMs takes O(Tk3n) time.

It is straightforward to see that the cost of the E step in HMM-As is, in fact, the
same as that of several other families of HMMs, including the independent and
standard HMMs. We also note that the cost is strongly influenced by the number
of states (which grows in a cubic fashion, whereas the other terms grow linearly).

3.4.3 Maximization step

In the M step, we obtain a new model λnew based on the expected statistics
previously computed. However, as opposed to the standard EM, the M step for
HMM-As can no longer be computed efficiently in its exact form, as the graphical
structure on the feature space is unknown, which relates to the intractable
problem of finding the optimal structure of a Bayesian network (see Section 2.3.2).
In fact, this efficiency can only be attained by very few families of HMMs, where
the independent HMMs is the main one; even some models that do not capture
asymmetries, e.g. the standard HMMs, also lose this property since the structure
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is unknown (even though it is shared by all the states). To learn feature-space
structures with reasonable quality, one often relies on approximate approaches.

In order to devise the update procedure for HMM-As, let us consider the
expected score in SEM [14, 65]. The expected score for a candidate model λ is
the expectation of the complete data likelihood taken with respect to the hidden
states conditional on the current model λold:

Q(λ, λold) = Es(0:T)

[
log P(x(0:T), s(0:T) : λ)− Pen(λ) | x(0:T) : λold]

= ∑
s(0:T)

P(s(0:T) | x(0:T) : λold) · log P(x(0:T), s(0:T) : λ)

− Pen(λ) (3.14)

The expectation is taken with respect to the latent state. Note that
P(x(0:T), s(0:T) | λ) factorizes according to the structure of the HMM-A (see
Equation 3.5), thus:

Q(λ, λold) = ∑
s(0:T)

P(s(0:T) | x(0:T) : λold)

· log

[
P(s(0))

T−1

∏
t=0

P(s(t+1) | s(t))
T

∏
t=0

P(x(t) | s(t))

]
− Pen(λ) (3.15)

Q(λ, λold) = ∑
s(0:T)

log P(s(0))P(s(0:T) | x(0:T) : λold)

+ ∑
s(0:T)

(
T−1

∑
t=0

log P(s(t+1) | s(t))

)
P(s(0:T) | x(0:T) : λold)

+ ∑
s(0:T)

(
T

∑
t=0

log P(x(t) | s(t))

)
P(s(0:T) | x(0:T) : λold)

− Pen(λ) (3.16)

Equation 3.15 suggests that each term of the expected score can be optimized
separately. The result is the parameter updating in the SEM process as follows.

3.4.3.1 Structure learning

In Equation 3.15, we identify the term associated to the emissions as:

∑
s(0:T)

(
T

∑
t=0

log P(x(t) | s(t))

)
· P(s(0:T) | x(0:T) : λold)− Pen(M↓)

=
k

∑
j=1

T

∑
t=0

log P(x(t) | s(t)j ) · P(s(t)j | x(0:T) : λold)− Pen(M↓)

=
k

∑
j=1

T

∑
t=0

γt(j) · log P(x(t) | s(t)j )− Pen(M↓) (3.17)
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The emissions term (Equation 3.17) can be further decomposed per state, because
the state-specific networks are independent of each other. The advantage now is
that each state-specific network can be locally learned. In this work, the penalty term
is defined according to the BIC score (see Section 2.3.2). Thus, for a state sj, its
fraction from the emissions term is:

T

∑
t=0

γt(j) log P(x(t) | s(t)j )− Pen(M↓; sj)

=
T

∑
t=0

γt(j) log P(x(t) | s(t)j )− Kj log(T + 1)
2

(3.18)

where Kj is the number of parameters in the model for state sj. In HMM-As
we wish to learn state-specific graphical structures in the M step, hence we run
structure learning for each of the k states separately. In practice, structure learning
often relies on approximate methods for exploring the search space of structures
in feasible time and yet providing reasonable solutions.

In this work, we consider the tabu search [77] (TS, for short) to explore the
candidate space of structures, which is a polynomial-time procedure based on
hill-climbing search. A TS iteration explores the neighborhood of the current
solution (initially an empty network) by adding, deleting or reversing an arc from
this solution. The current solution is added to the tabu list, which stores the
10 most recently explored networks, in this implementation. Furthermore, only
neighborhood solutions that are not in the tabu list are added to the neighborhood
set (initially empty). Once the neighborhood set has been updated, the best of its
solutions is taken out and set in the next iteration as the current solution. The
new current solution might not be better than the previous one, however, this is
allowed for no more than 10 consecutive iterations.

During the tabu search for the sj state, the corresponding term in Equation
3.18 is used to compare candidate structures. Once the stopping criterion is
reached in TS, the best structure that has been seen is returned. Stopping criteria
include, e.g., testing whether the neighborhood set is empty, or testing if more
than 10 iterations without improvement have passed. Given the described steps
for TS, the cost of each structure learning run is bounded by a polynomial cost
on the method’s hyperparameters aforementioned and the number of observable
features.

3.4.3.2 Parameter update

After obtaining a model structure for λ, it is possible to show that maximizing
the expected score (Equation 3.15) leads to the following update formula for the
transition probabilities:

âij =
∑T−1

t=0 ξt(i, j)

∑T−1
t=0 γt(i)

(3.19)

The update of the emission probabilities, in turn, is more involved than in
standard EM, as the feature space is multivariate and each feature can have other



3.5 assessment via simulations 41

parents beyond the state variable. Furthermore, the parent set for a given feature
can vary among states. Nevertheless, we can take advantage of the fact that the
state-specific BNs allow us to factorize the joint distribution of the feature set X,
thus we can update the probability tables for one variable at a time. For state sj
and feature X, we update the corresponding probability tables as follows:

b̂j(X = x, πj(X) = y) =
∑T

t=0 γt(j) · 1(x(t), πj(X)(t) = y)

∑T
t=0 γt(j) · 1(πj(X)(t) = y)

(3.20)

where 1 is the indicator function. As in the case of arbitrary Bayesian networks,
the cost of this calculation strongly depends on the connectivity of the network,
being exponential in the number of features in the worst case. However, if the
parent sets have moderate sizes, this can be very reasonable in practice.

As a final remark in learning HMM families, we note that a simpler version
of this M step is needed for learning standard HMMs. In that case, structure
learning is executed only once, as all the states will share a single structure.
Analogously, updating the parameters in standard HMMs can still be costly due
to the reasons previously discussed.

3.5 assessment via simulations

In this section, we aim to understand how unstructured, structured, and
asymmetry-aware models cope with data generated from structured distributions.
We also intend to analyze the effect of different amounts of data in model quality.
To this end, we generated data from HMM-A distributions to simulate different
scenarios. The model selection procedure used to learn models is described, as
well as the data generation process, and finally the obtained results are discussed.

3.5.1 Model selection

In order to learn models that generalize best, we considered a model selection
procedure to determine state spaces balancing complexity and overfitting avoid-
ance as follows. Given a sequence dataset D, models are learned incrementally by
increasing the number of states until overfitting occurs, which corresponds to the
point where model score no longer increases. Model scoring is based on a 10-fold
cross-validation: for each fold, a model is learned using training data (90% of the
data) and its log-likelihood over validation data (the remaining data) is computed;
after processing all the folds, the mean log-likelihood is taken, corresponding
to the final score. To better assess learning, we learn 30 initial models for each
k states, and select the one that generalizes the best to represent models with
k states. Once the number of states has been determined, the final model L is
learned using the entire dataset and those initial parameters, and it is evaluated
by means of 60 independent datasets (not used in learning nor validation; each
independent dataset has 2,000 sequences with length 20 each).
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Each learned model L is evaluated by comparing likelihoods as follows. Let
R be the true model used to sample D, then we define the fit quality of L as
logLR − logLL, where logLR and logLL denote the mean log-likelihood of the
models R and L over testing data respectively. This fit quality can be interpreted
as the logarithm of the number of times the likelihood of the true model R is
in comparison with the likelihood of the learned model L (in non-logarithmic
scale). Hence, if the difference equals zero, it indicates that L and R fit equally
well, while a difference larger than zero indicates that L fits worse than R. Thus,
learned models with log-likelihood difference closer to 0 are preferred. We finally
note that this procedure allows us to compare models learned with different
amounts of data, as they are evaluated over the same testing datasets.

3.5.2 Datasets

Datasets were sampled from random HMM-As, which were generated taking into
account that many real-life networks have an average degree between 2 and 4 per
node (i.e. the sum of in- and out-degrees). This is the case, for example, in well-
known BNs, such as alarm, pathfinder, asia, and insurance [151]. Hence, in order
to generate ground truth models having state-specific BNs with a reasonable, and
yet realistic structure, the maximum degree of each node on each network was
set to 3.

In order to build a random HMM-A with k states, its initial and transition
matrices are sampled from Dirichlet distributions with concentration parameters
all set to 1. Thus, valid distributions are obtained, i.e. matrices with rows
that sum to 1 [69]. The emissions are Bayesian networks made of uniformly
sampled DAGs [122, 151], whose nodes have the aforementioned maximum
degree. All observables are modeled as random variables following Bernoulli
distributions, whose parameters are sampled from Dirichlet distributions as
before. We note that this procedure is also used to generate the initial models
used in learning (see Section 3.5.1), except that no maximum degree is set. Finally,
in the constructed scenarios the following quantities were considered: number of
features n ∈ {3, 6, 10, 14, 18}, the state space dimension of true models k ∈ {2, 6},
and the amount of sequential data as 50 sequences (each with length of 10 time
points), 200 sequences (10 time points) and 1,000 sequences (20 time points).

3.5.3 Results for symmetric models

Figure 3.4 shows the log-likelihood differences between asymmetric and symmet-
ric HMMs based on simulated data (here, HMM-S refers to standard HMM). We
first note that, as expected, all the classes of models obtained better fit when more
data is provided, which is influenced by the fact that more states can be learned
prior to overfitting. The results also suggest that independent and standard
HMMs were not able to provide the same model quality as HMM-As, even when
the highest amounts of data were provided to all the three models. Hence, it
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seems reasonable to expect that much more data would be needed in order to
learn models that fit as well as the learned HMM-As (in this case, using 1,000

sequences). Concerning the scarcer datasets (note that the larger datasets are 40×
larger than the smaller ones), HMM-As achieved superior model quality on most
cases. This allows us to conclude that HMM-As showed a good compromise in a
varied range of dataset sizes, which can be explained by its flexibility on learning
more or less dense feature-space structures depending on the situation.
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Figure 3.4: Fit of asymmetric and symmetric HMMs learned in simulations. Datasets
sampled from true models have 50 sequences (length 10 time points, ), 200

sequences (length 10 time points, ♦), and 1,000 sequences (length 20 time points,
). Note that scales on Y axes differ.

In terms of scaling, e.g. when modeling more observables, the additional struc-
ture of HMM-As avoided pitfalls that can hinder independent and standard
HMMs: HMM-Is will tend to increase their state space, while standard HMMs
will tend to model denser feature-space graphical structures. As a consequence,
in most cases these symmetric models approach overfitting with much less model
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quality than HMM-As. In other words, despite the representational equivalence
between HMM-As and independent and standard HMMs in theory, such sym-
metric models can be limited in practice. These claims are further supported
by results in Table 3.2 showing the corresponding state space dimensions, and
Figures 3.5a-3.5b showing the number of parameters.

Table 3.2 shows the dimension of state spaces associated to learned models, sug-
gesting that approximating HMM-A distributions required independent HMM
with state spaces substantially larger than the true models’ spaces, while this
was not the case for standard HMMs. Nevertheless, as Figures 3.5a-3.5b show,
the number of parameters in these two families were substantially higher than
those of learned HMM-As, specially when more features were involved. With
regard to running time in learning, Figures 3.6a and 3.6b show that, somewhat
surprisingly, learning HMM-Is was more costly in most cases than HMM-As:
although learning HMM-As is done via structural EM, its combination with
search heuristics and smaller space state was in practice more efficient than the
EM used to learn HMM-Is.

n HMM-I HMM-S HMM-A n HMM-I HMM-S HMM-A
3 3 2 2 3 3 3 3

6 3 2 2 6 3 2 2

10 6 2 2 10 6 2 3

14 5 2 2 14 7 2 4

18 5 2 2 18 7 2 5

Number of states in true models = 2 Number of states in true models = 6

(a) Dataset size = 50 sequences.
n HMM-I HMM-S HMM-A n HMM-I HMM-S HMM-A
3 4 2 2 3 4 4 4

6 7 3 2 6 6 3 3

10 10 2 2 10 11 3 8

14 9 2 2 14 13 2 6

18 13 2 2 18 15 3 6

Number of states in true models = 2 Number of states in true models = 6

(b) Dataset size = 200 sequences.
n HMM-I HMM-S HMM-A n HMM-I HMM-S HMM-A
3 3 2 2 3 6 6 6

6 13 2 2 6 15 6 7

10 21 2 2 10 27 6 7

14 27 2 2 14 37 3 6

18 37 2 2 18 45 3 6

Number of states in true models = 2 Number of states in true models = 6

(c) Dataset size = 1,000 sequences.

Table 3.2: State spaces of asymmetric and symmetric HMMs learned in simulations.

3.5.4 Results for asymmetric models

Figure 3.7 shows the fit quality results for HMM-As and Chow-Liu HMMs
(HMM-CLs). These results indicate that restricting the feature space to trees
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Figure 3.5: HMM-As and symmetric HMMs learned from simulated data: number of
parameters for different cases.
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Figure 3.6: HMM-As and symmetric HMMs learned from simulated data: mean learning
time in seconds.

prevented HMM-CLs from achieving model quality as high as that by HMM-As
on most of the considered scenarios. This is more evident in the cases involving
more observables, where the learned HMM-As reached the most superior model
quality compared to HMM-CLs, which is likely influenced by the size of the
possible graphical structures for emissions, a situation which HMM-As can better
handle since HMM-As are not restricted to trees. On the other hand, HMM-CLs
are prone to be more efficient in practice, since learning Chow-Liu trees can
be done efficiently per EM iteration [102]. Similarly to the symmetric models
case, HMM-As could be trained with less data, and yet provided similar or
better model quality than HMM-CLs – although here to a lesser extent when
the data generating process had a higher number of hidden states. Furthermore,
extending the state spaces of HMM-CLs resulted in better models, however, prior
to overfitting these achieved lower quality than HMM-As.
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Figure 3.7: Fit of asymmetric and Chow-Liu HMMs learned in simulations. Datasets
sampled from true models have 50 sequences (length 10 time points, ), 200

sequences (length 10 time points, ♦), and 1,000 sequences (length 20 time points,
). Note that scales on Y axes differ.

A comparison based on Figures 3.4 and 3.7 suggests that modeling state-
specific structures, whether by means of general asymmetries as HMM-As do or
tree-shaped ones as HMM-CLs do, led to better results than those of symmetric
models. HMM-As needed in general fewer states or fewer parameters than
symmetric HMMs, which also holds for HMM-CLs with respect to symmetric
HMMs, as shown in Table 3.3 and Figure 3.8. Hence, the results of this section
suggest a somewhat consistent conclusion: capturing the distribution underlying
data generated by more structured processes is more adequate by means of
models that capture distribution specificities associated to the hidden states.
Although symmetric models can in theory capture such distributions, whether
by an increase of their state spaces or by modeling denser emissions structure, in
many realistic situations – where data is often limited – the asymmetric models
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exhibited several advantages and better handled the complexity versus quality
trade-off.

n HMM-CL HMM-A n HMM-CL HMM-A
3 2 2 3 3 3

6 2 2 6 2 2

10 2 2 10 3 3

14 3 2 14 4 4

18 2 2 18 4 5

k in true models = 2 k in true models = 6

(a) Dataset size = 50 sequences.

n HMM-CL HMM-A n HMM-CL HMM-A
3 2 2 3 4 4

6 3 2 6 3 3

10 4 2 10 6 8

14 3 2 14 6 6

18 3 2 18 7 6

k in true models = 2 k in true models = 6

(b) Dataset size = 200 sequences.

n HMM-CL HMM-A n HMM-CL HMM-A
3 2 2 3 7 6

6 4 2 6 8 7

10 7 2 10 7 7

14 9 2 14 15 6

18 8 2 18 21 6

k in true models = 2 k in true models = 6

(c) Dataset size = 1,000 sequences.

Table 3.3: State spaces of HMM-As and HMM-CLs learned in simulations (k denotes
number of states).
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Figure 3.8: HMM-As and HMM-CLs learned from simulated data: number of parameters
for different cases.
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3.6 experiments with real-world datasets

In this section, we describe experiments for learning symmetric HMMs, HMM-
CLs and HMM-As from real-world datasets originated from several domains.
In order to empirically determine state spaces and assess the learned models,
we used a procedure similar to the one described in Section 3.5. It differs in
that real-life datasets are split in two parts: one for selecting models via 10-fold
cross-validation (using 80% of the data), and the remaining portion for assessment
of generalization.

3.6.1 Datasets

The datasets considered in this section are summarized in Table 3.4 and described
next.

Dataset n Description Sequence data
Volvo 3 Event logs of software incidents 151 (50)
Rabobank 6 Event logs of software incidents 500 (30)
Airquality 12 Urban pollution monitoring 40 (48)
Printer R1 7 Performance of printing nozzles and mainte-

nance activity
27 (15)

Printer R2 7 Performance of printing nozzles and mainte-
nance activity

52 (15)

Printer R3 7 Performance of printing nozzles and mainte-
nance activity

58 (15)

Table 3.4: Summary of real-world datasets. The sequence data column shows the number of
sequences together with sequence duration in parenthesis.

3.6.1.1 Business process data

The business process dataset consists of event-log records on software incidents
related to, e.g., software bugs, hardware problems, among others within the
scope of ICT company departments. In general, these datasets are often used
for process mining, covering tasks such as conformance checking (i.e. checking
whether the business process specification complies with the running process),
process discovery and process enhancement [1]. Learning business models as
done in process mining field often intends to capture the underlying sequential
behavior of actions within events. Thus, given a collection of events, business
models are fitted to this data in order to represent different ways in which an
event can develop over its lifetime.

As opposed to business models (e.g. workflow-like models), where one often
wants to understand the internals of events, in this section we learn a complemen-
tary behavior from event-logs data in the form of influences among events. As
this is less evident from data and involves multivariate observations (since events
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are typically composed of several features), this is a challenging problem, for
which this section offers an HMM-based solution. We considered two datasets
from the BPI (business process intelligence) challenge, described as follows.

volvo dataset The Volvo IT Belgium dataset [166] consists of event logs
of software incident registered during the period of 2011-2012. Each data point
describes an incident by means of three features: incident impact, push to front
(i.e. whether the incident was handled by a service desk team or required other
specialized teams as well), and country (referring to whether the incident involved
employees from different nationalities). The Volvo data was split in sequences
such that each sequence has approximately 5 days of incidents.

rabobank dataset The Rabobank Group ICT dataset [55] consists of event-
log records of software incidents over the period of 2011-2014, however from a
different software domain than the Volvo dataset. We considered the part of the
data related to interactions, which registers the first contact between a user of a
software component and a service desk team. An interaction call can lead to an
incident or not. Each interaction is described in the Rabobank dataset by a set of
six features: type of involved item (e.g. application, hardware, network-related
issues), impact (in case of service disruption), priority, category (i.e. whether the
event refers to a request for information or an incident), first call (i.e. whether
the interaction could be solved by service desk team or led to an incident for
further resolution), and handle time (i.e. the amount of time to resolve the service
disruption).

Learning HMM-As for business processes aims in first place to provide well
fitted models, but also aims to discover different dynamics that might govern the
generation of incidents and interactions. This can then be turned into practical
knowledge, e.g., to assist decision makers when devising more effective and
resource-saving business processes. We shall discuss more on this in Section 3.6.3.

3.6.1.2 Airquality data

The Airquality dataset contains data on gas pollutants in the context of urban
pollution monitoring [172]. The feature set is composed by two different sources of
information: a set of reference pollutant concentrations provided by conventional
stations, and a set of measurements provided by a multi-sensor device. Originally,
the Airquality dataset was used to evaluate and calibrate sensor devices for
estimating the concentration of pollutants, as a technological means for low cost
and convenient air monitoring across urban spaces. In the original paper [172],
simple positive correlations among sensors data were found to influence the
prediction accuracy, hence we provide a complementary analysis to how these
correlations develop in a sequential way. We considered a feature set with 12

variables corresponding to the original measurements, which were discretized for
the experiments in this section. The records for the variable for the ground-truth
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non-methane hydrocarbons were not considered, as they were absent in most of
the cases.

3.6.1.3 Printers data

We also considered data to support understanding the behavior of modern,
complex engineered artifacts (also called cyber-physical systems), for which
we use a large-scale printer as a case study. Whereas engineers understand
the functioning of the individual components in considerable depth and detail,
as a consequence of their intricate design they find it much more difficult to
understand the behavior of the artifacts at a certain level of abstraction, as well as
their interaction. In order to learn the temporal behavior of such systems, data
was gathered from three printers of the same printer family, where the usage of
the printers differs as function of time, and as function of the print jobs being
rendered. In this case study, we focus in particular on one component – the
nozzle – that aims at jetting ink on the paper. The behavior of nozzles as function
of time depends on several factors, such as the quantity of ink used, time since
last maintenance and some environmental parameters.

The logs that were considered consist of a 1-year record of nozzle-related
factors continuously monitored. We considered a key maintenance action that is
performed by the machine from time to time, and gathered data on nozzle-related
components between each maintenance occurrence, such that each (multivariate)
observation includes the following features: interval duration (i.e. the length
of time since the previous maintenance action), total workload, frequency of
another related maintenance action, and color-related features. The goal of our
experiment is to discover relations between features and how it influences the
proper functioning of the nozzles.

3.6.2 Results

We first report results on fit quality based on model selection, where Figure 3.9
shows the mean validation log-likelihoods in function of the number of states.
These results show that the structural simplicity of independent HMMs could
be compensated to some extent by learning larger state spaces, and thus model
quality similar to that attained by more structured models (i.e. standard HMMs
and HMM-As) could be achieved. However, this was not possible in all the cases,
in particular in the business process datasets. In these cases, prior to achieving
overfitting the structured models had a much better fit, suggesting that in some
cases the presence of non-trivial structure over observables can be deemed crucial
in order to obtain good models.

With respect to the structured models, contrasting standard HMMs with HMM-
As indicates that HMM-As achieved superior fit on some cases (e.g. Airquality
and Rabobank) and similar model quality on the remaining ones. The learned
HMM-As better fitted the data than Chow-Liu HMMs in general as well. It
is interesting to note that HMM-CLs impose tree structures to its emissions,
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something that might not be always beneficial. For example, in the Volvo and
Airquality cases, the results suggest that even a symmetric model as the HMM-S
was able to provide better results than HMM-CLs, which is interesting as the
HMM-S does not necessarily learn a connected structure for the emissions space.
In general, it can also be observed from Figure 3.9 that structured models as
standard HMMs and Chow-Liu HMMs overfit much more easily than HMM-As,
suggesting that HMM-As provide more parsimonious solutions to these real
problems.

As Figure 3.9 shows, dynamic Bayesian networks (DBNs) were also learned
from the real-world datasets, whose results indicate that DBNs provided con-
sistently inferior model quality than HMMs. Although these results are not
directly related to comparing HMMs, they suggest that modeling autoregressions
alone (as in DBNs) is not a guarantee for good fit in real-life datasets: modeling
multiple (and possibly structured) distributions via hidden states can be more
powerful, yet no autoregressions are modeled by these HMMs. A question that
could be of interest is whether including autoregressions in HMM-As would
bring real benefits to such models.

Having discussed the dynamics of model quality based on validation log-
likelihoods experiments, we now use these results to select and learn models
in order to discuss problem insight, as well as to assess their generalization. To
this end, we select models in a flexible way: we pursue models with the highest
fit, except when there are multiple models with similar quality, in which case
we select the models with the lowest dimension. After finishing this, we learn
models with the selected dimension using the entire datasets and measure their
likelihood with testing data (i.e. data that was not used in cross-validation).

The models learned for generalization assessment are summarized in Table
3.5. As there is no ground-truth model for the real-world datasets, to facilitate
comparison we used normalized log-likelihoods as follows:

NLL =
− logL(B)

c
(3.21)

where logL(B) is the log-likelihood of the model B , and c is a normalizing
constant given by c = mTn, with m being the number of sequences, T the
sequence length, and n the number of features in the dataset.

As Table 3.5 shows, HMM-As generalized consistently better than symmetric
HMMs and Chow-Liu HMMs. We further computed 95% confidence intervals
(CIs) for these models as shown in Table 3.6, in order to check for the robustness of
the generalization assessment (intervals were obtained by means of bootstrapping
the testing datasets for 2,000 times in each case). The CIs show that HMM-As
could provide significantly better model quality on most scenarios of business
process and Airquality cases. Significance in favor of HMM-As was also obtained
in the printers cases, although HMM-As can be considered better than Chow-Liu
HMMs in these cases but not significantly. This is explained by the fact that the
HMM-A states are all virtually associated to forests that are sparser than trees, as
in Printer R3 (Figure 3.14) and Printers R1 and R2 as well [23].
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(c) Rabobank.
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(f) Printer R3.

Figure 3.9: Cross-validation log-likelihoods achieved by DBNs, symmetric, Chow-Liu, and
asymmetric HMMs in real-world datasets. Each point represents the mean
validation log-likelihood over 10 folds.

From the results on real-data discussed in this section, it seems fair to conclude
that not only more structure is beneficial for HMMs to better capture real-life
problems, but also the right additional structure as provided by HMM-As by
their state-specific Bayesian-network distributions. The number of parameters
in HMM-As was consistently lower than those of standard HMMs, independent
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HMM-I HMM-S HMM-CL HMM-A
Dataset k NLL #Pa. k NLL #Pa. k NLL #Pa. k NLL #Pa.
Volvo 8 65.2 87 5 64.7* 59 6 65.2 65 5 64.7* 50

Rabobank 10 48.5* 159 5 48.7 214 6 48.5* 101 4 48.5* 73

Airquality 8 32.9 159 8 32.1 623 8 35.4 247 6 31.3* 170

Printer R1 5 49.8 59 3 48.7 53 3 46.6 47 3 46.0* 36

Printer R2 4 60.5 43 3 61.7 65 3 60.4 47 3 59.9* 43

Printer R3 4 48.0 43 3 46.0 56 3 46.4 47 3 45.7* 36

Table 3.5: Generalization assessment of learned models on real-world datasets. Notation:
k denotes the number of states, NLL the normalized log-likelihood, and #Pa.
the number of parameters. Results that generalized the best are bold-faced and
followed by an asterisk.

Dataset
Asymmetric vs. Inde-
pendent

Asymmetric vs. Stan-
dard

Asymmetric vs.
Chow-Liu

Volvo [-0.86, -0.11]** [−0.14, 0.29]†S [-0.78, -0.21]**

Rabobank [−0.15, 0.15] [−0.47, 0.06]∗A [−0.02, 0.26]†CL

Airquality [-3.17, -0.17]** [−3.08, 0.61]∗A [-10.30, -1.77]**

Printer R1 [−10.35, 0.46]∗A [−7.88, 0.37]∗A [−1.32, 0.05]∗A

Printer R2 [−1.53, 0.74]∗A [-4.16, -0.38]** [−1.58, 1.11]∗A

Printer R3 [-4.79, -0.3]** [−1.67, 0.26]∗A [−3.35, 3.48]

Table 3.6: 95% bootstrap confidence intervals for the differences on generalization assess-
ment (real-world datasets). Negative values indicate better fits for HMM-As.
Notation: ∗∗ = HMM-A is significantly better; ∗A = HMM-A is better but not to
a significant extent; †X = model X is better but not to a significant extent.

HMMs and Chow-Liu HMMs, suggesting that diverse local structure exists which
could be discovered by HMM-As.

3.6.3 Problem insight

We discuss in this section problem insight that can be gained from the learned
HMM-As. We stress that from a fundamental perspective, where Bayesian
networks are tools to facilitate reasoning with statistical independences, the fact
that HMM-As can provide multiple graphical structures to explain how dynamic
systems evolve over time (e.g. a business process) represents additional insight by
its very nature. This contrasts to symmetric HMMs, where all those specificities
are lost (or hidden across a number of CPTs at most), thus much less insight is
likely to be gained.
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3.6.3.1 Business process models

Figure 3.10 shows the HMM-A learned from the Rabobank case (CPTs are not
shown). The model shows that Type is unconditionally independent of Impact
and Priority on the bottom right-most state, while this is not the case on the
top right-most state. This structural information might be used, e.g., to further
develop different policies for scheduling different types of interactions in different
moments: if the system is assumed to be in the bottom right-most state, a more
flexible scheduling might be possible, where different types of interactions do not
need to be handled by priority or impact, but instead could be handled by the
expected time to be solved (due to the relationship with Handletime). On the other
hand, if the system is in the bottom left-most state, Type is still unconditionally
independent of Impact, but its unconditional independence of Priority no longer
holds: in fact, such state seems to act as a bridge for the two aforementioned
states.

The aforementioned problem insight cannot be derived from the (almost fully
connected) graphical structure of the learned HMM-S partially shown in Figure
3.11, nor from the learned HMM-I. At a higher level of abstraction, HMM-As also
allow for new insight obtained by combining the local state properties with state-
transition probabilities: this shows that batches made of few software-incident
events that share independence properties are produced over time.

Figure 3.12 shows the HMM-A learned from the Volvo dataset. As in the
Rabobank case, this HMM-A is made of different graphical structures that lead
to different independence relations, whereas the standard HMM has a fully
connected structure as shown in Figure 3.13. Finally, we note that in asymmetric
models, not only probabilistic relationships change, but also the structure in each
state, providing evidence that these models capture an additional facet of the
different stages the underlying dynamic system can transit to.

3.6.3.2 Printers model

Figure 3.14 shows the HMM-A learned from Printer R3 dataset (the other printer
models were discussed elsewhere [23]). This model suggests that the behavior
of such large-scale printer alternates between two modes in the long run, which
can be distinguished based on how the color rates C1, C2, C3, and C4 interact
with the other observables. For example, once the printer is assumed to be in the
right-most top state, one could decide on whether the number of maintenance
performed could be altered in order to save resources, as this variable will not
affect the colors’ performance. However, this is probably not the case for most of
the colors if the printer is in the center state, where those colors do interact with
other observables. The standard HMM learned for this printer is shown in Figure
3.15, lacking from such specific alternation behavior that could be discovered
by means of the HMM-A, as the colors variables are connected to all the other
observables (whether directly or not).
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Figure 3.10: HMM-A learned from the Rabobank dataset. Dashed arcs indicate initial
probabilities.
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Figure 3.11: Graphical structure for emissions of the standard HMM learned from
Rabobank dataset.

3.7 related work

Analyses of the sensitivity of Bayesian networks to parameter change are relatively
numerous [34, 72, 130], however that does not seem to be the case when it comes
to the sensitivity to the graphical structure. There is some research on how model
structure affects accuracy in medical diagnosis problems [131], where the authors
have shown that the accuracy was not significantly sensitive for disturbances on
model structure, considering certain medical cases and diagnostic criteria. In the
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Figure 3.12: HMM-A learned from Volvo dataset.
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Figure 3.13: Graphical structure for emissions of the standard HMM learned from Volvo
dataset.

context of HMMs, however, the results shown in this chapter suggest a different
conclusion: with respect to model fit, modeling additional and specific (by means
of distribution asymmetries) seemed very important for achieving better model
quality. Nevertheless, these conclusions are not necessarily contradictory in
principle, as the employed criteria differ and so do the type of models. As in
HMMs the state space dimension is a rather important parameter, modeling
non-trivial structure that can lead to smaller state space seems crucial to such
models, while this might not be the case for some static Bayesian networks. In
fact, it is a general belief in the Bayesian networks field that non-trivial structure
matters for better handling real-world problems [51, 67, 150].

In this work, we attempted to provide a better understanding of the effects of
modeling asymmetries on the feature space in HMMs, which is somewhat lacking
in the literature. This involved a more thorough comparison of HMM-As with
several families of HMMs: this included not only independent HMMs, but also
standard HMMs and Chow-Liu HMMs, the latter being able to model simpler
asymmetries than HMM-As. Finally, the chapter showed experiments involving
models of DBNs, which are typically learned without hidden or latent variables.
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Figure 3.15: Graphical structure for emissions of the standard HMM learned from Printer
R3 dataset.

3.8 conclusions

In this chapter, we proposed a new family of HMMs called asymmetric hidden
Markov models. HMM-As explicitly capture distribution asymmetries inher-
ent to many real-world problems, by means of associating individual hidden
states to arbitrary Bayesian networks. We showed that, in principle, symmetric
HMMs (e.g. independent and standard HMMs) can have their state space or
emissions structure arbitrarily extended for representing structured distributions.
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Nevertheless, empirical results showed that this capability was not enough for
guaranteeing comparable model quality, due to model overfitting (because of
too many states or too dense emission structures). A similar conclusion holds
for Chow-Liu HMMs, suggesting that going beyond tree-shaped asymmetries as
done by HMM-As can be beneficial.

In some real-world cases, adding structure, either via symmetric or asymmetric
models, allowed for relevant model quality improvement, while the simplest
model (i.e. the independent HMM) was good enough in other cases. This model
selection issue could be adequately addressed by HMM-As, which provide
enough flexibility to reduce the need for selecting a particular HMM architecture
a priori.

Computationally, learning HMM-As introduces an additional burden due to
structure learning, compared to symmetric HMMs. Nevertheless, experiments
indicated that good-quality HMM-As with compact state spaces could be obtained
by using graphical structures found by common search heuristics. Hence, in
practice learning HMM-As using structural EM resulted in fact in shorter running
times compared to learning symmetric HMMs using standard EM in many cases.
Furthermore, HMM-As learned from real-world datasets with varied sizes and
number of observables were shown to bring additional problem insight that
cannot be readily obtained from symmetric HMMs.

Several paths for further research can be considered. To some extent, HMM-As
can be seen as tools for summarizing hidden Markov models with larger states
spaces into models with more compact state spaces, as shown in the real-world
experiments. We would like to further evaluate whether HMM-As act as model
summarizers in more general settings, e.g. when the data generation mechanism
has no explicit asymmetries (as in HMM-Is), and when it consists of different
kinds of asymmetries (such as autoregressions, as in dynamic multinets).

It could be also of interest to exploit the sensitivity of differences between
state-specific networks, e.g., along the lines of sensitivity analysis research. This
could help, e.g., to eliminate too specific arcs that do not significantly contribute
to model quality, thus allowing for more compact models. As we observed in real-
world experiments and in simulations, several advantages obtained with HMM-
As were more prominent when the problem had higher number of observables.
Hence, we intend to further investigate such scaling aspect, as well as consider
other real-world cases with more features and different types of observables (e.g.
continuous and hybrid ones). Finally, we would like to compare the identification
of asymmetries in sequential models as HMM-As with other approaches, such as
knowledge compilation [39] and dynamic chain event graphs [5].

3.a proofs

Proof of Proposition 3.1. LetM be the given HMM-A andM′ be a standard HMM,
where both models are defined over (X, S). We constructM′ for simulatingM as
follows. Let GF be directed acyclic graph over X that is also fully connected. Add
an arc from S to each Xi ∈ X, and define the result as the graphical structure of
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the emissions ofM′. By the chain rule from probability theory, a fully connected
structure can represent any probability distribution, hence, the distribution of
each state inM can be represented by a state inM′ by adequately parameterizing
the CPTs on the emissions of M′. This allows us to obtain P′(X(t) | s(t)) =
P(X(t) | s(t)), for every state s ∈ dom(S).

Finally, we set the initial and transition distributions of M′ to the same as
those fromM. Thus, we conclude that P′(X(0:T), S(0:T)) = P(X(0:T), S(0:T)).

Proof of Proposition 3.2. We construct in the following an independent HMMM′

for simulating a given asymmetric HMMM with k states. The observables are
assumed to follow Bernoulli distributions each (an extension to multinomial
distribution is straightforward). We denote by P and P′ the joint distributions
over (X(0:T), S(0:T)) of M and M′ respectively. Note that the state-specific BN
associated to any state inM is a BN over n variables, hence its joint distribution
can be completely characterized with at most 2n − 1 independent parameters,
where we denote by θx the parameter associated to the assignment x. For each
θx from state si, we define a state siθx inM′, as well as emission distributions of

the form P′(Xi = > | siθx)
def
= 1 whenever (Xi = >) holds in x. Following this

procedure for all state-specific BNs from all states will result in k2n states in total
inM′. This finishes the construction of the emission distribution forM′.

The remaining distributions ofM′ are constructed by scaling the corresponding
distributions inM with the probability of each joint assignment of X as follows.
For the initial distribution, we define

P′(s(0)iθx
)

def
= P(s(0)i )P(x(t) | s(t)i )

for each state si from M and assignment x. On the other hand, we define the
transitions inM′ as

P′(s(t+1)
jθx

| s(t)iθX
)

def
= P(s(t+1)

j | s(t)i )P(x(t+1) | s(t+1)
j )

where siθX refers to any state originated from si. Here the instantiation of X in θX
is irrelevant: taking a transition from si to sj is independent of the observation
emitted by si, since si is observed.

It is straightforward to verify that this construction produces a valid probability
distribution, and it assures that P′(X(0:T)) = P(X(0:T)). As a side note, while
dom(X) does not change in the simulated model M′, this is not the case for
dom(S), as opposed to the simulation of Proposition 3.1.

Proof of Proposition 3.3. The dynamic programming procedure for computing the
expected statistics of one sequence stores the values of α in a (T + 1)× k matrix,
also known as lattice (or trellis) structure. The computation of a single α value has
the cost of O(k + n) time as follows. In Equation 3.10, the summation amounts
to O(k) as long as the transition distribution is encoded as a k× k matrix. The
emissions in Equation 3.10, in turn, can be computed in O(n) time assuming
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each state-specific BN is conveniently encoded (e.g. using a graph traversal with
look-up tables for the parameters), allowing one to compute the probability of
any joint event in linear time. Thus, the total cost for each α value is O(n + k),
hence the entire lattice for one sequence takes O(Tk(k + n)) time. We build a
lattice for β as well, however the total cost per cell in this case changes to O(nk).
Thus, the total cost for the lattice of β is O(Tk2n).

Once the lattices for α and for β are done, we compute the expected statistic
ξ. Based on Equation 3.9, computing one ξ value amounts to O(k2n), thus an
entire ξ lattice for one sequence takes O(Tk3n) time. Finally, note that we can
compute the expected statistic γ by means of γt(i) = ∑k

j=1 ξt(i, j), thus the lattice
for γ requires O(Tk2) time by using the lattice of ξ.

The computation of all the lattices for an observation sequence is a sequential
process in which the cost of ξ’s lattice dominates over the rest. Hence, the total
cost of one E-step iteration for one sequence in HMM-As amounts toO(Tk3n).



4
P R E D I C T I N G D I S E A S E D Y N A M I C S : A C A S E
S T U D Y O F P S Y C H O T I C D E P R E S S I O N

Unsupervised learning is often used to obtain insight into the underlying structure of
medical data, but it is not always clear how to use such structure in an effective way. In
this chapter, we apply structured hidden Markov models in order to build a probabilistic
framework for predicting disease dynamics guided by latent states. The framework aims
to facilitate the selection of hypotheses that might yield insight into the dynamics. We
demonstrate this by using clinical trial data for psychotic depression treatment as a case
study. The discovered latent structure and proposed outcome are then validated using
standard depression criteria, and are shown to provide new insight into the heterogeneity
of psychotic depression in terms of predictive symptoms for different interventions.

4.1 introduction

Much about disease processes is unknown, as often the only available information
about a disease are the patient’s symptoms and signs. This might result in an
incomplete understanding of a medical disorder, which can in many cases be
overcome by latent variable modeling. In spite of requiring extra modeling
efforts, latent variables can enhance our understanding of the problem domain by
capturing unmeasured quantities (e.g. related to the underlying physiology) and
their relationship to observed quantities [178], and might as well provide better
fitted models [179]. Hence, by using latent variables, one can try to reconstruct
the underlying structure of the process at hand by using observed data.

Unsupervised learning is the machine learning task that aims to generate
representations of the underlying structure of the data. Well-established usage of
unsupervised learning in medical data includes, e.g., the discovery of underlying
patient groups using clustering methods [133, 134], which might help improve di-
agnosis and provide new insight into more effective treatment selection [2]. Other
applications include feature selection from unlabeled data [105] where manual
feature extraction might be not available or incomplete. Patient monitoring and
alerting for the identification of clinical outliers has also been tackled by unsu-
pervised techniques [83, 105]. Yet, when applied to medical data, unsupervised
techniques generate output that often makes experts confront themselves with

61
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questions like what else can we do with this structure?. This is particularly of interest
in cases where it might be difficult to define hypotheses in advance to be tested,
hence some form of exploratory data analysis must be conducted.

We show in this chapter that unsupervised learning methods, in particular
hidden Markov models [141], can be used not only to describe the underlying
structure but also to support the formulation of meaningful medical outcomes.
Previous research suggested that the formulation of clinical outcomes might be
guided by latent-variable models [96, 134], with the advantage of reducing the
hypothesis space to be explored by inspecting model properties. By using HMMs,
we claim that one can explore hypotheses on disease dynamics by inspecting
model characteristics such as transition dynamics, latent states, etc.

In order to illustrate the usage of HMMs on disease dynamics, we make use
of data from a clinical trial originally designed to compare pharmacological
treatments to psychotic depression (PD) [176]. PD is a severe medical condition
that is associated with a high burden of disease and relatively low remission
rates following pharmacological treatment [147]. Although recent research has
considered PD as a homogeneous subtype of major depressive disorder [177], the
possibility that this subtype itself is heterogeneous should also be considered,
which would stimulate the development of subgroup adjusted prognostics and
treatment modifications. In this work, we apply HMMs to one of the largest
pharmacological trials of patients with PD conducted so far [176], aiming to
explore potential differences in course characteristics in the whole sample of
patients and differences in sensitivity to treatment between medication groups.

The contributions of this chapter are as follows. We present a procedure to
guide the exploration of hypotheses on disease dynamics by means of HMMs. We
then apply this methodology to yield insight into the dynamics of PD treatments
by exploring clinically meaningful outcomes. The hypotheses generated using the
method are then tested based on standard clinical characterization of response
and remission in PD. To the best of our knowledge, this is the first effort into
a more systematic, data-driven approach for exploring hypotheses on disease
dynamics based on probabilistic graphical models.

The remainder of this chapter is organized as follows. In Section 4.2 the
relevant work related to this chapter is discussed. In Section 4.3 the proposed
framework for exploring insight into latent disease dynamics is introduced. In
Section 4.4 the psychotic depression data used as case study is described together
with some descriptive statistics. In Section 4.5 the HMM proposed for modeling
PD dynamics is detailed. The experimental results are shown in Section 4.6. The
obtained results are validated in Section 4.7. Section 4.8 summarizes the chapter
and gives suggestions for future work.

4.2 related work

Probabilistic graphical models have been extensively used in medicine and psy-
chiatry. Recently, network models have shown to provide new insight into
depression and other disorders by exploring symptom pathways [16, 48]. These
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models, however, do not employ latent variables and instead claim that disease
complexity emerges from direct connections between symptoms. On the other
hand, latent-variable models such as hidden Markov models have been also
extensively used in medical domains. One advantage of HMMs is that one can
easily incorporate domain knowledge into the model, e.g., by constraining model
transitions and emissions [105].

When using HMMs to capture disease dynamics, it is often the case that
the number of latent states is determined in advance, as researchers might be
interested in a specific subset among all possible models. In [90] a two-state
HMM has been used to investigate the hypothesis that patients switch between
two stable states (symptom-free versus depressed) in major depressive disorder.
To investigate the relationship between cognition and psychotic symptoms in
Alzheimer’s disease, in [154] a four-state continuous-time HMM as considered.
By opposition, one might argue that by not imposing an a priori number of or
already known latent states, a more ample set of possible models is considered,
which can lead to more insight into disease dynamics, at the cost of a likely
increased difficulty to interpret such models.

The typical usage of HMMs is in prediction or as a model to describe the
underlying structure of the data [138]. While prediction is self-explanatory, the
description of the underlying structure is often seen as a set of clusters, and
for that reason it is a more abstract and more difficult representation to get
insight from. A much more specialized usage of latent variables lies in the
development of data-driven outcome measures, as suggested in [96, 134]. A
data-driven approach to generating outcomes has the advantage that latent states
might provide a more natural, compact and empirically-oriented way to measure
multiple relationships between symptoms and other observables.

More recently, HMMs have been applied to electronic health records [93, 121],
which concerns much larger (and often more heterogeneous) collections of data
than usually seen before. Yet, such datasets are of very different nature and
thus require new methodology for using models as HMMs for the discovery of
relevant knowledge.

4.3 a probabilistic framework for capturing disease dynamics

In this section we discuss models suitable for capturing latent disease dynamics
in a probabilistic framework.

4.3.1 Latent variable modeling

In many problems, the measured variables reflect only part of the ongoing process
as it is the case with disease symptoms, which can be seen as manifestations of
some unobserved underlying disorder. Latent variables can be used to capture
such unmeasured quantities and the way these relate to the observed ones [178],
which results in a more complete model of the problem at hand, and might also
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allow for a better model fit [179]. In temporal problems, such as clinical trials for
patient treatment, one is also typically interested in the sequential relationship
between latent states.

Hidden Markov models are models based on latent variables that are able to
cope with uncertainty and sequential phenomena, which make HMMs suitable
for many biomedical problems [90, 121, 154]. In this work we opt for modeling the
observation space as a Bayesian network, which results in a model called standard
HMM (see Chapter 3 for further detail). The standard HMM allows for more
general representations of symptom interaction than the often used independent
HMM, in which the symptoms are assumed conditionally independent given the
latent state. By opposition, in standard HMMs the emission distribution is given
by Equation 2.27. By modeling the observation space as a BN, more insight into
the problem can be obtained by a more concise latent-state representation, as
discussed in Chapter 3.

4.3.2 State trajectories

In modeling medical domains, we assume that there is a set of observable
variables X, where each variable Xi ∈ X will often refer to measured data such as
symptoms, lab exams, medication, etc. We also model a latent variable S which
represents states of the underlying disease (e.g. a disease remitting situation).
The disease process of interest is assumed to be a discrete process over some time
horizon, where the value of the latent variable and the observables that hold at
time t ≥ 0 will be denoted by S(t) and X(t)

i respectively.
HMMs can be used to predict the hidden states associated to observations,

i.e. to compute the set of states that better explain the observations. The set of
most likely states depends on the optimality criterion chosen according to the
intended usage of such predictions [141]. In this chapter, we seek the states which
are individually most likely, as we are interested in the chances that a patient
will transition to one or more states that might represent, e.g., disease recovery.
Hence, the average number of times a state is predicted to occur is the quantity
of interest. This differs from the so-called Viterbi path, where one seeks the most
likely state sequence jointly taken over some time horizon such as {0, . . . , T}.

In order to predict the states which are individually most likely, one first
computes the distribution of latent states at each time point t conditional on the
complete patient’s symptom data (i.e. the data over all the process duration). This
is given by Equation 2.41 used in the Baum-Welch algorithm, which we repeat
below for convenience:

γt(s) = P(S(t) = s | X(0:T)
1 , . . . , X(0:T)

n ) (4.1)

After this has been done, the sequence of states for a given patient is obtained
by selecting the most likely state at each time t:

ŝt = arg maxs∈dom(S)γt(s) (4.2)
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for all t ∈ {0, . . . , T}. This can be interpreted as assigning patients in states. For
brevity sake, we do not index the predictions of Equation 4.2 by patient, although
it should be clear that there is a set of predictions ŝt, t ∈ {0, . . . , T}, for each
patient.

4.3.3 Exploring medical outcomes

One way to obtain insight into disease dynamics is by considering transition
dynamics between latent states. This is convenient because each latent state
can take into account multiple symptom dimensions at once, which makes
reasoning over patient trajectory very natural. Once the states are discovered, a
detailed outcome measure that provides insight into treatment dynamics can be
formulated.

We propose a procedure to build outcome measures in Figure 4.1. The pro-
cedure selects a set of baseline states Sb based on a selection criterion. From the
remaining states, a set of target states Se are to be selected based on its own
criterion. Once Sb and Se are obtained, state reachabilities from Sb states to Se
states are calculated. By varying the time interval between two given states of Sb
and Se, the resulting probabilities reach(i, j, t1, t2) indicate the temporal influence
of a baseline state over a target state. Such state reachabilities can then be used
to compose a rich outcome measure, e.g., by making t1 = 0 and t2 ∈ {1, . . . , T},
which will result in a reachability trend as indicated in Figure 4.1.

4.3.4 Selecting states

The selection of baseline states of Figure 4.1 can be viewed in general terms as a
function f : dom(S)→ {0, 1}, as shown in Definition 4.1.

Definition 4.1 (Baseline state). We say that a latent state s ∈ dom(S) is a baseline
state if f (s) = 1. The set of baseline states is given by:

Sb = {s ∈ dom(S) : f (s) = 1} (4.3)

The set of target states Se of Figure 4.1 can be defined analogously.
We define in the following different criteria for selecting baseline and target

states either by using model parameters or predicted patient trajectories (or both).
These definitions can be seen as particular instantiations of the function f from
Definition 4.1. We denote by D the set of patients, which typically corresponds to
the data used to learn the model.

Definition 4.2 (Baseline-state criterion 1). We say that a latent state s ∈ dom(S) is a
baseline state if ŝ0 = s holds for at least one patient of D.

In other words, Definition 4.2 labels a state as a baseline state if one or more
patients are predicted to be in this state at the process start (i.e. at t = 0). A more
general selection criterion of baseline states would specify a degree of uncertainty
concerning the predictions made at baseline, as shown in Definition 4.3.
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Figure 4.1: Procedure to guide the generation of outcome measures based on latent-state
models.

Definition 4.3 (Baseline-state criterion 2). We say that a latent state s ∈ dom(S) is a
baseline state if all the following conditions hold for at least one patient of D:

• ŝ0 = s

• γ0(s) ≥ σ

where 0 < σ ≤ 1 is the minimal degree of uncertainty.

Definition 4.3 allows one to specify the minimal uncertainty on the state
prediction that is acceptable. For example, with σ = 0.95, one imposes that the
baseline state must have been predicted with low uncertainty at t = 0. This
notion defines how strict one is for deeming a state as a baseline state. Note that
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parameters such as the minimal degree of certainty and the minimum number
of patients (the previous definitions required at least one patient) are part of the
selection criterion and may be adjusted by the user.

For target states, Definition 4.4 presents a criterion based solely on model
parameters.

Definition 4.4 (Target-state criterion). Let s ∈ dom(S)− Sb be a non-baseline state.
We say that s is a target state if P(s(t+1) | s(t)) ≥ ρ, where 0 < ρ ≤ 1.

One can use Definition 4.4 by setting, e.g., ρ = 0.95, which would choose
non-baseline states that have a high self-transition probability. Depending on the
selection criteria, the target states could act as possible final states to the process
at hand by representing different patient recovery in terms of symptom severity.

4.4 data

4.4.1 Patients

All patients had participated in the DUDG (Dutch University Depression Group)
study [176], a 7 week double-blind randomized clinical trial originally designed
for comparing the effectiveness of venlafaxine, imipramine and venlafaxine plus
quetiapine (V+Q, for brevity) in PD. The dataset originally included 122 partici-
pants aged 18-65 who met DSM-IV-TR criteria for a unipolar major depressive
episode with psychotic symptoms and a 17-item Hamilton Depression Rating
Scale score (HAM-D, for short) [81] of at least 18, both at the screening visit and
at baseline. Table 4.1 describes the symptom items used to compose the HAM-D
score of each patient, which is obtained by summing the score on each item. The
resultant HAMD-D score indicates severity of depression as follows: normal (0-7),
mild depression (8-13), moderate depression (14-18), severe depression (19-22),
and very severe depression (greater than or equal to 23).

Because of insufficient information about the specific nature of psychotic
symptoms, three patients were not included in the current study resulting in a
dataset with 119 patients. From the total group, 59 (49,6%) were females; the
mean age was 51.1 (StDv 10.9) years. Forty patients were randomized to treatment
with imipramine, 38 to venlafaxine and 41 to V+Q .

4.4.2 Baseline and follow-up variables

Severity of depression (HAM-D, represented as a continuous variable) and the
presence of psychotic symptoms (each represented as a dichotomized variable)
were measured at baseline (i.e. before treatment starts) and weekly thereafter.
Psychotic symptoms are delusions and hallucinations (totals at baseline, 36 and 9

in imipramine, 37 and 11 in venlafaxine, and 38 and 9 in V+Q respectively). At
baseline, mean [StDv] HAM-D scores were 32.5 [4.9] in imipramine, 31.7 [4.6] in
venlafaxine, and 31.6 [5.4] in V+Q.
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Item no. Symptom Score range
1 Depressed mood 0-4
2 Guilt 0-4
3 Suicide 0-4
4 Insomnia (initial) 0-2
5 Insomnia (middle) 0-2
6 Insomnia (delayed) 0-2
7 Work and interests 0-4
8 Retardation (psychomotor) 0-4
9 Agitation 0-2
10 Anxiety (psychic) 0-4
11 Anxiety (somatic) 0-4
12 Somatic symptoms (gastrointestinal) 0-2
13 Somatic symptoms (general) 0-2
14 Genital symptoms 0-2
15 Hypochondriasis 0-4
16 Loss of insight 0-2
17 Loss of weight 0-2

Table 4.1: Composition of the HAM-D score for depression. For any patient, the HAM-
D score is obtained by the summing the scores of all the symptoms. The
grading of items with range 0-4 is as follows: 0 - absent, 1 - mild or trivial,
2 and 3 - moderate, 4 - severe. For the other items, the grading is: 0 - absent,
1 - slight or doubtful, 2 - clearly present.

A total of 98 patients completed the trial (34 in imipramine, 30 in venlafaxine,
and 34 in V+Q). Data on patients who dropped out was imputed following the
last-observation-carried-forward approach, as in the original study [176].

4.4.3 Depression assessment

At the end of medical treatment, patients were assessed according to conventional
criteria for response and remission of depression [176]. Response was defined
as a reduction of at least 50% on the HAM-D score compared to baseline and a
score of 14 or below, and remission as a score of 7 or below.

4.5 a model for psychotic depression

In this section we introduce a model for capturing the temporal latent structure
of psychotic depression treatment.

4.5.1 General and intervention-specific model

In order to unravel treatment dynamics of the full sample of patients, as well as
specific intervention-based treatment dynamics, a set of hidden Markov models
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are learned. The model learned from the full sample is referred to as the general
model, while models learned for each intervention are called specific models.

In order to aid comparisons of model dynamics in terms of transitioning
behavior, the specific and general models share the same latent states. To this end,
the general model is estimated, then each specific model is set with the obtained
latent states. Then, the transition probabilities of each model are estimated using
the corresponding intervention-specific data.

4.5.2 Model parameters and structure

The observable variables in the HMM used in this work are modeled according
to the BN shown in Figure 4.2, which allows for a more expressive representation
than the naive-Bayes structure, because there are direct interaction between
symptoms. By doing so, we impose less independence assumptions than the
naive solution, thus the model becomes more flexible in that more dependences
can be induced from data. For the PD problem, once in a state the observables are
parameterized as follows: the psychotic symptoms are encoded as binary random
variables, while the depressive symptom (the HAM-D score) is parameterized
as a conditional Gaussian distribution, which is conditioned on the state and on
both psychotic symptoms, as shown in Figure 4.2.

Latent state(t)

Del(t) Hal(t)

HAM-D(t)

Figure 4.2: Graphical structure of the HMM emission distribution, showing the latent
variable and its direct probabilistic influence on the observables at time t. Del
and Hal denote delusions and hallucinations symptoms respectively, whose
domains are {absent, present}, while the domain of the state variable is a
positive integer which will be determined experimentally.

At any time point, the parameterization of each symptom is as shown in Tables
4.2 and 4.3. For a given state s ∈ dom(S), the distribution of HAM-D can be
obtained by marginalizing out Del and Hal and by applying the Bayesian network
factorization as follows (we omit the time index as it is equal to t):

p(HAM-D | s) = ∑
Del,Hal

p(HAM-D, Hal, Del | s) (4.4)

= ∑
Del,Hal

P(Del, Hal | s)p(HAM-D | Del, Hal, s) (4.5)
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As a result, the distribution of HAM-D conditional on state s is Gaussian as it
is a linear combination of the Gaussians associated to the possible configurations
of Del and Hal.

Variable Distribution
Del P(Del = absent | S = s)
Hal P(Hal = absent | S = s)

Table 4.2: Parameterization of psychotic symptoms in the HMM emissions. Del, Hal and
S denote delusions, hallucinations and state variables respectively. Note that
P(Del = present | S = s) = 1− P(Del = absent | S = s) and similarly for Hal.

Distribution of HAM-D Parents (plus some S = s)
HAM-D ∼ N (µs

1, σs
1) Del = absent, Hal = absent

HAM-D ∼ N (µs
2, σs

2) Del = absent, Hal = present
HAM-D ∼ N (µs

3, σs
3) Del = present, Hal = absent

HAM-D ∼ N (µs
4, σs

4) Del = present, Hal = present

Table 4.3: Parameterization of the HAM-D score in the HMM. The variable HAM-D is a
mixture of Gaussian distributions of the form N (µs

i , σs
i ), where µs

i and σs
i denote

the mean and standard deviation of the ith combination of parents given a latent
state s, respectively.

Whenever the model is in a state, observations are emitted and a transition
for the next time point is taken, and so on. The parameterization and structure
discussed above are the same for all the specific models (i.e. the models obtained
from each intervention data).

4.6 results

4.6.1 Model dimension

The number of latent states was obtained by balancing model fit and interpretabil-
ity. Log-likelihoods were obtained from a 10-fold cross validation procedure,
where models can have from two states up to the number of states obtained prior
to model overfitting (see Appendix 4.A for more information).

The selected number of states considers the mean cross-validation fit and the
corresponding confidence intervals shown in Figure 4.7, which is justified by the
fact that in simpler models the role of latent states is more easily understood,
because the states are likely more dissimilar in terms of associated symptom
distribution and transition patterns. Also in favor of this procedure is the fact that
the whole patient sample is split into treatment-specific data for model learning,
which would make models with more states less stable. Appendix 4.A also shows
scores of the Bayesian information criterion which support the selection based on
cross validation.
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4.6.2 Identified states

The general model has 3 latent states as shown in Figure 4.3 (top row), where in
each latent state there is one distribution for each symptom measurement (i.e.,
Del, Hal and HAM-D). The states can be interpreted as follows:

• The state Hallucinations (abbreviated as state h) is associated with pa-
tients with high prevalence of hallucinations and moderate prevalence of
delusions. Its mean HAM-D score is the highest among all states, while it
has the narrowest tail.

• The state Delusions (abbreviated as state d) is associated with patients
with high prevalence of delusions and low prevalence of hallucinations. Its
mean HAM-D score is moderate and has wide tail.

• The state No Psychosis (abbreviated as state r) is associated with patients
with low prevalence of psychotic symptoms and moderate HAM-D score
(though with wide variance).

state delusions

Hal

Del

99

7

1

93

False True

HAM-D

0 20 40

µ = 20.2

σ = 7.5

state hallucinations

Hal

Del

1

45

99

55

False True

HAM-D

0 20 40

µ = 24.0

σ = 4.8

state no psychosis

Del

Hal

99

98

1

2

False True

HAM-D

0 20 40

µ = 20.2

σ = 14.6

hallucinations delusions

no psychosis

88.3

7.7

4

83

17
98.20.4 1.4

Figure 4.3: Top: marginal distributions of symptoms in the latent states of the general
model (Del and Hal stand for delusions and hallucinations symptoms, respec-
tively). Bottom: dynamics of the general model. Labels indicate transition
probabilities between states (in %).
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4.6.3 Dynamics

Figure 4.3 (bottom row) shows the transition behavior of the general model.
The arcs indicate transition probabilities between latent states, e.g., the looping
probability of 88.3% in state h represents the chance for reiterating in such state
over two adjacent weeks. Based on Figure 4.3 (top row) and on the previous
characterization of the states, d and h can be seen as starting states that are
primarily distinguished based on the prevalence of hallucinations in a patient.
Later on, depending on the patient’s response to treatment, the patient will
potentially move to state r. The state r can be seen as a healthier state due to
the absence of psychotic symptoms, but such state does not imply depression
remission or response due to its moderate mean HAM-D. In fact, the state r
characterizes a wide range of no-psychosis patients, from those that still have
high HAM-D to those that have achieved low HAM-D.

4.6.4 Comparing interventions

From the obtained latent states shown in Figure 4.3, we now detail an outcome
measure based on the procedure established in Section 4.3.3, which will also allow
for comparing interventions. Based on state trajectories (Equations 4.1 and 4.2),
at baseline 90 patients were assigned to state d with mean (StDv) probability of
100% (0), while 29 patients were assigned to state h with mean (StDv) probability
of 93.6% (13.2%). Hence, very little uncertainty was entailed by the model as
to which initial state any given patient is predicted to be in. As a consequence,
the criteria specified in Definitions 4.2 and 4.3 coincide for the PD study case,
resulting in the set of baseline states Sb = {d, h}. As for the set of target states Se,
Figure 4.3 shows that the state r has a self-transition probability of 98.2%, which
allows us to set Se = {r}.

Given the sets of states Sb and Se, we define the reachability as the chances to
reach the state r at time t2 from one of the baseline states at t1 = 0:

reach(i, j, t1, t2) = P(S(t2) = sj | S(t1) = si) (4.6)

reach(b, r, 0, t2) = P(S(t2) = r | S(0) = b) (4.7)

where b is either the state d or the state h, and t2 ∈ {1, . . . , 7}.
In order to compare interventions, reachability values were computed from the

general model (Figure 4.3), as well as from the specific models (see Appendix
4.B for more detail on the specific models). The obtained reachability values
were made further robust by a bagging procedure [20], where models are learned
from bootstrap samples to provide more stable outcome measures. In this work,
10,000 bootstrap samples were generated, a model learned from each one and the
corresponding reachability values computed. The reachability trend provided
by the models learned from the bootstrap samples are then used to compute
confidence intervals that indicate the variability of the reachability trend. In
the following this idea will be further explored for comparing the general and
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specific models learned from the full sample and from each intervention data,
respectively.

4.6.5 Reachability trend per treatment

Figure 4.4 shows the reachability trends grouped by intervention. The difference
between the area under the curve (AUC, for short) of each trend was also
computed. For the whole sample of patients, the 95% (BCI, for short) of the
AUC difference was [0.17, 2.29], while for the slope difference the AUC was [0.02,
0.17], where positive values indicate a stronger trend in favor of state d. Under
venlafaxine, the AUC difference was [0.16, 3.09], whereas the slope difference was
[0.01, 0.23]. These results suggest that the initial state of the patient is relevant
under venlafaxine in that starting in state d allowed for a significantly stronger
reachability towards state r than the reachability had the patient started in state
h.

Under imipramine, the AUC difference was [-1.62, 2.36] and the slope difference
was [-0.15, 0.19]. Finally, for V+Q the AUC difference was [-0.74, 3.72], and [-0.10,
0.32] for the slope difference. Hence, starting in state d for imipramine and for
V+Q also provided stronger trends towards r, but not to a significant extent. The
detailed difference BCIs per week can be found in Appendix 4.C.

4.6.6 Reachability trend per starting state

Figure 4.5 shows the reachability trends of Figure 4.4, now grouped by starting
state. Patients can either start in state d (Figure 4.5-a) or in state h (Figure 4.5-b).
Figure 4.5-a suggests that if a patient had no hallucinations at baseline (i.e. started
in state d), then a stronger reachability trend would be achieved if this patient
were treated with V+Q. For patients that had experienced hallucinations (i.e.
started in state h), the results suggest that the strongest trend would be achieved
with imipramine. Nevertheless, 95% BCIs indicate that no significant differences
were found when comparing the trends starting in h, nor when comparing those
starting in d.

4.7 validation

In this section we investigate if aspects of the learned model and the formulated
outcome can be associated to standard depression criteria computed directly
from the data, as means to validate the model and the outcome.

4.7.1 Model validation

Associations between model outputs in the form of state trajectories (see Section
4.3.2) and depression recovery (see Section 4.4.3) were computed. For each patient,
we counted the number of consecutive weeks in which state r was predicted
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Figure 4.4: Reachability trends per intervention.

as the most likely state (see Equation 4.2). In case the endpoint of patient state
trajectory is not predicted as state r, the assigned count is zero. Among the total
sample, 60 patients achieved depression response, with the state r predicted in
4.7 weeks on the average, while the 59 patients who did not achieve response had
the state r predicted in 1.3 weeks on the average. Figure 4.6 shows a histogram
of the number of patients versus the number of consecutive weeks for which
state r was predicted. A Fisher’s exact test was applied to compare the counts
of the two groups from Figure 4.6 (responders versus non-responders), which
resulted in a p-value < 0.001, suggesting that these two groups (responders and
non-responders) associate significantly different to the number of weeks in the
state r (under a 95% confidence level).

Among the total sample, 35 patients achieved depression remission, with the
state r predicted in 5.4 weeks on the average, while the 84 who did not achieve
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Figure 4.5: Reachability trends per latent state. The Y axis denotes the reachability at each
week after baseline.
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Figure 4.6: Histogram of the number of times the state r was predicted in patient state
trajectory. The two groups refer to patients who achieved depression response
(60 patients) and those who did not (59 patients). For the sake of visualization,
zero consecutive weeks for non-responders was cut down (original value was
41 patients).
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remission had the state r predicted in 2.0 weeks on the average. A Fisher’s
exact test to compare remitters versus non-remitters resulted in a p-value < 0.001

(histograms for remitters were omitted due to the small numbers). These results
support the claim that the state r is meaningful in terms of distinguishing patients
that achieved depression recovery (either response or remission) from those who
did not.

4.7.2 Outcome validation

We now assess the claim of Section 4.6.5 that the state at baseline leads to
significantly different state reachability for the total sample case. To this end,
two distinct groups of patients were considered: patients with hallucinations at
baseline (29 patients, see Section 4.4.2), and patients with no hallucinations at
baseline (90 patients). The HAM-D scores of these groups at treatment endpoint
were compared using a Mann-Whitney test for independent samples, which
resulted in a p-value = 0.0007, thus suggesting that these two groups differ
significantly (under a 95% confidence level). As a consequence, the psychotic
symptom at baseline is predictive to depression recovery of patients in general.
This evidence supports the conclusions for the model-based outcome drawn in
Section 4.6.5, where the psychotic symptom at baseline was found to be predictive
to reaching the state r when one considers all the patients (Figure 4.4-a).

4.8 conclusions

This chapter demonstrated that probabilistic graphical models can reveal insight
into disease dynamics by considering not only the underlying structure, but
also by looking at meaningful outcome measures built from such structure. We
illustrated the proposed methodology by applying hidden Markov models to
psychotic depression treatment data, where the models were learned in a fully
data-driven way.

The identified temporal symptom structure of psychotic depression revealed
that patients differed in their prognosis depending on the type of psychotic
symptoms they exhibited at baseline (hallucinations versus delusions). This result
was observed for the total sample and for the patients that underwent venlafaxine
intervention. Hence, our methodology allowed to shed light on the heterogeneity
of psychotic depression. As future work, we plan to further investigate the clinical
significance of the results, as well as consider the effect of potential confounders,
such as patient demographic data.

The combination of graphical models and a data-driven approach can be easily
integrated into the investigation of other psychiatric disorders as well, potentially
helping physicians to understand disease dynamics and may even support them
in prescribing optimal pharmacological therapy. Furthermore, by applying the
proposed methodology to other diseases, it should be possible to assess the
method more broadly. It could be of interest to perform different calculations of
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state trajectories that reflects the availability of only partial symptom data (e.g. to
simulate an ongoing treatment), or even calculate state reachability from different
starting points other than the baseline point. One could also consider adding
intermediate states to the proposed framework, which could allow for greater
flexibility in situations where many more latent states are obtained.

4.a model selection scores

Figure 4.7 shows 10-fold cross-validation mean log-likelihoods for different num-
ber of latent states, together with 95% confidence intervals. The higher the
log-likelihood of a model the better fitted such model is.
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Figure 4.7: 95% CIs for the mean cross-validation log-likelihoods for selecting the number
of states of the general HMM.

A Mann-Whitney test was performed for comparing the cross-validation log-
likelihoods shown in Figure 4.7 of the 3 state model with that of other models.
The resultant p-values (number of states) were: 1.0 (4), 0.91 (5), 0.48 (6), 0.31 (7),
0.35 (8); the maximum p-value of the remainder cases (9 up to 15 states) was
0.08.

In addition to the 10-fold cross validation results, BIC scores (Equation 2.14)
were computed for different number of states, which balances goodness of fit
with a penalty based on the number of parameters of the model and the sample
size. Figure 4.8 shows the BIC scores for different models, suggesting the 3-state
model achieves the minimal model selection score. This is in line with Figure 4.7,
where the overlapping confidence intervals suggest that it is likely not significant
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the improvement achieved by models with more than 3 states, hence a suitable
dimension would be 3 states.
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Figure 4.8: BIC scores of models with different number of latent states. The vertical dashed
line indicates the number of states which led to the minimal BIC. We seek
models that minimize the BIC.

4.b dynamics of intervention-specific models

Figure 4.9 shows the transition probabilities of each intervention-specific model.
As described in Section 4.5.1, all the specific models and the general model share
the same latent states, which are shown in Figure 4.3 (top row).

4.c confidence intervals of reachability trend differences

Figure 4.10 shows 95% bootstrap confidence intervals for the differences between
the reachability trends of Figure 4.4.
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Figure 4.10: 95% bootstrap CIs for the differences between reachability trends. The dotted
line indicates a difference equal to zero. Positive values indicate higher
reachability of state d compared to that of state h.



5
U N D E R S TA N D I N G M U LT I M O R B I D I T Y T H R O U G H
C L U S T E R S O F H I D D E N S TAT E S

Nowadays, a significant portion of the population has more than one chronic disease at
the same time, which is known as the problem of multimorbidity. Better understanding
multimorbidity is hindered by the fact that most available clinical research datasets
are small in size, making it harder to investigate interactions between diseases. The
current availability of large volumes of routinely collected health care data is a promising
source for learning about disease interaction. In this chapter, we propose a latent or
hidden variable-based approach to understand patient evolution in temporal electronic
health records, which can be uninformative due to the fact that it contains little detailed
information. We introduce the notion of clusters of hidden states which may allow for
an expanded understanding of the multiple dynamics that underlie events in such data.
Clusters are defined as part of hidden Markov models learned from such data, where the
number of hidden states is not known beforehand. We evaluate the proposed approach
based on a large dataset from Dutch practices of patients that had events on medical
conditions related to atherosclerosis. The discovered clusters are further correlated to
medical outcomes in order to show the usefulness of the proposed method.

5.1 introduction

With the availability of large volumes of health care data, promising new data
sources have come to the disposal of the research community to investigate
health care problems that require much data. A typical example is the study of
interactions among diseases as done in multimorbidity research, i.e. when multiple
diseases occur at the same time in people [6, 140, 159]. Influenced by factors
such as the aging of the population, multimorbidity is the rule, not the exception.
Mutimorbidity research is not really feasible with typical clinical research datasets,
which are small in size and usually only deal with a single disease. More recently,
machine learning techniques applied to electronic health records (EHRs, for short)
in the order of billion data points have been able to provide accurate predictions
[142], which shows that it is possible to take advantage of such datasets, despite
their low quality compared to research datasets such as those from clinical trials.

81
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In spite of its volume-related advantages, health care data are noisy, incomplete,
and usually not directly suitable for research purposes, making analysis hard.
One source of data used for investigating multimorbidity and disease interaction
is data collected from visits to general practitioners [106], where each patient visit
is often assigned a single diagnosis code meant for administrative and billing
purposes. It is, however, possible that patients have additional conditions at the
time of the visit (some of which might be chronic conditions, such as hypertension
or Alzheimer’s disease), which would mean the existence of multimorbidity in
patient. It is also often the case that symptoms and signs are not available in such
health care data. As a result, one cannot directly detect multimorbidity by simply
looking at GP visits individually.

With health care data, one can resort to investigating sequential disease inter-
action in order to partially overcome the discussed limitations of such data. By
doing so, one could ultimately obtain insight on multimorbidity. Uncertainty also
plays a central role because future events are typically not completely determined
by the current patient status. Much research has been dedicated to the analysis
of health care data, but most of it tends to focus on managerial aspects such as
patient flow, hospital resources, etc. [45, 120] more often than on understanding
diseases dynamics [92, 126].

In this chapter, we hypothesize that using latent information next to the
diagnostic data can increase our understanding of disease interaction dynamics.
By using as a basis hidden Markov models [141], multiple latent states can be
associated to a given diagnostic event (where an event could be a visit due
to, e.g., type 2 diabetes mellitus or a myocardial infarction). Based on this,
we introduce the notion of clusters of hidden states, where a cluster contains all
the states that produce the same observation (i.e. the same event). Although
apparently simplistic, states within a cluster can have quite different dynamics in
terms of transitioning patterns (i.e. how a state can be reached by or left from). By
looking at these transition patterns, we will be able to give multiple roles to each
event, which sheds light on the influence of such event on disease interaction.
Besides the structural differences of states within a cluster, we show that these
states are associated in different ways to medical outcomes. The identification of
latent information has been shown valuable for gaining a better understanding of
health care data [91, 92], although we pursue a different angle on what to cluster
than previous research.

The contributions of this chapter are as follows. We first define the notion
of clusters of states from the perspective of electronic health records. This is
followed by the identification of general transition patterns that might emerge in
clusters of hidden states. We then introduce a case study based on data collected
from Dutch practices amounting to 32,227 patients that had visits related to
atherosclerosis. Atherosclerosis is a medical condition that can be seen as an
umbrella term of many other diseases, thus it is suitable for illustrating clusters
and the role of their states in real-world data. Once an HMM is learned from
the atherosclerosis data, we provide application-oriented interpretation to the
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clusters of states by looking at a medical outcome (the number of total diseases
that were registered in patients) correlated to states of clusters.

This chapter is organized as follows. Section 5.2 describes the structure of EHRs
and modeling assumptions. Section 5.3 defines clusters of states and transition
patterns associated to them. Section 5.4 describes the data used as case study,
while in Section 5.5 the results of applying the proposed notions of state clusters
to such data are discussed. Section 5.6 discusses the related work, while Section
5.7 summarizes the chapter and discusses future work.

5.2 health-care event data

5.2.1 Representation

Let us suppose that there are n possible diagnoses, each one represented by a
random variable Xi taking values from the domain {0, 1}, with Xi = 1 indicating
presence and Xi = 0 absence of diagnosis i. The full set of diagnosis variables is
denoted by X = {X1, . . . , Xn}. This representation allows one to represent the
occurrence of multiple conditions in patients at each time point. In the considered
EHRs, however, patient visits to their general practitioner are recorded such that
each patient visit is typically assigned a single diagnosis code (sometimes called
the main diagnosis), which means that effectively only one disease is registered at
each time point. The main diagnosis code in patient visits can be related, e.g., to
a chronic condition (e.g. diabetes mellitus) or not (e.g. a fracture).

By taking the single diagnosis assumption into account, each event can be
represented by an instantiation of X, such that Xi = 1 and X1 = · · · = Xi−i =
Xi+1 = . . . = Xn = 0, where Xi corresponds to the main diagnosis associated
to the event. The time interval between any two visits is often arbitrary. Next
to the diagnosis data, additional data might be available, such as medication
prescription and results of lab exams.

An alternative representation would use a single variable taking values on
a domain with n values, which could be seen as the state space of a Markov
chain. However, we prefer using individual diagnosis variables because it is
more general and flexible enough for easily allowing one to add more patient
information into event data if such information is available. For example, if it is
known that a chronic condition previously diagnosed still occurs in the patient,
one could mark the corresponding variable as active in addition to the main
diagnosis of the current visit. However, additional assumptions or patient data
would be required in order to confirm such previous diagnoses, as there is always
some degree of uncertainty as to whether previous conditions are indeed chronic.
As a consequence, we did not make such assumptions.
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5.2.2 Modeling

Health care data from EHRs is often fine grained, in the sense that each event
will likely reflect only information that is limited to the current patient visit. This
differs, e.g., from longitudinal clinical trials [175], which are often characterized
by repeated measurements of symptoms and signs associated to one or more
conditions. As a consequence, data from such clinical trials normally allows
for a more complete assessment of patient evolution, as opposed to health care
data. This suggests that one could capture unmeasured patient information in
such EHR data by including latent variables, such that it could provide a richer
characterization of patients when combined with observable data.

In this work, hidden Markov models are used to capture the sequential interac-
tion between observable and latent variables. In the multimorbidity context, the
diagnosis variables X correspond to the observable variables, and we assume that
there is a latent variable S. The usage of hidden states attempts to compensate
for the mentioned difficulties present in temporal EHRs. We consider the family
of independent HMMs for modeling (see Chapter 2 for details on HMMs). This
choice is justified by the large amount of data in EHR datasets and the low
number of observable variables (as shall be discussed in Section 5.4).

In order to comply with the event data representation, we further assume
that the emission distributions of the HMM are deterministic such that only one
observable variable Xi is active, i.e. for every S there is some Xi such that:

P
(

X(t)
j = 1 | S(t)

)
=

{
1 if j = i
0 otherwise

(5.1)

5.3 identifying transition patterns

5.3.1 Clusters of states

The events constructed from health care data imply that in order to fully comply
with the data concerning n diagnoses, the hidden states should be constrained to
emit one out of n different observations at each moment, as defined in Equation
5.1. In spite of this apparent simplicity, the underlying process being modeled
could still be quite complex (e.g. by having multiple stages at different moments).
In order to properly capture such distribution, more states could be needed,
which can lead to the situation where multiple states are associated to the same
diagnosis (e.g. if one decides to model more states than observable variables).
From these considerations, we define a cluster of states as a set of states that have
the same emission distribution.

5.3.2 Transition patterns

Modeling state transitions in a probabilistic way, e.g. as in Markov chains, implies
that a state can often be reached in different ways and can lead to different future
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. . . si

t1

. . .

. . . sj

t2

. . .

Figure 5.1: Cluster of states C = {si, sj}, where si can be reached from two states and
can transition to two states, while sj can be reached from four states and can
transition to a single state.

states. As we show next, by considering clusters of states such dynamics are
further enriched, because such past-present-future transitioning can occur in
multiple ways. For example, consider two states si and sj belonging to a cluster C,
as shown in Figure 5.1. This suggests that si will likely be reached earlier for the
first time than sj, and it also suggests that both states can lead to quite different
incoming and outgoing states. Of course, such multiple roles of a given diagnosis
(represented by the cluster C) stem from the complexity of the underlying process,
where a given diagnosis could be associated to different medical situations when
one looks at the whole care process. For example, the states of a cluster could be
associated to different levels of severity or worsening of patient health that could
happen at different moments.

In order to better understand the roles of states in clusters, we discuss transition
patterns that might arise. This characterization involves states and transitions
from and to them, and is provided at a high level, because it is intuitively
unfeasible to anticipate all the possible ways by which the states of clusters can
interact.

5.3.2.1 Internal patterns

A state is associated to an internal transition pattern if most of the probability
mass of its incoming and outgoing probabilities associates to states from the
same cluster. The most trivial internal pattern occurs when a state has a loop
probability close to 1, which we call a recurrent pattern. A more formal description
is that a state s has a recurrent pattern if s has a transition probability P(S(t+1) =
s | S(t) = s) ≥ α, where α will typically be close to 1.

A more complex internal pattern would occur when there is a cycle involving
two or more states from the same cluster. In this case, at any moment it is very
likely that the system (e.g. a patient) is switching between the same diagnosis
represented by different states. We call such patterns internal feedback patterns.
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s1 s2 s3 s4 s5

95 20 60 22 40

70

60

80

40

8

5

Figure 5.2: An example with two clusters of states C1 (left) and C2 (right) for depicting
patterns of state transition. Probabilities are given by percentages.

5.3.2.2 External patterns

External transition patterns involve states from two or more clusters. One type of
such patterns are the external feedback patterns, which involve states from two or
more clusters such that most of the incoming and outgoing probabilities stay in
the cluster.

In the context of disease interaction, external patterns occur when transitions
involve different diagnoses, as opposed to internal patterns. Hence, if a cluster
is involved in both an internal and an external pattern, then the same diagnosis
could lead to different future events. In other words, the same diagnosis could
play distinct roles.

Example 5.1. Suppose two clusters of states C1 = {s1, s2} and C2 = {s3, s4, s5}, where
C1 and C2 are associated to two different diagnosis codes, as shown in Figure 5.2. It holds
that state s1 is involved in a recurrent pattern due to its high self-transition probability
(for α = 0.95). States s4 and s5 are involved in an internal feedback pattern, while states
s2 and s3 are involved in an external pattern.

5.4 case study

In order to illustrate the value of the proposed methods, we consider the Primary
Care Database from the NIVEL institute (Netherlands Institute for Health Services
Research), a Dutch institute that maintains routinely electronic health records
from health care providers to monitor health in Dutch patients [127]. In the
NIVEL data, patient visits are assigned an ICPC code (International Classification
of Primary Care) indicating a diagnosis for the visit.

5.4.1 Variables and observations

We focus on variables related to atherosclerosis, which is a cardiovascular condi-
tion that has complex associations to a number of other conditions. Although in
the literature atherosclerosis has been known to be associated to chronic diseases
like diabetes [95], there is still active research on its implications and associations
[125, 129, 164]. In our data pre-processing steps, we first selected ICPC codes
related to atherosclerosis, then groups of codes that refer to a given medical
symptom or condition were built based on medical experts. As a result, each
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ICPC code, description Variable (model)
K02.00, Pressure/tightness of heart Angina
K74.00, Angina pectoris
K74.02, Stable angina pectoris
K76.01, Coronary sclerosis
K75.00, Acute myocardial infarction Myocardial infarction
K76.02, Previous myocardial infarction (> 4 weeks ear-
lier)
K89.00, Transient cerebral ischemia/TIA Cerebrovascular accident
K90.00, Cerebrovascular accident
K90.03, Cerebral infarct
K92.01, Intermittent claudication Claudication
K99.01, Aortic aneurysm Aortic aneurysm
K91.00, Atherosclerosis Atherosclerosis

Table 5.1: ICPC codes related to atherosclerosis, and their mapping into variables of the
model.

group of codes gave rise to an observable variable, as shown in Table 5.1. The
variables constructed based on Table 5.1 can be seen as comorbidities that might
occur in patients with atherosclerosis.

In order to construct the event data from the raw NIVEL data, we first ordered
the raw data in ascending dates. Then, whenever a patient visit having as
diagnosis one of the ICPC codes from Table 5.1 was found, a new observation
was created, where the variable associated to the ICPC code was instantiated as
the value 1 and the remaining variables were assigned zeros. The visits that were
not associated to any of such ICPC codes were ignored.

5.4.2 Sample

We considered a sample of 32,227 patients that had visits between 1st of January,
2003 and 31st of December, 2011. To be included, a patient must have had at least
one visit related to one of the diagnoses listed in Table 5.1. The data construction
procedure previously discussed resulted in a dataset with 216,580 observations,
where the average number of observations per patient is 6.7 (StDv = 10.9). A total
of 11,932 patients have only one observation, whereas 20,295 patients have two or
more.

5.4.3 Number of hidden states

In order to select an appropriate number of states when learning HMMs, the
Akaike Information Criterion (AIC, for short)

AIC(M) = 2 log K− 2 log L̂(M) (5.2)
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was used, where M is a candidate model, K is the number of parameters of M,
and L̂(M) is the likelihood of M based on maximum likelihood estimates of the
parameters.

The AIC is a less conservative model selection functions than scoring functions
as BIC (see Section 2.14). This is justified in this situation because there are large
amounts of data in the case study, which allows us to model more latent states
by using the AIC score. The AIC score is supposed to be minimized. Models are
evaluated by increasing their number of states until the addition of states does
not improve the score substantially, which is an strategy to combat overfitting.

For learning of HMMs the Baum-Welch algorithm is used (see Section 2.6.2),
which is sensitive to its initial parameters, especially with larger number of
states. In order to reduce such effect, the best initial model was selected out of 30

candidates randomly generated.

5.4.4 Clinical interpretation of clusters

If clusters of states are identified in the learned model, one would expect that
states within a cluster are indeed necessary, i.e. they should not be replaced by
a single state, at the cost of, e.g, worsening model fit. The clusters of states and
associated transition patterns also give insight in the structural role played by the
states. In order to further understand the role of states of a cluster, we consider
measures used in multimorbidity research. Multimorbidity measures can be
used to look at patients from different angles, which is related to the notion of
complexity of patient [117].

The most common way to measure multimorbidity impact in a population is
by means of disease counts [94], in which single diseases are added resulting in
a total number of diseases per patient. The count of diseases is related to the
functional status and quality of life [94], thus it can be used to provide additional
significance to the HMM states learned from the EHRs data. In this case study,
the disease counts were calculated as the total number of distinct diagnoses that
were registered for each patient, which might include other events than those
listed in Table 5.1. This provides an approximation to the number of diseases that
have occurred in the patient. We detail next the manner by which disease counts
are associated to the latent states.

Let us consider a latent state sj ∈ dom(S) and the ith patient in the data. We
first compute the chances that this patient is in state sj at some instant t based on
the full observations of the patient, which is denoted by:

γt[i](j) = P(S(t) = sj | X[i](0:Ti)) (5.3)

where Ti refers to the last observation of the ith patient (see Section 2.6.2 for
HMM notation). When the patient has more than one observation, this will result
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in a sequence of probabilities for a state sj. As we will associate the states to the
total number of diseases, the average of such probabilities is taken:

γ[i](j) =
1

Ti + 1

Ti

∑
t=0

γt[i](j) (5.4)

From Equation 5.3, if the latent variable has k states {s1, . . . , sk}, then each
patient will be associated to k average state probabilities, one for each state sj. It
is straightforward to see that these average probabilities sum to 1.

Once the quantities in Equation 5.4 are computed, a further analysis is per-
formed based on the total number of diseases. In particular, we are interested
in how the average occurrence of states of Equation 5.4 changes when the total
number of diseases changes. To facilitate the visualization of results, such average
probabilities are grouped per total number of diseases, so that we calculate the
group average of state sj for the patients with exactly r diseases, denoted by gr(j),
as follows:

gr(j) =
1
|Dr| ∑

i∈Dr

γ[i](j) (5.5)

where Dr is the set of patients with exactly r diseases. As a result, pairs with
number of diseases and group averages are obtained, between which associations,
e.g., by the Pearson correlation coefficient, are computed.

5.5 experimental results

5.5.1 Model dimension

Figure 5.3 shows the model selection scores, which served as a basis for selecting
an HMM with 9 states as the suitable model. All the states of the model were
associated to fully deterministic emission distributions, such that only one diag-
nosis variable had a probability equal to 1 in each state, while the other variables
had probabilities equal to zero. This means that the property discussed in Section
5.2.1 by which the learned model should emit events with only one active variable
(representing the main diagnosis) was met.

5.5.2 Clusters

Figure 5.4 shows the learned HMM, where each state is named according to
the observable that is active (i.e. the observable that has probability equal to 1).
Figure 5.4 shows that three non-unitary clusters were obtained, suggesting that
patient visits associated to angina, myocardial infarction and cerebrovascular
accident were suitably represented by 2 states each. Intuitively, it is relevant to
model a visit to, e.g., angina by means of 2 different states, hence such diagnosis
could lead to two different patient courses. As expected, determining which of
the two states a visit is associated to depends, e.g., on what is known so far about
the patient in terms of past visits.
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Figure 5.3: Model selection scores. X axis: number of hidden states, Y axis: AIC score. The
vertical dashed line indicates the number of states where the AIC was minimal.

5.5.3 Transition patterns

Based on the state transitions of Figure 5.4, there is clearly a state in each cluster
that will very likely be involved in a self-transition. These states are CVA6,
Angina7 and MI3. Such states associate, therefore, to internal patterns in the
form of internal recurrent patterns.

The HMM of Figure 5.4 suggests external patterns as well. In particular, angina
seems to be a central event in this model: when moving from either the CVA
cluster or the MI cluster, it is likely that this transition will reach the Angina
cluster (in particular, the Angina5 state). Once in the Angina cluster, a transition
to the other clusters is also possible, with probability larger than 0.05. Hence,
such external patterns can be thought of as external feedback patterns.

5.5.4 Clinical interpretation of clusters

The average probabilities defined in Equation 5.4 are summarized by histograms
in Figure 5.5. Each bar corresponds to the number of patients in which a state
sj achieved some average probability. For example, the first bar of CVA2 state
means that in around 30,000 patients CVA2 had an average probability between 0

and 11.1%, while for CVA6 the same mean probability was achieved in around
22,500 patients. The histograms allows one to conclude that the CVA6 state was
more likely than CVA2 in most patients.
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Figure 5.4: Clusters of hidden states, denoted by dashed rectangles. Arcs denote state tran-
sitions, with labels indicating probability (in %). For the sake of visualization,
transitions with probability between 5 and 10% are shown by dotted lines, and
only transitions with probability greater than or equal to 5% are shown.

In general, the histograms of Figure 5.5 suggest that within each cluster there
are states that are substantially more prevalent than others, and such separation
is more or less uniform depending on the cluster. In general, recurrent-pattern
states were more likely than the non-recurrent pattern states, which might suggest
that patients likely had several visits due to the same diagnosis before a diagnosis
associated to a different comorbidity was registered.

For the second analysis described in Section 5.4.4, Figure 5.6 shows the total
number of diseases in patients against the group probabilities. Visual inspection
shows that up to 50 diagnoses the trend is substantially more stable than that of
all the groups. As around 97% of the patients had at most 50 distinct diagnoses,
we will focus on such groups for obtaining a better understanding of the general
trend.

Figure 5.6 suggests that, in general, the states of clusters are correlated to the
number of diseases in different ways. For the CVA case, patients with only a
few diseases are more likely in state CVA6 (internal patterns) rather than CVA2

(external patterns). However, as the number of diseases increases, the chances
to be in CVA6 decreases while the chances to be in CVA2 increases, although
such trends occur at different paces. Analogously, for an MI event, it is likely the
patient will be in state MI3 (internal patterns) if the patient has involves only a
few diseases, but a probability decrease is expected for when more diseases are
involved. On the other hand, not much can be said about MI4, as the correlation
is very low. Intuitively, one would indeed expect that patients with more diseases
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(a) CVA cluster
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Figure 5.5: Histograms of average probabilities of states (in %). X axis: average probability
of state sj in the ith patient, i.e. the values γ[i](j) defined in Equation 5.4. Y
axis: number of patients. For example, the first green bar in (a) means that in
around 30,000 patients the state CVA2 had an average probability between 0

and 11.1%.

will be related to more transitions between the clusters, which helps explain the
observed trends of the CVA and MI clusters.

As opposed to the previous clusters, Figure 5.6 suggests that the dynamics
of the Angina cluster has a less straightforward association to the number of
diseases. In this cluster, both of its states become more prevalent as the number
of diseases increases (up to 50), which might suggest the increasing importance
of angina by acting as a proxy for the comorbidities considered in this case study,
as well as for other chronic and non-chronic diagnoses not explicitly considered
but included in the total number of diseases.
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(a) CVA2: R(≤ 50) = 0.65
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(b) CVA6: R(≤ 50) = -0.83
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(c) MI3: R(≤ 50) = -0.79
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(d) MI4: R(≤ 50) = -0.18
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(e) Angina5: R(≤ 50) = 0.91
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(f) Angina7: R(≤ 50) = 0.93

Figure 5.6: Association of cluster states to clinical outcome (total number of distinct di-
agnoses). X axis: number of distinct diagnoses, Y axis: group averages gr(j)
(Equation 5.5). The vertical line is drawn at X = 50. R indicates the Pearson
coefficient, calculated considering only the groups with at most 50 diagnoses
(which amounts to 97% of all the patients).

5.5.5 Are the clusters needed? A comparison to Markov chains

The need for the clusters learned in the HMM can be assessed by comparing
the model fit of the HMM with that of a Markov chain. The state space of
such MC is X, i.e., the six comorbidities listed in Section 5.4.1, hence learning
this MC amounts to estimating the initial and transition probabilities involving
the variables in X. This comparison can illustrate whether the multiple states
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associated to a given comorbidity (in this chapter, the multiple states of CVA, MI
and Angina) are indeed necessary for delivering a better model.

Table 5.2 shows the AIC scores computed for the 9-state HMM and for the MC,
which indicates a superior model fit for the HMM. Besides such advantage, with
the MC it is no longer possible to identify that the occurrence of a certain event
such as angina, can be correlated to different patient characteristics (we used in
this chapter the total amount of diseases, but other medical outcomes could be
devised as well).

Model State clusters AIC

9-state HMM 3 clusters 172,942.8
Markov chain No clusters 185,013.5

Table 5.2: AIC scores of the HMM and the Markov chain learned from the health care data.
The smaller the AIC, the better the model fit is.

5.6 related work

The notion of clustering states in hidden Markov models has not been investigated
so far to the best of our knowledge. A related approach is clustering applied
to timed automata [82, 180], where state sequences are clustered based on their
distance by means of hierarchical clustering methods. Based on Bayesian HMMs
that use topic modeling, clustering of patient journeys has been proposed [91],
which uses the full set of events associated to unstable angina. In contrast, in
our case the clusters are determined based on the states, which shifts the focus
towards the dynamics that involve states within clusters. Despite their differences,
our methods and those from the literature share the goal of moving towards
explainable artificial intelligence [80, 114], as we aimed not only to obtain a model
with suitable fit, but also to understand more about the patient situation by
looking at the structure of the HMM. An example in our case is the deterministic
emissions, which can facilitate interpreting models like HMMs to a great extent,
at the same time obeying constraints of the multimorbidity problem.

In the context of electronic health records of multimorbidity, a cohort of the
NIVEL data used in this chapter had been used for learning graphical models
based on Bayesian networks, in static [106] and temporal [107] contexts. In
those cases, however, the goal was to model differences in practices, hospitals, or
regions, without taking into account latent variables.

5.7 conclusions

In this chapter we proposed a modeling methodology for health care data from
EHRs. Due to the fine-grained nature of such event data, we used HMMs for
capturing latent information that is not directly measured. A first step towards
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capturing clusters of latent states was taken, which are states associated to the
same emission distribution. In the context of EHR data, the states of a cluster are
associated to the same diagnosis code. The states of a cluster can, however, be
associated to very different transitioning patterns. Based on this, we defined the
notion of transition patterns.

We illustrated the proposed ideas by means of a case study with data from
atherosclerosis patients collected by Dutch general practitioners. The learned
HMM had 9 states, in which clusters involving angina, myocardial infarction and
cerebrovascular accident were identified. This suggests that these diagnoses are
too complex to be managed by a single latent state, hence a model with better fit
was obtained when such diagnoses were allowed to be represented by multiple
states (or roles), as we did with the obtained HMMs.

Suggestions for future work include a complementary analysis to the corre-
lations computed between average state probabilities and the total number of
diseases. Instead of computing separate correlations, one could consider regres-
sion models to predict the average probabilities for different number of diseases
and states. In terms of model class, we also would like to investigate the effect of
adding medication and lab exams, which are available to some patients in the
NIVEL data. These could be added as model inputs (i.e. covariates), which would
allow to capture switching regimes for the transitions.

Further research might also benefit from a more formal definition of clusters
of hidden states allowing one to capture more general transition patterns. This
could make the patterns more explainable. One could also add criteria to help
decide which states are part of a cluster in a more general way, which could be of
interest if the emissions are not fully deterministic (e.g. when there is a second
diagnosis available in the data).





6
PA RT I T I O N E D D Y N A M I C B AY E S I A N N E T W O R K S

When modeling the dynamics of real-world processes, the model properties are often
assumed to be constant over time, resulting in a so-called time-homogeneous process.
This might be justified, e.g., by scarce amounts of data available. While this reduces the
number of parameters to be learned from data, the specificities of the underlying process
are to some degree lost in the obtained models. In this chapter, we propose partitioned
dynamic Bayesian networks for capturing distribution regime changes, benefiting from
an intuitive and compact representation with the solid theoretical foundation of Bayesian
network models. In order to balance specificity and simplicity in real-world scenarios, we
propose a heuristic algorithm to search and learn such models taking into account the
preference for less complex models. Experiments are performed based on simulated data to
evaluate how well the proposed method is able to recover the original distributions, for
different assumptions regarding the data generating mechanism. Finally, we consider a
study case based on psychotic depression complementary to that of Chapter 4 to evaluate
the goodness-of-fit and insight that partitioned dynamic Bayesian networks can provide
to a real-world problem.

6.1 introduction

Understanding the evolution of disease processes lies at the heart of clinical
medicine as insights into how effective a particular treatment is able to cure a
disease are based on this. Not surprisingly, most textbooks on clinical medicine
and pathology contain extensive descriptions of how a disease progresses and
likely reacts to particular treatments in the course of time. Yet, there has been
very little research where these qualitative descriptions have been substantiated
in a detailed, quantitative way. In research, the temporal dimension is usually
only explored by describing the outcome of treatment after some time. One of the
problems faced by researchers who wish to obtain such insight is the relatively
small size of clinical datasets. Often, data concerns something from a hundred
to a few hundreds of patients. However, the wish to develop a temporal model
usually increases the demands for data, and as a consequence various simplifying
assumptions have to be made.

One solution that is usually considered in clinical problems is to build a model
that covers the entire time span without distinguishing any of its time points [29,
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74, 101, 146, 157]. Therefore, the model has the same properties for every time
point, as modeled by the well-known first-order homogeneous Markov chains
[52]. A generalization of Markov chains to multivariate problems are the dynamic
Bayesian networks [104, 136], which have been applied to a number of real-world
domains, such as medicine [38, 86, 132, 153] and bioinformatics [54, 109, 145].
Such probabilistic graphical models allow to reason about the interactions of
features of interest in an intuitive, temporal and compact fashion, while having a
sound basis in probability theory. This will yield more robust models, making
the use of these models attractive when dealing with small datasets. However,
while DBNs solve the robustness problem, they introduce an undesirable effect:
there is no distribution specificity as a function of time. Hence, one will never
learn the details of the underlying process as was the aim in the first place.

It is known that in many clinical situations the dependences between symptoms
and signs might change over time, as in the case of intervention studies where
different sets of correlations are expected to occur in the course of time, due
to the nature of this kind of study. Hence, a temporal graphical model that is
allowed to vary in structure and probability distribution as a function of time
would capture these complex dynamics, providing a potentially better model fit
and more insight that really helps in understanding the underlying process.

Although the notion of non-homogeneous models (a shorthand for non-
homogeneous time models) is certainly not new, it is often the case that such
models employ a number of approximations, for example due to properties of the
targeted applications. Typically, non-homogeneous PGMs have been focused on
biological processes, where regime shifts are assumed to be smooth [79, 109, 145].
These assumptions might, however, not be natural for other processes, where the
variety of eligibility criteria and unexpected patient response to drugs can make
the distribution regimes over time vary widely. Thus, a systematic algorithm that
finds the appropriate cut-off points to obtain new specific models, taking into
account the scarcity of data and the wish to obtain a robust model, is needed. To
the best of our knowledge, this idea has never before been explored in learning
Bayesian network-based models from data.

In this chapter, we first introduce partitioned dynamic Bayesian networks (PDBNs,
for short), which allow to express a process as a collection of DBNs. PDBNs
make few assumptions regarding the process, the main one being the fact that
the process duration is partitioned in the same way for every observable variable
involved. Then, we propose a heuristic procedure to explore the space of PDBNs,
taking into account the balance between specificity and simplicity. The approach
starts with a homogeneous model, and incrementally replaces parts of it by
sub-models that are valid for specific time periods. The increase of complexity is
allowed if there is a two-part split of one of the current sub-models that is able to
improve model fit over a training and test setting.

In order to demonstrate the applicability of the proposed model and heuristic
method, an extensive set of simulations and real-world-based experiments are
carried out. In simulations we evaluate whether the heuristic algorithm is able to
recover adequate models in terms of statistical distance to the data generating
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model, be it a homogeneous or a non-homogeneous model. We also aim to
evaluate experimentally the behavior of the heuristic in the case of small datasets.
Additionally, we consider a study case on psychotic depression data, and evaluate
the homogeneous and non-homogeneous models learned from this data. Based
on the obtained models, research questions of clinical relevance are formulated
regarding the prediction of symptom association over time.

The remainder of this chapter is organized as follows. Section 6.2 describes
related literature on homogeneous and non-homogeneous dynamic Bayesian
networks in clinical and biological domains. Partitioned DBNs and the heuristic
procedure to learn PDBNs are presented in Section 6.3. Simulations to evaluate
the learning procedure are discussed in Section 6.4, while the models learned
from psychiatry data are discussed in Section 6.5. Clinically-oriented discussions
based on the psychiatry models are provided in Section 6.6, and lastly Section 6.7
gives the conclusions and suggestions for future research.

6.2 related work

There has been quite some research on the application of Bayesian network
models to the clinical domain. To a lesser extent, models that take time into
account, such as dynamic Bayesian networks, have been considered in the past.
Relevant research include obtaining problem insight by analyzing the structure
and parameters of a DBN, and the use of DBN models for specific tasks such
as diagnosis and prognosis. For example, the learned structure of DBNs has
been explored for finding correlations among different brain regions in several
disorders, such as schizophrenia [101] and Alzheimer’s disease [29]. These results
have been used to confirm known correlations as well as to reveal new ones.
Furthermore, the sensitivity of the influence of parameter variation in DBNs has
been investigated in the context of ventilator-associated pneumonia [37].

Another aspect of DBNs explored in the clinical domain is the predictive ability
for several tasks, e.g. diagnosis [38, 146] and prognosis [74]. An advantage of
modeling stochastic processes using models as DBNs lies in the capability of
producing updated predictions as new observations become available while the
process evolves. This can be achieved by taking into account some form of
patient history, producing potentially more accurate predictions. Real cases have
shown the benefits of this type of multiple prediction, e.g. to diagnose ventilator-
associated pneumonia [38]. The application of DBNs and similar models in
clinical domains has been compared to similar formalisms in a recent survey
[132].

Although DBNs have been reasonably studied for their capability to deal with
clinical problems, this is not the case for more flexible models, e.g. when the
time-homogeneity assumption is rejected. These models address mainly the
analysis of change in structure at individual time points, in the scope of a specific
disease process [171]. On the other hand, more sophisticated models have been
developed in other fields, mainly biological processes [54, 79, 109, 145]. These
models are constructed based on assumptions justified by domain knowledge;
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for example, in some biological processes the intensity of interactions change
over time, but no interaction is created or destroyed [79].

The aforementioned non-homogeneous models assume a set of assumptions
or use a specific learning methodology, which we summarize as follows. Firstly,
additional restrictions are usually imposed to the model structure, ranging from
constrained intra-temporal interactions [109, 145] to completely fixed structure
with flexibility on the parameter space only [79]. A second assumption is that
regime switch in the process occurs in a smooth fashion. Finally, in many
biological-oriented networks the learning approach is based on sampling strate-
gies [54, 79, 109, 145], which can depend on additional assumptions in order to
be feasible. As we show further in the chapter, these assumptions will not be
considered for the development of PDBNs. Other approaches include, e.g., DBN
models with hidden variables to control the dependence structure, which has
been applied to engineering problems [170].

Clearly, clinical problems are potentially prone to exhibit a temporal behavior
that may be different from the biological processes studied so far. To illustrate
this, consider the case of intervention studies, where specific criteria exist to
define eligible patients. Imposing the previous assumptions on the manner by
which pieces of the process evolve can forbid capturing the temporal dynamics
accurately. Therefore, there is a need to define and construct models of non-
homogeneous time in a systematic manner, which will be able to reveal more
about the underlying structure of processes in clinical domains.

6.3 partitioned dynamic bayesian networks

Models of non-homogeneous time can be defined by a set of transition distribu-
tions that should hold at specific intervals of the considered time series. In this
work, the central idea lies in making the dependence on time by partitioning the
time series duration and associating each part to a homogeneous model, i.e. a
DBN valid within a sub-range of the time series. We refer to this class of models
as partitioned dynamic Bayesian networks. We proceed in the following towards a
formalization of PDBNs, its associated concepts, and lastly a procedure to learn
PDBNs by exploring the search space heuristically.

6.3.1 Model specification

Definition 6.1 (Time partition). A time partition of a set of integers {0, . . . , T} is a
set of integers {t1, . . . , tk}, where t1 > 0, tk = T, and ti < ti+1 for 1 ≤ i < k. Each ti,
with i > 1, defines a set {1 + ti−1, . . . , ti}, and t1 defines the set {0, . . . , t1}.

We say that each element of the time partition is a cut (a shorthand for cut-off) and we
say that such time partition has k cuts.

The aim of Definition 6.1 is to split a time series horizon into a partition of
indices. For example, given a time series indexed by the time points {0, . . . , 7},
the time partition {2, 7} has 2 cuts and splits the time series as follows: {0, 1, 2},



6.3 partitioned dynamic bayesian networks 101

and {3, 4, 5, 6, 7}. This definition is useful for defining non-homogeneous models
as follows.

Definition 6.2 (Partitioned dynamic Bayesian network). Consider a time partition
with k cuts of the integers {0, . . . , T}, where the ith cut is associated to a conditional
Bayesian network Bi over X(t+1) conditioned on X(t), t ≥ 0. A partitioned dynamic
Bayesian network with k cuts, denoted by PDBN-k, is a dynamic system (B0, . . . ,Bk)
over X where:

• B0 = (G0, P0) is a Bayesian network over the variables X(0) called initial network.

• Bi = (Gi, Pi), i > 0, is a conditional Bayesian network over the variables
{X(t), X(t+1)} called the ith transition network. The transition model Bi is as-
sociated to the ith cut of the time partition.

We use the term distribution cut to denote a cut in the context of a PDBN. The
joint distribution of an unrolled PDBN can be obtained by unrolling the transition
models over the time points each transition model is associated to. This is as
follows: the structure and parameters of all the nodes at time t = 0 come from
the initial model B0, while the structure and parameters for any node X(t)

i , where
t > 0, come from the transition model whose cut includes t, i.e., the Bi such that
t ∈ {1 + ti−1, . . . , ti}. Therefore, the joint distribution of an unrolled PDBN with
k cuts {t1, . . . , tk} is as follows:

P(X(0:T)) =
n

∏
i=1

P0(X(0)
i | π(X(0)

i ,B0))

·
k

∏
r=1

tr−1

∏
t=tr−1

n

∏
i=1

Pr(X(t+1)
i | π(X(t+1)

i ,Br))

(6.1)

where t0 = 0 and Pr refers to the CPTs pertaining to the transition model Br.
Note that the parent set of each Xi depends on Br as denoted by π(Xi,Br).

It follows from the previous definitions that a DBN is a PDBN with a single
cut {T}, hence, a DBN is a PDBN-1.

Example 6.1. Consider again the situation of Example 2.2, where two symptoms A
and B and a drug quantity D are measured per patient on a regular basis. We define
a PDBN-2 for this problem consisting of two cuts {2, 7} whose initial structure and
transition structures are shown on Fig. 6.1. Each cut of the PDBN is associated to a
conditional BN as follows: B1 holds for the time points {0, 1, 2}, while B2 holds for the
time points {3, 4, 5, 6, 7}.

Unrolling this PDBN-2 for the process duration yields the joint

P(X(0:7)) = ∏
i

P0(X(0)
i | π(X(0)

i ,B0))

· ∏
0≤t≤1

∏
i

P1(X(t+1)
i | π(X(t+1)

i ,B1))

· ∏
2≤t≤6

∏
i

P2(X(t+1)
i | π(X(t+1)

i ,B2))

(6.2)
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where Xi ∈ X, X = {A, B, D}, and Pi refers to the CPTs pertaining to the transition
model Bi.

t = 0

A

B

D

(a) Initial model B0

t+1

A

B

D

t + 1

A

B

D

(b) Transition model B1

t+1

A

B

D

t + 1

A

B

D

(c) Transition model B2

Figure 6.1: An example of PDBN-2. Bi represents the ith transition model (only its
structure is shown, parameters are omitted). Nodes on the left and right side
occur at t and t + 1 respectively, except for the initial model.

6.3.2 A heuristic search procedure

In this section, we present a heuristic algorithm to build PDBNs in an incremental
fashion from a dataset of sequences. As in many clinical studies there is typically
a scarcity of data, mainly in terms of number of sequences (e.g. represented by
patients), the central idea of the procedure is to prefer less complex models. In
order to achieve this, the heuristic assumes that a proper criterion for model
selection that prevents overfitting is used, which is naturally dependent on the
application domain and characteristics of the data. Hence, when constructing a
model, the heuristic iteratively increases the complexity as long as it is beneficial
for its score; if adding complexity is not beneficial, the procedure stops adding
further complexity. Additionally, the procedure has a hill-climbing behavior by
not further exploiting previous less complex solutions that were less promising
when analyzed by the algorithm.

6.3.2.1 Algorithm description

Taking the aforementioned factors into account, we present a procedure that
starting from a DBN follows a sequence of incremental refinements to evolve
it into a more specialized model. A refinement corresponds to splitting one of
the transition distributions of the current PDBN. At each iteration a new cutting
point is added without eliminating the cuts previously found. The procedure is
greedy since it does not further explore the branching of solutions that are less
interesting at each iteration. It is important to consider a strategy with feasible
running time to search over the space of PDBNs, since the number of possible
manners in which a discrete time series can be partitioned is potentially large. In
order to be flexible, the complexity of the produced models can be controlled, as
it is an input parameter of the algorithm.
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The heuristic algorithm to learn PDBNs is presented in Algorithm 2. In order
to be generic for different scoring criteria used to construct and evaluate PDBNs,
we emphasize the search for cut sets instead of PDBNs explicitly. The algorithm
starts with the current best cut set as the singleton C = {T}, which stands for
a homogeneous model. Let us denote by s the size of the current cut set, i.e.,
s = |C|. By entering the outer loop (Line 2) the algorithm will first evaluate new
cut sets with size s + 1, each one consisting of the current C unified with a new
cut that does not exist in C (Line 3). After finishing the inner loop, it is verified
whether the current iteration has found an improved cut set, i.e., a cut set whose
evaluation is better than C. In case positive, C is replaced by the best cut set
among those (Lines 5-6). The algorithm continues this incremental construction
of cut sets while the current iteration is capable of producing a new cut set with
size (s + 1) that is better than the current C and the maximum number of cuts
(the input parameter k) is not reached. At the end (Line 8), the heuristic returns
the PDBN-k′ learned from the best cut set found, where k′ ≤ k.

Algorithm 2 Builds a PDBN

Input: D: a dataset of sequences with length {0, . . . , T};
k: the maximum size of the cut set, 1 ≤ k ≤ T.
Output: a PDBN-k′, where k′ ≤ k.

1: C ← {T}
2: while |C| < k do
3: For each c ∈ {1, . . . , T} − C, construct a new cut set C ∪ {c}. Denote the

new cut sets by C = {C1, . . . , Cr}.
4: Evaluate each cut set in C by means of a criterion f .
5: if there is a new cut set Ci ∈ C, where 1 ≤ i ≤ r, such that f (Ci) > f (C)

then
6: Assign to C the Cj that maximizes { f (C1), . . . , f (Cr)}.
7: else break the loop.

8: return PDBN-k′ with cut set C learned from the data D.

6.3.2.2 Evaluation criterion

As Algorithm 2 shows, the criterion f abstracts the learning of PDBNs. This is
motivated by the fact that choosing a proper evaluation strategy depends on
the application and the characteristics of the data, which makes it difficult to
set a single criterion that works best for all problems [182]. Generally speaking,
a multitude of model selection criteria can be employed to determine how f
is concretely implemented; some well-known criteria include cross-validation
(e.g. based on model likelihood) and information theory criteria (e.g. the Akaike
information criterion and the Bayesian information criterion) [46].

For example, in order to employ the AIC in Algorithm 2, one would first learn
a PDBN from the full dataset (i.e. all the sequences, hence a DBN) using the
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AIC as scoring function. Then, each sub-DBN associated to new cut sets (Line 3)
would be learned based on this score using the corresponding part of the data.

6.3.2.3 Complexity

Initially, the cut set maintained by the algorithm is C = {T}. At the first iteration
of the outer loop, new cut sets with size s + 1 are built, consisting of C plus a
new element; there are T − 1 manners to make this inclusion. At the second
iteration, there are T− 2 possible cut sets to be constructed, and so on, until the
last iteration, in which there is only one cut to be inserted in the current C. Thus,
the total number of cut sets constructed by the heuristic is in O(T2), considering
the worst case.

The dominant part of the heuristic’s total cost corresponds to learning models.
In the case of learning DBNs, the input can be seen as a transition dataset (X, X′),
consisting of all the data (X(i), X(i+1)), i = 0, . . . , T − 1, merged. Note that this
construction is sound since the model is time-homogeneous. If the original
dataset D consists of m sequences (each of length T + 1), this merged dataset will
consist of mT short sequences (each of length 2). Thus, abstracting the cost of
learning a DBN by means of a cost function g will lead to a cost of O(g(mT)) for
learning a DBN.

The case of learning PDBNs-k, k > 1, can be seen as learning k sub-DBNs
made of potentially different number of sequences, as dictated by the cut set of
the PDBN. Note that when the number of cuts is maximal, it implies learning
T sub-DBNs, each one from a transition dataset (X(i), X(i+1)) consisting of m
sequences, each with length 2. As each of these sub-DBNs would cost g(m),
learning such PDBN would require O(Tg(m))).

6.4 empirical evaluation via simulations

6.4.1 Simulation parameters

In this section experiments based on simulated data are presented for a general
assessment of the proposed method for learning PDBNs. Time series with
varying length and number of sequences were generated, resulting in diversified
datasets. We considered the number of features as n ∈ {2, 6, 10, 14, 18}, and
defined that each time series is composed by sequences with length of 10 or 30

time points. Hence, the unrolled models used in simulations have between 20

and 540 random variables in total. For each n and time series length, datasets
were randomly generated containing different number of sequences, denoted
by d ∈ {100, 500, 2000, 5000}. Thus, the simulation cases allow for a reasonable
evaluation in terms of different feature spaces and dataset sizes.

For each simulation scenario, a random DBN or PDBN-k was constructed,
consisting of n binary features per instant t. Structurally, a random PDBN-k
consists of k random sub-DBNs, where the graphical structure of each random
sub-DBN was uniformly generated at random [122], and distribution parameters



6.4 empirical evaluation via simulations 105

determined randomly as well (no noise was introduced in the model’s parame-
ters). Hence, each node of an unrolled PDBN assumes a Bernoulli distribution.
Given a random PDBN-k and a random cut set of length k, whose last cut cor-
responds to the length of the sequences that are to be sampled from the model,
four distinct datasets were constructed, one for each value of d. In other words,
a common underlying model was used for each group of simulations since the
experiments also aims at studying the effect on the heuristic’s capabilities over
different quantities of data.

Each dataset was generated from either a random DBN or a random PDBN.
The initial aim is to verify experimentally whether the construction algorithm is
able to learn the adequate class of model with respect to the reference model (a
random DBN or PDBN) used to simulate data. Moreover, the cuts of the learned
models are compared to the cuts of the reference models, where we use the
following notation:

• If the cuts of the reference and learned models are equal, we write ‘=’.

• If the cuts of the learned model include all the cuts of the reference model,
we write ‘⊆ +a’, where a denotes the number of additional cuts included
by the learned model.

• If none of these criteria is met, we write ‘ 6⊆’.

Although this notation is useful to perform a structural comparison in terms of
the number and position of distribution cuts, they do not provide information
about the distance between the probability distributions of two models. To this
end, the Kullback-Leibler (KL, for short) divergence [46] between the marginal
distribution of each feature X(t)

i was considered, which indicates the amount
of additional information one needs to codify samples from one distribution
using another distribution. The KL divergence over the entire joint distribution is
computationally prohibitive for most of the simulations covered in this section,
therefore we compute the KL divergence over marginal distributions as follows:

n

∑
i=1

T

∑
t=0

KL(P(X(t)
i ) || Q(X(t)

i )) =
n

∑
i=1

T

∑
t=0

∑
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P(X(t)
i ) log

P(X(t)
i )

Q(X(t)
i )

(6.3)

where Q(X(t)
i ) = 0 implies P(X(t)

i ) = 0. Equation 6.3 corresponds to the sum
of the divergences between the marginal distributions P and Q, in this case
a reference distribution and a learned distribution respectively. As with the
standard KL divergence, the quantity of Equation 6.3 should be minimized.

6.4.2 Learning and evaluating PDBNs

In order to learn a PDBN with k cuts, k homogeneous models are learned
using the corresponding portions of the training data according to its cut set,
where each sub-DBN is learned separately. As it happens with Bayesian-network
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learning, typically search-and-score and constraint-based methods are used for
learning the structure and parameters of each sub-DBN (see Section 2.4.2). In the
experiments reported in this chapter, the AIC score (see Equation 5.2) is employed
for evaluating each sub-DBN, which yields a score proportional to the likelihood
of the model and a penalization term for the complexity.

In order to select a suitable number of cuts, we implemented the evaluation
criterion of Algorithm 2 by means of a 10-fold cross-validation. Cross-validation
minimizes the effect of overfitting (see Section 2.6.3); we describe the procedure
in detail in the following. Let Ci = {t1, . . . , tk} be a cut set of a time series over
{0, . . . , T}; in the context of Algorithm 2, Ci corresponds to a new cut set that is
built in Line 3. For each cross-validation fold, the training data is used to learn a
PDBN-k with cut set Ci, while the test data is used to compute the log-likelihood
of such PDBN-k. After processing all the folds, the mean of the log-likelihoods is
taken, which represents the evaluation value of the PDBN-k with cut set Ci, as
indicated in Algorithm 2 by f (Ci). When deciding between two cut sets (e.g. as
in Line 5), the algorithm chooses the one having the higher mean log-likelihood.

After leaving the outer loop of Algorithm 2, the heuristic search is finished and
the best cut set is known. Finally, a PDBN-k with such cut set is learned using the
full dataset, i.e. training and test data. Such PDBN-k corresponds to the output
of the procedure.

6.4.3 Results and discussion

The results of simulations with data generated from DBN, PDBN-2 and PDBN-3
models are shown in Tables 6.1, 6.2 and 6.3 respectively. Note that a DBN was
learned on every case to serve as a baseline method, specially when simulating
data from non-DBNs; the performance of the learned DBNs are indicated on
the sixth column of the tables. Table 6.1 shows that the models learned by the
heuristic based on DBN data have structural partitioning in accordance with
the reference models on most cases, indicating that the heuristic was capable
of retrieving the adequate type of model. When the returned models were
not a DBN, they were mostly only slightly more complex ones (i.e. PDBNs-2).
Interestingly, the KL divergence between the learned PDBNs and the respective
reference models are comparable to the divergence of the learned DBNs, i.e.
although consisting of additional transition distributions, the learned PDBNs
captured the reference distribution as well as the learned DBNs did.

The models returned by the heuristic based on data produced by PDBNs-2
and PDBNs-3 (Tables 6.2 and 6.3) support analogous points discussed just before.
Furthermore, these tables show that the KL divergences of the PDBNs learned
heuristically were substantially lower than those of the learned DBNs, i.e. the
former are closer to the reference ones. This fact was more prominent when
the length of the time series was increased to 30. Intuitively, DBNs capture the
average behavior of the distribution underlying data; if most of the transitions
were originated from a single distribution, then the few remaining ones will tend
to have less impact on the distribution learned by the DBN. On the PDBN-2



6.4 empirical evaluation via simulations 107

n d Learned
Model

Cut Sets (R; L) Cut Diff. KL(L DBN) KL(L)

Time series length = 10
2 100 DBN (9) = 0.04 0.04

2 500 DBN (9) = 0.01 0.01

2 2000 DBN (9) = 0 0

2 5000 PDBN-2 (9); (7,9) ⊆ +1 0 0

6 100 DBN (9) = 0.17 0.17

6 500 DBN (9) = 0.04 0.04

6 2000 DBN (9) = 0.01 0.01

6 5000 DBN (9) = 0.01 0.01

10 100 DBN (9) = 0.24 0.24

10 500 DBN (9) = 0.09 0.09

10 2000 DBN (9) = 0.02 0.02

10 5000 DBN (9) = 0.02 0.02

14 100 DBN (9) = 0.38 0.38

14 500 DBN (9) = 0.07 0.07

14 2000 DBN (9) = 0.03 0.03

14 5000 DBN (9) = 0.02 0.02

18 100 DBN (9) = 0.23 0.23

18 500 DBN (9) = 0.07 0.07

18 2000 DBN (9) = 0.03 0.03

18 5000 DBN (9) = 0.02 0.02

Time series length = 30
2 100 DBN (29) = 0.01 0.01

2 500 DBN (29) = 0.01 0.01

2 2000 DBN (29) = 0 0

2 5000 PDBN-2 (29); (1,29) ⊆ +1 0.01 0.01

6 100 DBN (29) = 0.16 0.16

6 500 DBN (29) = 0.03 0.03

6 2000 DBN (29) = 0.02 0.02

6 5000 DBN (29) = 0.02 0.02

10 100 DBN (29) = 0.13 0.13

10 500 DBN (29) = 0.04 0.04

10 2000 DBN (29) = 0.03 0.03

10 5000 DBN (29) = 0.02 0.02

14 100 DBN (29) = 0.26 0.26

14 500 DBN (29) = 0.07 0.07

14 2000 DBN (29) = 0.04 0.04

14 5000 DBN (29) = 0.04 0.04

18 100 DBN (29) = 0.3 0.3
18 500 DBN (29) = 0.08 0.08

18 2000 DBN (29) = 0.05 0.05

18 5000 DBN (29) = 0.04 0.04

Table 6.1: Simulations with data generated from DBNs, where n and d denote the number of
features and the number of sequences respectively. R = reference model, L =
learned model (heuristic), KL (M) = KL divergence between model M and the
reference model, L DBN = learned DBN.

and PDBN-3 cases where the first cut was situated around half of the sequence
duration, there were at least two different transition patterns, which tends to
make DBNs less representative of each individual transition.

Overall, it is worth noting that the cases where the heuristic procedure was not
capable of constructing models with the same structural partition of transitions
as the reference models do have some particularities. Namely, these cases contain
just a few features (mostly n = 2) or have few sequences. Despite not returning
the exact type of model, the KL divergences of these PDBNs were noticeably
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smaller than the divergences of the learned DBNs, suggesting that the heuristic
made mistakes with low impact nonetheless.

n d Learned
Model

Cut Sets (R; L) Cut Diff. KL(L DBN) KL(L)

Time series length = 10
2 100 PDBN-4 (1,9); (1,2,4,9) ⊆ +2 0.18 0.08*
2 500 PDBN-2 (1,9) = 0.16 0.02*
2 2000 PDBN-4 (1,9); (1,5,7,9) ⊆ +2 0.19 0.01*
2 5000 PDBN-4 (1,9); (1,5,8,9) ⊆ +2 0.19 0.01*
6 100 PDBN-2 (6,9) = 1.88 0.14*
6 500 PDBN-2 (6,9) = 1.81 0.03*
6 2000 PDBN-2 (6,9) = 1.76 0.01*
6 5000 PDBN-2 (6,9) = 1.76 0.01*
10 100 DBN (8,9); (9) 6⊆ 1.06 1.06

10 500 PDBN-2 (8,9) = 0.96 0.05*
10 2000 PDBN-2 (8,9) = 0.95 0.02*
10 5000 PDBN-2 (8,9) = 0.95 0.01*
14 100 PDBN-2 (3,9) = 3.07 0.37*
14 500 PDBN-2 (3,9) = 2.68 0.1*
14 2000 PDBN-2 (3,9) = 2.39 0.03*
14 5000 PDBN-2 (3,9) = 2.35 0.02*
18 100 DBN (1,9); (9) 6⊆ 1.57 1.57

18 500 PDBN-2 (1,9) = 1.04 0.09*
18 2000 PDBN-2 (1,9) = 0.93 0.02*
18 5000 PDBN-2 (1,9) = 0.78 0.02*

Time series length = 30
2 100 PDBN-2 (15,29) = 5.05 0.09*
2 500 PDBN-2 (15,29) = 5.05 0.02*
2 2000 PDBN-7 (15,29); (2,6,15,20,26,28,29) ⊆ +5 5.07 0.02*
2 5000 PDBN-4 (15,29); (10,15,25,29) ⊆ +2 5.08 0.01*
6 100 PDBN-2 (18,29) = 15.8 0.12*
6 500 PDBN-2 (18,29) = 15.7 0.04*
6 2000 PDBN-2 (18,29) = 15.76 0.02*
6 5000 PDBN-2 (18,29) = 15.95 0.02*
10 100 PDBN-2 (20,29) = 7.24 0.26*
10 500 PDBN-2 (20,29) = 7.25 0.12*
10 2000 PDBN-2 (20,29) = 7.2 0.06*
10 5000 PDBN-2 (20,29) = 7.13 0.03*
14 100 PDBN-2 (21,29) = 9.29 0.35*
14 500 PDBN-2 (21,29) = 9.09 0.09*
14 2000 PDBN-2 (21,29) = 9.09 0.06*
14 5000 PDBN-2 (21,29) = 9.02 0.04*
18 100 PDBN-2 (17,29) = 13.02 0.34*
18 500 PDBN-2 (17,29) = 12.82 0.1*
18 2000 PDBN-2 (17,29) = 12.57 0.06*
18 5000 PDBN-2 (17,29) = 12.64 0.05*

Table 6.2: Simulations with data generated from PDBN-2 models. The best KL divergence
values are given in bold face and followed by an asterisk.

A summary of the results presented in Tables 6.1, 6.2 and 6.3 is given in
Table 6.4. Each row of the table aggregates simulations of DBNs, PDBNs-2 and
PDBNs-3 according to the number of features and sequence length.

6.4.4 Small datasets

In the final analysis based on simulations, we focus on the small datasets. The
simulations suggest that the models learned by the heuristic from the smallest
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n d Learned
Model

Cut Sets (R; L) Cut Diff. KL(L DBN) KL(L)

Time series length = 10
2 100 PDBN-2 (1,6,9); (6,9) 6⊆ 2.73 0.26*
2 500 PDBN-4 (1,6,9); (1,2,6,9) ⊆ +1 2.8 0.02*
2 2000 PDBN-3 (1,6,9) = 2.79 0.01*
2 5000 PDBN-4 (1,6,9); (1,4,6,9) ⊆ +1 2.78 0*
6 100 PDBN-3 (2,6,9) = 3.37 0.25*
6 500 PDBN-3 (2,6,9) = 3.09 0.04*
6 2000 PDBN-3 (2,6,9) = 2.91 0.02*
6 5000 PDBN-3 (2,6,9) = 2.94 0.01*
10 100 PDBN-2 (6,8,9); (6,9) 6⊆ 2.99 1.83*
10 500 PDBN-3 (6,8,9) = 2.85 0.07*
10 2000 PDBN-3 (6,8,9) = 2.8 0.02*
10 5000 PDBN-3 (6,8,9) = 2.78 0.02*
14 100 PDBN-2 (2,3,9); (3,9) 6⊆ 6.5 1.61*
14 500 PDBN-3 (2,3,9) = 5.41 0.1*
14 2000 PDBN-3 (2,3,9) = 4.96 0.04*
14 5000 PDBN-3 (2,3,9) = 4.76 0.02*
18 100 DBN (1,8,9); (9) 6⊆ 2.17 2.17

18 500 PDBN-3 (1,8,9) = 1.85 0.1*
18 2000 PDBN-3 (1,8,9) = 1.7 0.03*
18 5000 PDBN-3 (1,8,9) = 1.52 0.02*

Time series length = 30
2 100 PDBN-3 (15,17,29) = 1.97 0.1*
2 500 PDBN-3 (15,17,29) = 1.93 0.02*
2 2000 PDBN-6 (15,17,29); (1,6,15,17,22,29) ⊆ +3 1.92 0.02*
2 5000 PDBN-5 (15,17,29); (3,15,16,17,29) ⊆ +2 1.92 0.01*
6 100 PDBN-3 (18,19,29); (17,19,29) 6⊆ 17.15 1.53*
6 500 PDBN-3 (18,19,29) = 17.09 0.05*
6 2000 PDBN-3 (18,19,29) = 17.13 0.03*
6 5000 PDBN-3 (18,19,29) = 17.12 0.02*
10 100 PDBN-3 (20,24,29) = 25.57 0.38*
10 500 PDBN-3 (20,24,29) = 25.69 0.07*
10 2000 PDBN-3 (20,24,29) = 25.59 0.05*
10 5000 PDBN-3 (20,24,29) = 25.09 0.03*
14 100 PDBN-3 (8,21,29) = 15.53 0.47*
14 500 PDBN-3 (8,21,29) = 15.3 0.17*
14 2000 PDBN-3 (8,21,29) = 15.15 0.07*
14 5000 PDBN-3 (8,21,29) = 15.05 0.04*
18 100 PDBN-3 (1,17,29) = 12.63 0.61*
18 500 PDBN-3 (1,17,29) = 12.07 0.11*
18 2000 PDBN-3 (1,17,29) = 12.03 0.06*
18 5000 PDBN-3 (1,17,29) = 11.97 0.05*

Table 6.3: Simulations with data generated from PDBN-3 models. The best KL divergence
values are given in bold face and followed by an asterisk.

datasets (i.e. those with d = 100 sequences) were simpler than the reference
models used to generate simulated data in virtually every case. Hence, the
heuristic tends to operate in a conservative mode when there is scarcity of data.
This also indicates that the methodology was effective in combating overfitting in
these simulations.

With regard to the structural partitioning and quality measurements for these
models: (1) the cuts of the learned models were all part of the cut sets of the
reference models in almost all cases (note that this includes all the cases with
a 6⊆); and (2) the divergences of the learned PDBNs were substantially smaller
than those of DBNs, specially when data was generated from PDBN-3 models,
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n KL(DBN) - KL(L) KL(L) ‘=’ (total) ‘⊆ +a’ ‘ 6⊆’ (total)
Time series length = 10
2 0.95 0.04 5(12) 1.5 1(12)
6 1.58 0.06 12(12) 0 0(12)
10 1.02 0.29 10(12) 0 2(12)
14 2.49 0.23 11(12) 0 1(12)
18 0.63 0.36 10(12) 0 2(12)
Time series length = 30
2 2.31 0.03 7(12) 2.6 0(12)
6 10.82 0.17 11(12) 0 1(12)
10 10.81 0.1 12(12) 0 0(12)
14 8.02 0.14 12(12) 0 0(12)
18 8.2 0.15 12(12) 0 0(12)

Table 6.4: Summary of simulations with DBNs and PDBNs. Abbreviations: L = learned
model (heuristic), KL (M) = KL divergence between model M and the refer-
ence model. Positive values in the 2nd column indicate higher divergences
achieved by DBNs. The 4th, 5th and 6th columns refer to the structural com-
parison of Section 6.4.1 and stand for the number of equal cut sets, average
number of additional cut sets in learned models, and number of remaining cases
respectively.

indicating a decent learning ability of the heuristic in the difficult situation of
small datasets.

6.5 learning temporal models of psychotic depression

6.5.1 Bayesian networks in psychiatry

The use of probabilistic graphical models in psychiatry has been fairly narrow.
Existing research is mainly restricted to semi-automatic and fully handcrafted
approaches, namely, learning only the parameters from data [41, 157] and eliciting
both structure and parameters from descriptive statistics and expert knowledge
[49, 103]. Although making use of expert knowledge might be necessary, e.g.
in order to include established medical knowledge, the use of a data-driven
approach has been able to discover new and unexpected insights in a multitude
of fields. Furthermore, an advantage of BN models that can be of interest in
psychiatry studies lies on making predictions when provided with incomplete
evidence (e.g. only a few symptoms). This feature has been explored in some
studies [49, 103], however at the individual level of a few patients (whether real
or artificial), consequently, there is still a need for understanding associations
between different variables in a more comprehensive and systematic way. This
can include inferences for a population of patients, in order to reveal more
general knowledge about, for example, the predictive power among different sets
of features.
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In the literature on BNs in psychiatry, so far time has not been a factor that has
been taken into account in a comprehensive manner. Except for [41] that deals
with the beginning and end of treatment, research that considers a broad range
of time granularities has not been done up to this moment. This could be of
interest, e.g., to controlled treatment trials and longitudinal diagnosis, where the
examination of some form of history or time series measurements would allow
for a more global comprehension of, for example, the evolution of mental illnesses
and a more accurate diagnosis. For prediction with BNs and extensions such as
DBNs, it is not required to enter all the symptoms as input for these models to be
able to deliver predictions about the future. Furthermore, these predictions can
be done for any point in future. Besides prediction, temporal models can also be
used to find associations taking into account the time dimension. On the other
hand, well-known models such as regression seem to be less flexible with regard
to tasks such as the mentioned ones.

Within the field of psychiatry, diseases that have been covered under a BN
approach include depression [36, 41, 103], social anxiety [157], schizophrenia
[49], as well as analyzing the use of BNs on diagnosis in psychiatry [162]. More-
over, there is little research on using temporal models for better understanding
psychotic depression, which besides being a severe mental disorder, brings an
additional complexity due to the presence of psychosis and depression factors.

6.5.2 Problem description and data

To illustrate the use of non-homogeneous probabilistic models and the heuristic
construction procedure proposed in this work, a case study in psychiatry is
considered. It comprises a dataset from an original study designed to assess three
different drugs to treat psychotic depression over 7 weeks [175]. The primary
outcome of the original study aimed at comparing the drugs to depression
levels and psychotic features at treatment endpoint. In this work, we aimed at
answering a different research question: to which extent do depressive and psychotic
symptoms interact over time? To this end, temporal models as DBNs and PDBNs
are used to evaluate a large range of hypothesis about PD while modeling explicit
relationships between psychotic and depressive features. We first discuss the
results obtained by the heuristic algorithm when applied over psychiatry data,
aiming at: (1) a more technical perspective based on fitting assessment between
DBNs and PDBNs; and (2) an investigation of the dependences in the graphical
structure. Then, in Section 6.6 we make use of the obtained models to answer
clinically-oriented research questions, as the one mentioned earlier.

Differently from the original study, in which the primary outcome was the
sum of the 17-item Hamilton depression rating scale (abbreviated as HDRS17)
[81], in this section we considered the individual symptoms of the HDRS17. The
dataset consists of 122 patients’ data, from which 100 are patients that completed
the treatment. Given the limited data, we used the 6-item melancholia sub-scale
(HDRS6) [89] instead of the complete HDRS17, consisting of the features shown
on Table 6.5. Using the melancholia sub-scale is, therefore, two-fold: it avoids
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the usage of the complete HDRS17 upon the available scarce dataset, whereas
HDRS6 is able to capture the core symptoms of depression [89]. In addition,
two psychotic features were considered (hallucinations and delusions), totalizing
eight features.

Psychiatry dataset [175]
Number of sequences
(complete)

122 (100) patients

Number of time points 8 (including baseline)
Depression features
(HDRS6)

Depressed mood (Dm), Guilt (Gu), Work
and Activities (Ac), Psychomotor Retarda-
tion (Re), Psychic Anxiety (Ap), and So-
matic General (Sg)

Psychotic features Hallucinations (Ha) and Delusions (De)
Study’s period and loca-
tion

2002-2007, The Netherlands

Table 6.5: Summary of psychiatry data.

The somatic general item takes values from the set {0, 1, 2}, where the value 0

means the item is absent, and the value 2 means it is clearly present. The other
items of HDRS6 are graded on {0, 1, 2, 3, 4}, where 0 means the item is absent, and
4 means the item is severe [81]. To use as much data as possible, the incomplete
cases were imputed with the same method used in the original study [175],
namely, the last observation carried forward (LOCF). The frequencies of the
imputed data at each week are shown on Table 6.6. An additional step in data
preprocessing to cope with the limitation of dataset size consisted of discretizing
each item as binary variables on {low, high}, as follows: {0, 1} was mapped
to low, while {2, 3, 4} (for five-valued variables) and {2} (for the three-valued
variable) were mapped to high.

6.5.3 Heuristic learning

Applying the heuristic procedure over the data first yields a DBN, with mean
log-likelihoods −351.18. In the first iteration of the heuristic refinement, it tries
to find a model with two cuts that is a better fit than the DBN, which in fact
was possible, precisely a PDBN-2 with cuts {4, 7} and fit of −345.53, as show
on left side of Fig. 6.2. Although not expanded further, the model with cuts
{6, 7} was also a better fit than the DBN (mean equal to −350.31). Since the
algorithm found an improvement over the current best solution (the DBN), it
updates the best solution to the most fit PDBN-2 and continues the heuristic
search, now over PDBNs-3. As the right plot of Fig. 6.2 shows, the search again
could find an improved solution, precisely a PDBN-3 with an additional cut just
before the last cut, leading to a new cut set {4, 6, 7} and mean log-likelihood
of −344.80. Consequently, a new iteration is began over PDBNs-4, however, no
further improvement could be achieved this time since the best fitting PDBN-
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Depressed mood Guilt
t 0 1 2 3 4 µ 0 1 2 3 4 µ

0 0 0 0.04 0.35 0.61 3.57 0.04 0.05 0.14 0.14 0.63 3.27
1 0.01 0.02 0.14 0.41 0.43 3.23 0.04 0.07 0.2 0.23 0.45 2.98
2 0.05 0.07 0.26 0.39 0.23 2.69 0.09 0.15 0.24 0.2 0.33 2.52
3 0.1 0.13 0.26 0.29 0.22 2.4 0.15 0.23 0.25 0.16 0.22 2.07
4 0.16 0.17 0.3 0.2 0.17 2.07 0.24 0.23 0.2 0.14 0.19 1.81
5 0.22 0.16 0.23 0.22 0.17 1.97 0.3 0.2 0.2 0.12 0.17 1.67
6 0.25 0.12 0.27 0.2 0.15 1.87 0.34 0.16 0.18 0.15 0.17 1.66
7 0.26 0.15 0.26 0.2 0.13 1.79 0.34 0.23 0.16 0.1 0.17 1.52

Psychomotor retardation Psychic anxiety
t 0 1 2 3 4 µ 0 1 2 3 4 µ

0 0.16 0.3 0.31 0.22 0.02 1.65 0.03 0.14 0.27 0.37 0.19 2.54
1 0.15 0.33 0.34 0.16 0.02 1.59 0.11 0.16 0.29 0.29 0.16 2.22
2 0.27 0.3 0.29 0.12 0.02 1.34 0.18 0.22 0.3 0.23 0.07 1.8
3 0.33 0.35 0.22 0.08 0.02 1.11 0.29 0.25 0.23 0.16 0.07 1.47
4 0.4 0.31 0.2 0.07 0.02 0.98 0.3 0.26 0.2 0.17 0.06 1.42
5 0.53 0.21 0.18 0.06 0.02 0.81 0.39 0.2 0.24 0.12 0.05 1.24
6 0.52 0.27 0.13 0.06 0.02 0.77 0.39 0.16 0.23 0.17 0.04 1.3
7 0.62 0.18 0.12 0.06 0.02 0.66 0.38 0.26 0.19 0.12 0.05 1.2

Work and activities Somatic general
t 0 1 2 3 4 µ 0 1 2 µ

0 0 0 0.15 0.49 0.36 3.21 0.1 0.3 0.61 2.54
1 0 0 0.21 0.52 0.27 3.06 0.16 0.34 0.51 2.22
2 0 0.02 0.34 0.5 0.14 2.76 0.22 0.43 0.34 1.8
3 0.01 0.08 0.35 0.4 0.16 2.61 0.34 0.39 0.27 1.47
4 0.02 0.12 0.4 0.34 0.12 2.43 0.27 0.48 0.25 1.42
5 0.02 0.14 0.43 0.29 0.12 2.34 0.39 0.42 0.2 1.24
6 0.03 0.19 0.36 0.3 0.12 2.29 0.41 0.38 0.21 1.3
7 0.07 0.25 0.37 0.2 0.11 2.03 0.4 0.36 0.24 1.2

Table 6.6: Relative frequencies of HDRS6 items of psychiatry data at each week, where µ

denotes the respective weighted means.

4 had a mean of −362.61 (plot not shown), leading to the termination of the
procedure. Hence, the model returned was a PDBN-3 with cuts at {4, 6, 7}.

A more detailed examination of the time partitioning of the resulting PDBN-3
can reveal insight on the underlying dynamics of the psychiatric treatment. In
general lines, it suggests that the dynamics governing roughly the first half of the
treatment’s duration is distinguished from the remaining weeks. The second half
of treatment is further dichotomized since the transition pattern to the last week is
distinguished as well. Hypothesis can be devised from this structural partitioning,
e.g. whether there are one or more symptoms that have stronger influence on the
others in the first stage, and whether the last transition is distinguished due to a
possible stabilization. Nonetheless, clinically relevant questions as these need a
stronger assessment based on the graphical structure and distributions of each of
the three components of the model, as covered in the next section.
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(a) First iteration: 2 cuts.
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(b) Second iteration: 3 cuts.

Figure 6.2: Boxplots for each stage of the heuristic over psychiatry data. The means are
represented by a diamond symbol.

6.5.4 Transition structures

The structure of the DBN is shown in Fig. 6.3, while the structure of the con-
ditional BNs that compose the PDBN-3 are shown in Figures 6.4 and 6.5. For
a clearer exposition, each conditional BN was split into inter-temporal arcs (i.e.
those from t + 1 to t) and intra-temporal arcs (those delimited to each point t + 1).
Note that DBN’s and PDBN-3’s initial structure are naturally the same. Both
models indicate the existence of a self-influence for every feature when moving
from present to future. More precisely, if A is a feature, the chain A(t) → A(t+1)

has been regularly learned for both DBN and PDBN-3, indicating (part of) the
direct effect received by A(t+1).

6.6 model assessment from a clinical perspective

In this section we approach the use of the learned models for psychotic depression,
specially the DBN and the PDBN-3, to support answering clinically-oriented
questions.

6.6.1 Marginals of symptoms over time

The previous sections showed that the PDBN-3 learned by the heuristic procedure
provided: a better fit and a richer transition structure information with respect
to other evaluated PDBNs, including the DBN. A complementary and practical
assessment of these models compare the marginal frequencies of each symptom
per week, as seen in data, with the respective model-based marginal distributions.
Table 6.7 presents the empirical and model-based marginals for each symptom



6.6 model assessment from a clinical perspective 115

t+1

De

Ha

Dm

Gu

Ac

Re

Ap

Sg

t + 1

De

Ha

Dm

Gu

Ac

Re

Ap

Sg

(a) Inter-temporal arcs.

t + 1

De

Dm Ha

Ac

Re

Ap

Gu Sg

(b) Intra-temporal arcs.

Figure 6.3: Structure of the DBN learned from the psychiatry data. Nodes on the left side
of the inter-temporal arcs occur at time t, while those on the right at t + 1. De
= Delusions, Ha = Hallucinations, Dm = Depressed mood, Gu = Guilt, Ac =
Work and activities, Re = Psychomotor retardation, Ap = Psychic anxiety, Sg =
Somatic general.

per week, where the value assumed is either true or high. A summary of this
information is presented at Table 6.8.

Concerning the psychotic symptoms, the PDBN-3 produced marginals that are
closer to the empirical data than the DBN on average. With respect to depressive
symptoms, a superior fit was achieved by the PDBN-3, except for the symptom
psychomotor retardation.

6.6.2 Predictive symptoms over time

As discussed before, selecting an adequate structure is an important step to
capture the underlying distribution in data as precisely as possible. As a proba-
bilistic graphical model, the structure of PDBNs can be systematically verified
for statistical independences among two sets of random variables by means of
d-separation properties [104], essentially testing the paths between the respective
nodes in the structure. As the Figures 6.4 and 6.5 show, the marginal statistical
dependences, both direct and indirect (i.e. through paths with two or more arcs),
dominated over the marginal independences. Nevertheless, the independence
relation ⊥⊥P (or its counterpart 6⊥⊥P) is qualitative, in the sense that two variables
being dependent does not directly inform about any intensity in which this
dependence occur.
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(a) First cut: [0, 4].

t+1

De

Ha

Dm

Gu

Ac

Re

Ap

Sg

t + 1

De

Ha

Dm

Gu

Ac

Re

Ap

Sg

(b) Second cut: [4, 6].
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(c) Third cut: [6, 7].

Figure 6.4: Inter-temporal arcs of the PDBN-3 learned from the psychiatry data. De =
Delusions, Ha = Hallucinations, Dm = Depressed mood, Gu = Guilt, Ac =
Work and activities, Re = Psychomotor retardation, Ap = Psychic anxiety, Sg =
Somatic general.

In this context, we approach a research question within the field of psychiatry,
specially in psychotic depression: to which extent do psychotic and depressive features
interact during treatment? This question can be rephrased more concretely as:
how predictive are the psychotic symptoms to depressive symptoms, and vice-versa? To
answer this question, statistical (in)dependences play a key role, since it is the
fundamental criterion to decide on dependence and independence. However, it
must be complemented to allow an assessment of the intensity of dependence
among different dependent variables, aiming ultimately at discovering adequate
predictors, i.e. features capable of performing an effective prediction of the
interested symptoms. Intuitively, a symptom is a good predictor if each of its
groups (i.e. its values) induces a different distribution on the predicted symptom;
in other words, it should allow to reasonably distinguish the predicted symptom.

In this section, the odds ratio criterion is employed to determine the strength
of predictors. A subset of time points was selected as conditioning points to
observe a psychotic (resp. depressive) symptom and then compute the ORs of
future time points for each depressive (resp. psychotic) symptom. Using multiple
points allows to evaluate the dynamics of predictive capability as treatment
progresses and more information become available. These conditioning points
were selected to match approximately the cut points of the PDBN-3 learned
heuristically, namely, {1, 4, 6}. The baseline point (t = 0) was discarded since it
was a weak predictor for most of these predictions.
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Figure 6.5: Intra-temporal arcs of the PDBN-3 learned from the psychiatry data. De =
Delusions, Ha = Hallucinations, Dm = Depressed mood, Gu = Guilt, Ac =
Work and activities, Re = Psychomotor retardation, Ap = Psychic anxiety, Sg =
Somatic general.

In order to compute an OR, suppose X is a psychotic symptom observed at
some point (e.g. at t = 1), and Y is a depressive symptom that will be predicted at
t = i, i > 1; therefore, dom(X) = {true, f alse} and dom(Y) = {low, high}. Then,
the odds ratio to predict Y given X is:

OR(Y(i)|X(1)) =
odds(Y(i) = high | X(1) = true)
odds(Y(i) = high | X(1) = f alse)

(6.4)

=

P(Y(i) = high | X(1) = true)
1− P(Y(i) = high | X(1) = true)

P(Y(i) = high | X(1) = f alse)
1− P(Y(i) = high | X(1) = f alse)

(6.5)

We fix that each depressive variable Y is predicted with level high, hence,
the OR indicates the chances of having level high in the future according to
each group of a psychotic feature X. If OR > 1, then it is more likely that the
depressive feature Y will have level high if the patient comes from the group with
X = true compared to the patients coming from the group X = f alse; if OR < 1,
it is more likely to observe Y at high in the group X = f alse than in the group
X = true; finally, if OR = 1, there is no association between X and Y, i.e. knowing
the group of this particular psychotic feature does not affect the predictions for
this depressive symptom. For the sake of terminology, an OR > 1 is also called a
positive correlation, while an OR < 1 indicates a negative correlation. Note that
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Symptom Marginal probability (%)
t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7

Delusions
Data 91.0 72.1 59.0 47.5 40.2 36.1 32.0 30.3
DBN -0.09 0.43 0.32 2.03 1.93 0.22 -0.18 -1.95

PDBN-3 -0.09 -0.88 -1.32 0.28 0.16 0.38 1.6 0.11
Hallucinations
Data 23.8 15.6 16.4 13.1 13.1 11.5 13.9 11.5
DBN 0.03 3.69 -0.25 0.68 -1.06 -0.77 -4.26 -2.62

PDBN-3 0.03 2.77 -1.59 -0.58 -1.95 -0.01 -2.05 -1.66
Depressed mood
Data 100.0 97.5 88.5 77.0 67.2 62.3 62.3 59.0
DBN -0.83 -4 -2.22 2.02 4.96 4.07 -1.07 -2.06

PDBN-3 -0.83 -4.39 -3.66 -1.08 0.67 4.02 2.5 1.76
Guilt
Data 91.0 88.5 76.2 62.3 53.3 50.0 50.0 42.6
DBN -0.03 -5.78 -2.37 3.09 4.56 1.49 -3.76 -0.84

PDBN-3 -0.03 -6.72 -3.92 0.9 2.03 3 1.17 -0.07
Activities
Data 100.0 100.0 98.4 91.0 86.1 83.6 77.9 68.0
DBN -0.83 -4.36 -6.87 -3.87 -3.13 -4.52 -2.36 4.47

PDBN-3 -0.83 -3.03 -4.14 0.16 1.73 -0.18 2.72 2.66
Retardation
Data 54.9 52.5 43.4 32.0 28.7 25.4 20.5 19.7
DBN -0.1 -6.18 -4.38 1.32 -0.01 -0.41 1.77 0.39
PDBN-3 -0.1 -4.3 -2.96 1.78 -0.45 -2.73 -0.86 -2.32

Psychic anxiety
Data 82.8 73.0 59.8 45.9 43.4 41.0 44.3 36.1
DBN -0.01 -4.76 -1.04 5.93 3.04 1.07 -5.76 -0.57
PDBN-3 -0.01 -5.54 -3.19 2.87 -0.56 3.36 0.17 1.98

Somatic general
Data 60.7 50.8 34.4 27.0 25.4 19.7 21.3 23.8
DBN -0.02 -6.71 0.83 3.03 1.2 4.47 0.94 -3.05
PDBN-3 -0.02 -7.28 -0.95 1.15 -0.29 1.57 -1.63 -3.33

Table 6.7: Marginal distributions over time: psychiatry data and learned models (the latter
minus the former). The time span is split according to the cut set of the PDBN-3.

for the case when X is depressive and Y is psychotic, we fix true for X, and high
and low in the numerator and denominator for Y respectively.

Additionally, to evaluate of the significance of the association between each X
and Y, tables of contingency were constructed based on expected counts from the
model. The Fisher’s exact test was employed to evaluate the statistical significance
of these, under a significance level of α = 0.05.

6.6.2.1 Predictors for depression

Table 6.9 shows the ORs for psychotic features one week after baseline (i.e. at
t = 1), acting as predictors for depression. These results suggest that delusions at
that point had an at least reasonable association with the symptoms depressed
mood and guilt, i.e. for at least half of the future points that were predicted.
On the other hand, hallucinations at t = 1 showed to be less associated to the
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Symptom Mean Diff.
(DBN)

Mean Diff.
(PDBN-3)

Delusions 0.89 0.6
Hallucinations 1.67 1.33*
Depressed mood 2.65 2.36*
Guilt 2.74 2.23*
Activities 3.8 1.93*
Retardation 1.82* 1.94

Psychic anxiety 2.77 2.21*
Somatic general 2.53 2.03*

Table 6.8: Summary of percentage differences of learned models to the marginal frequen-
cies of psychiatry data. The absolute values are used to compute the means.

depressive symptoms. Nonetheless, somatic general contrasts with this pattern,
as it has been predicted by hallucinations almost until the end of the remaining
weeks of treatment. The other case where some dependency on this predictor
was noticed is psychic anxiety, however for a shorter period of time (three weeks
forward).

With respect to the predictive power of psychotic symptoms observed at t = 4
and t = 6 (Table 6.10, left and right respectively), delusions stood as predictor
of depressed mood and guilt, in this situation as a stronger predictor (all three
future predictions were significant). Other depressive symptoms were mostly
weakly associated to delusions. Hallucinations at these time points showed a
more restricted behavior than before, since it acted as predictor of somatic general
only, although by significant associations.

Symptom & predictor t=2 t=3 t=4 t=5 t=6 t=7
Depressed mood

Delusions(1) 5.15* 3.39* 2.72* 1.75 1.38 1.44

Hallucinations(1) 1.13 1.5 1.46 1.59 1.66 1.48

Guilt
Delusions(1) 3.84* 3.27* 2.75* 2.11* 1.84 1.62

Hallucinations(1) 1.1 1.12 1.2 1.2 1.3 1.29

Activities
Delusions(1) 3.53 2.23 2.45 1.42 1.4 1.45

Hallucinations(1) 1.34 1.04 1.38 1.38 1.6 1.47

Retardation
Delusions(1) 3.24* 3.22* 2.4 2.02 1.67 1.35

Hallucinations(1) 1.15 1.16 1.24 1.33 1.25 1.35

Psychic anxiety
Delusions(1) 1.33 1.21 1.16 1.27 1.33 1.46

Hallucinations(1) 2.54* 2.66* 2.41* 1.65 1.32 1.31

Somatic general
Delusions(1) 0.96 0.95 0.8 0.7 0.64 0.82

Hallucinations(1) 3.31* 3.27* 2.86* 3.07* 2.97* 2.23

Table 6.9: Odds ratios for psychotic symptoms as predictors. An OR greater than 1

indicates that the level high on the depressive feature is more likely to be
observed in the group true than in the group f alse of the psychotic feature.
Results marked in bold and * stand for a statistically significant association.
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Symptom & predictor t=5 t=6 t=7
Depressed mood

Delusions(4) 3.09* 2.26* 2.17*
Hallucinations(4) 1.98 2.14 1.71

Guilt
Delusions(4) 4.15* 2.93* 2.34*
Hallucinations(4) 1.19 1.31 1.4

Activities
Delusions(4) 2.26 1.81 2.59*
Hallucinations(4) 2.52 1.53 1.61

Retardation
Delusions(4) 2.97* 2.02 1.98

Hallucinations(4) 1.4 1.25 1.36

Psychic anxiety
Delusions(4) 1.88 1.88 2.21*
Hallucinations(4) 2.18 1.53 1.45

Somatic general
Delusions(4) 0.97 0.87 0.99

Hallucinations(4) 6.52* 6.18* 4.91*

Symptom & predictor t=7
Depressed mood

Delusions(6) 2.72*
Hallucinations(6) 1.67

Guilt
Delusions(6) 3.62*
Hallucinations(6) 1.2

Activities
Delusions(6) 5.66*
Hallucinations(6) 1.61

Retardation
Delusions(6) 2.04

Hallucinations(6) 1.34

Psychic anxiety
Delusions(6) 3.52*
Hallucinations(6) 1.25

Somatic general
Delusions(6) 1.14

Hallucinations(6) 4.31*

Table 6.10: Odds ratios for psychotic symptoms as predictors (cont.). Left: t = 4, right:
t = 6.

6.6.2.2 Predictors for psychosis

In the following, we evaluate how predictive the depressive symptoms are to
predict psychotic symptoms. Note that ORs are not symmetric; for example,
we calculate P(Som.gen(t)|Del(0)) to assess whether delusions is predictive to
somatic general, while we compute P(Del(t)|Som. gen(0)) to assess whether
somatic general is predictive to delusions. Note that these two might represent
distinct quantities.

Table 6.11a shows the odds ratio for each depressive symptom observed at t = 1.
As the results indicate, the depressive symptoms were not significantly strong to
predict delusions, except depressed mood, guilt and retardation, which accounted
for a weak association (precisely, two weeks ahead of the reference measurement).
Regarding hallucinations, there is virtually no depressive symptom predictor for
the case of t = 1.

On the other hand, updating the depressive symptoms at t = 4, as shown on
Table 6.11b (left), increased the association of the three symptoms mentioned
before to predict delusions until the end. The same insight applies to predict
delusions at t = 6. Concerning the prediction of hallucinations, somatic general
emerged with strong associations when measured both at t = 4 and t = 6,
while psychic anxiety showed reasonable associations only when measured at
the middle point, though.

6.7 conclusions

In this work, we proposed a heuristic algorithm to learn non-homogeneous time
dynamic Bayesian networks for relatively small temporal datasets with a small
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Symptom & predictor t=2 t=3 t=4 t=5 t=6 t=7
Delusions

Depressed mood(1) 5.3* 6.91* 5.04 4.2 3.66 3.21

Guilt(1) 2.91* 2.86* 2.21 2.16 1.9 1.62

Activities(1) 2.79 2.78 2.05 1.75 1.53 1.31

Retardation(1) 2.49* 2.11* 1.8 1.57 1.37 1.38

Psychic anxiety(1)
1.18 1.19 1.18 1.26 1.27 1.22

Somatic general(1) 0.91 0.97 0.96 1.07 1.07 1.16

Hallucinations
Depressed mood(1)

0.58 0.49 0.42 0.83 0.9 0.75

Guilt(1) 0.84 0.86 0.78 0.78 0.79 0.67

Activities(1) 0.51 0.44 0.38 0.38 0.41 0.31

Retardation(1)
1.08 0.93 0.91 0.81 0.93 1.07

Psychic anxiety(1)
1.84 2.05 1.71 1.83 1.39 1.52

Somatic general(1) 3.04* 2.9 2.54 1.86 1.86 1.94

(a) Odds ratios based on t = 1.
Symptom & predictor t=5 t=6 t=7
Delusions

Depressed mood(4) 4.96* 3.97* 4.22*
Guilt(4) 8.13* 5.62* 4.58*
Activities(4) 3.84 3.36 3.14

Retardation(4) 3.32* 2.5* 2.2*
Psychic anxiety(4)

1.8 1.69 1.9
Somatic general(4) 1.35 1.35 1.37

Hallucinations
Depressed mood(4)

1.2 1.2 0.97

Guilt(4) 1.07 0.91 0.96

Activities(4) 0.82 0.9 0.67

Retardation(4)
1.04 1.3 1.27

Psychic anxiety(4) 3.8* 3* 2.97

Somatic general(4) 4.85* 3.6* 3.36*

Symptom & predictor t=7
Delusions

Depressed mood(6) 3.94*
Guilt(6) 5.63*
Activities(6) 1.83

Retardation(6)
1.87

Psychic anxiety(6) 2.52*
Somatic general(6) 1.19

Hallucinations
Depressed mood(6)

1.71

Guilt(6) 1.35

Activities(6) 1.25

Retardation(6)
1.41

Psychic anxiety(6)
1.29

Somatic general(6) 7.47*

(b) Odds ratios based on t = 4 (left) and t = 6 (right).

Table 6.11: Odds ratios for depressive symptoms as predictors. An OR greater than
1 indicates that the level true on the psychotic feature is more likely to be
observed in the group high than in the group low of the depressive feature.
Results marked in bold and * stand for a statistically significant association.

number of variables as typically encountered in clinical settings. Extensive simu-
lations and a case study in psychiatry (psychotic depression) demonstrated its
capability to find adequate models under different assumptions, which included
data generated from non-homogeneous and homogeneous models. In particular,
simulated experiments played an important role to show that, in more general
scenarios, models based on non-homogeneous time have substantial benefits
over DBNs on several aspects (e.g. model fit and problem insight) when the
underlying process switches between different regimes on time. In the case of
small datasets, common in many clinical studies, it was shown that the heuristic
algorithm behaves in a more conservative fashion, i.e. it tends to produce slightly
simpler non-homogeneous models compared to the reference models, and yet
providing a decent fit.

Aiming at learning non-homogeneous models in the usually unfavorable sce-
nario of data scarcity, an evaluation criterion employed by the heuristic explicitly
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avoids over-specialized models, at the same time providing more robust models.
Moreover, the search strategy of the heuristic, based on incremental construction
of non-homogeneous models, is able to cope with the trade-off between model
complexity and data scarcity.

A first step towards a systematic application of probabilistic graphical models
in psychiatry taking into account the temporal dimension was taken. It allowed
to obtain insight about the dynamics of patient recovery in psychotic depression
over the course of a controlled treatment. In particular, a research question aiming
to answer the temporal relationship between psychotic and depressive features
was investigated, supported by models learned with the heuristic procedure.
The experimental assessment of the predictive capability of psychotic symptoms
observed at different moments (near baseline, middle and near-end points)
showed that the delusions symptom was more predictive than the hallucinations
symptom on most cases. On the other hand, the depressive symptoms were less
predictive for the psychotic symptoms. Nevertheless, a point to be observed is
that in general the predictions were bidirectional, i.e. the symptoms from one
category that stood as statistically significant predictors for the other can be
interchanged.

Among future research, we intend to evaluate the developed algorithm in
other real-world problems, as well as investigate further variations of the incre-
mental search. For example, during the execution of the algorithm, different
new solutions with equal or approximately equal score yet higher than the cur-
rent best solution can be found; this is currently worked out by choosing one
of these new solutions randomly and then resuming the search. The problem
of handling multiple solutions is in fact recurring in the literature of Bayesian
networks, where extensive research has been developed [33, 40, 108, 124]. In
this direction, the approach of this chapter could benefit from such research, for
example by extending the greedy search, as well as taking into account Bayesian
approaches [145]. These further investigations could provide more insight about
the distribution and the variance of the cut sets.
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E X C E P T I O N A L M O D E L M I N I N G U S I N G D Y N A M I C
B AY E S I A N N E T W O R K S

The discovery of subsets of data that are characterized by models that differ significantly
from the entire dataset, is the goal of exceptional model mining. This task has clear
relevance nowadays, facing the current need for interpretable AI models. In this chapter,
we introduce temporal exceptional model mining to capture not only multiple targets,
but also complex temporal relationships among the targets. Temporal exceptional model
mining opens new avenues for discovering groups that deviate from the crowd, in domains
such as medical treatments and industrial processes, where repeated measurements of a
set of variables might be available. The contributions of this chapter are three-fold: (i)
a new definition of the task of temporal exceptional model mining is provided; (ii) we
characterize the discovery of exceptional dynamic Bayesian networks by means of a new
interestingness score, and (iii) the practical value of the proposed method is demonstrated
based on process data of funding applications and by comparisons with previous EMM
approaches.

7.1 introduction

Subgroup discovery (SD, for short) is the task of identifying subsets of a dataset
that have unusual distributions with respect to a target variable [87]. Subgroup
discovery and clustering have different goals [181] as clustering seeks subsets
of data that are internally homogeneous, while in SD the models that allow
for interpreting differences are sought, as they support explaining why an object
belongs to a subgroup. Interpretability is essential in artificial intelligence, even
with successful, yet less interpretable models as deep neural networks [88, 114],
which justifies the relevance of SD research.

In many real-world applications one has to deal with multiple and complex
targets. This has led to the generalization of subgroup discovery known as
exceptional model mining (EMM, for short) [110]. EMM aims to identify subgroups
with models fitted on the targets that are unusual compared to a reference model
(typically the model fitted on the whole dataset).

The computational burden of SD lies in subgroup search [87], as determining
whether a subgroup is unusual is often straightforward. In EMM, however,

123
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models over multiple variables are fitted on subgroup data, which results in a
two-fold challenge: (i) the choice of suitable model classes, as model learning
is now an integral part of the framework, and (ii) how to determine whether a
subgroup model is exceptional. This increased complexity has been compensated
by the discovery of useful exceptional models, e.g., based on linear regression
[110], Bayesian networks [57], subgraph mining [9, 100], social networks [4] and
preferences [149].

Remarkably, little research has been done in exploiting temporal submodels for
EMM. Submodels based on Markov chains (MCs, for short) have been investigated
[112], as well as latent variable-modeling by means of hidden Markov models
[161]. In this chapter, we introduce the discovery of temporal submodels by
means of the temporal exceptional model mining task (TEMM, for short), which
is demonstrated by means of dynamic Bayesian networks (DBNs, for short)
as model class. We argue that using DBNs allows for a general and intuitive
representation of subgroups obtained from multiple and temporal observations.
The DBN representation allows for extra, qualitative information that can be
gleaned from the model structure.

The contributions of this chapter are as follows. First, the novel task of temporal
exceptional model mining is defined, which can be seen as a generalization of
previous research in EMM. Then we introduce the usage of DBNs for TEMM by
proposing an interestingness score for identifying exceptional DBNs. Finally, the
proposed methods are demonstrated by analyzing data of funding applications.

This chapter is organized as follows. In Section 7.2, we discuss the related
work. In Section 7.3, we define the task of TEMM. In Section 7.4, we introduce
a distance measure for exceptional DBNs. In Section 7.5 we present a search
approach for exceptional DBNs. The experiments based on simulations and real
data are discussed in Sections 7.6 and 7.7. The conclusions and future work are
discussed in Section 7.8.

7.1.1 Motivating example

We describe next a running example which is also used in experiments with real-
world data. In the European Union, farmers can apply for direct payments [56],
which provide them additional income and incentives for sustainable production.
A funding application is described by Land Area, Young Farmer (yes/no), and
Small Farmer (yes/no). An application is submitted in a Year and is checked for
eligibility by a Department. The work flow of an application is a sequence of
events described by Activity and Doc Type.

We would like to know whether there are applications whose work flow
(i.e. the dynamics of Activity and Doc Type) deviates considerably from the
work flow of the whole population of applications. It could be the case that
applications handled by a certain department take much longer than the average,
or that applications submitted in a particular year have a specific work flow. By
automatically discovering these subgroups, we could learn more about the process,
which could e.g. help the organization to improve the process quality.



7.2 related work 125

7.2 related work

As a generalization of SD, exceptional model mining [58] is an active area of
research and has been applied to different target variable representations. Earlier
research includes the discovery of exceptional linear regression models [110]
and the discovery of subgroups with Bayesian networks that have significant
structural differences [57]. A more specialized application of EMM is tailored at
sequential problems, yet over a single target, where discrete Markov chains with
significantly different transition patterns have been investigated [112].

The aforementioned EMM research can be seen as parameter-based approaches,
because subgroups are characterized based on the unusualness of some of the
model parameters, e.g. regression slope, network structure, etc. On the other
hand, model-based subgroup discovery [161] is an evaluation-driven approach that
compares the distribution of subgroups by means of proper scoring rules.

Some body of research has dealt with subgroup search, whose aims include
making the search more efficient, reducing the number of redundant subgroups,
etc. Research has been done on providing bounds for some interestingness scores
in the context of numerical targets that can be used for search pruning [111].
Subgroup search has also been formulated in terms of game theory [18], which
allows for guiding the search toward the interestingness of subgroups while
improving the lack of diversity that search might face.

Other extensions to SD and EMM operate on data other than the common
attribute-value data. The approach in [113] is tailored for relational data and can
extract very general structured patterns of subgroups. More recently, exceptional
graph mining [9, 100] has been proposed to allow for the discovery of graph
neighborhoods that are similar internally but exceptional to the general attributed
graph (i.e. graphs with non-trivial vertices such as a list of attribute-value pairs)
[9]. Research has been done on the discovery of exceptional social behavior from
spatio-temporal [98], which helps understand networked interactions (e.g. as in
how people interact in a neighborhood). Recently, EMM has been applied to
finding subsets of data related to exceptional convolutional layers in convolutional
neural networks [167], which might help the interpretation of such models.

7.3 temporal exceptional model mining

In this section we describe relevant background notions and define the task of
temporal exceptional model mining.

7.3.1 Temporal targets

In order to represent subgroups in SD and EMM we define descriptor and
target variables. The set of descriptor variables is a set A of random variables
{A1, . . . , Ak}, where each Ai is a descriptor variable and has a domain dom(Ai).
We denote values of the domain by lower-case letters such as ai ∈ dom(Ai). In
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standard SD, one normally models next to A a single variable X called target
variable, while in EMM a set of targets variables X = {X1, . . . , Xn} is used instead.
For example, in EMM for regression [110], the predictor and response variables
are the target variables.

In TEMM, we assume that the target variables are the result of a temporal
process that changes a set of basis variables X.

Definition 7.1 (Temporal targets). Let X be a set of random variables. We assume
that there is a process that changes X at regular time points, resulting in the variables
X(0), X(1), . . .. The variable X(t)

i denotes Xi at time t, and we denote by X(t1 :t2)
i the

variables Xi occurring from time t1 up to t2. The variables X(t)
i , for t ≥ 0, have the same

domain. We call each X(t) a temporal target.

Based on Definition 7.1, we define the space of variables in TEMM as {A, X(0),
X(1), . . .}. In practice, a data point in TEMM corresponds to configurations of A
and a finite number of temporal targets. Based on this, we consider a multiset D
of data points, where the ith data point is denoted by (a[i], x[i](0), . . . , x[i](mi)), in
which mi is the last temporal target. Thus, each data point of D has a particular
number of temporal targets. An example is given next.

Example 7.1. Consider the dataset for the application described in Section 7.1.1 with
descriptors A = {Year, Department, Number Parcels, Land Area} and targets
X = {Activity, Doc Type}. Table 7.1 shows two data points of this dataset.

7.3.2 Subgroups

A subgroup can be described by different pattern languages [57], depending
on the type of data and the kind of patterns one wants to discover. In spite
of different existing languages (see, e.g., [9, 113]), the attribute-value pattern
language [58, 61, 128] is still very relevant in SD and EMM. In this work, we use
this propositional language, which is defined based on the space of descriptor
variables A as follows.

Definition 7.2 (Subgroup). Let D = {d1, . . . , dm} be a dataset (multiset) with each
record di a collection of variable-value pairs Aj[i] = aj and A = {A1, . . . , Ak}. Let ϕ
denote an expression of the form (Ap1 = ap1 ∧ · · · ∧ Apq = apq), where {p1, . . . , pq} ⊆
{1, . . . , k}. The subgroup associated to ϕ is defined as:

Gϕ =
{

di ∈ D | (Ap1 [i] = ap1 ∧ . . . ∧ Apq [i] = apq)
}

(7.1)

We say that the number of descriptors of Gϕ is q.

We refer to a subgroup defined by the expression ϕ either by Gϕ or by the
expression ϕ itself. For convenience, the domain of a binary descriptor such as A
is denoted by dom(A) = {a−, a+}. For example, an expression (a+1 ∧ a+2 ∧ a−3 )
represents a subgroup with 3 binary descriptors. In Definition 7.2, a subgroup
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Year Department # Parcels Area Activity Doc Type
2016 4e 31 97.8 mail valid Payment application

initialize Geo parcel document
finish editing Control summary
performed Reference alignment
finish editing Geo parcel document
performed Department control parcels
finish editing Geo parcel document
calculate Payment application
decide Payment application
revoke decision Payment application
calculate Payment application
decide Payment application
begin payment Payment application
abort payment Payment application
begin payment Payment application
insert document Payment application
finish payment Payment application

Year Department # Parcels Area Activity Doc Type
2016 e7 37 97.8 mail valid Payment application

initialize Geo parcel document
finish editing Control summary
performed Reference alignment
performed Department control parcels
calculate Payment application
decide Payment application
revoke decision Payment application
calculate Payment application
decide Payment application
begin payment Payment application
insert document Payment application
finish payment Payment application

Year Department # Parcels Area Activity Doc Type
2017 6b 7 9.1 mail valid Payment application

pre-check Geo parcel document
finish editing Control summary
finish editing Geo parcel document
performed Reference alignment
initialize Payment application
finish editing Geo parcel document
calculate Payment application
finish editing Geo parcel document
calculate Payment application
decide Payment application
begin payment Payment application
insert document Payment application
finish payment Payment application

Table 7.1: Data points of a process dataset, with A = {Year, Department,
Number Parcels, Land Area} and X = {Activity, Doc Type}. The tempo-
ral targets correspond to the work flow of events in the order they occurred.
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is a subset of data points of D selected according to a propositional expression
formed by a conjunction of attribute-value pairs. Not all attributes of A need
to be involved in the subgroup expression, hence pq ≤ k. If q = 1 we say that
the subgroup is unitary, otherwise the subgroup is specialized. The subscript ϕ is
omitted from Gϕ if no risk of ambiguity arises.

Each data point of Gϕ is associated to a configuration of temporal targets for
which notation is introduced next.

Definition 7.3 (Subgroup sequences). The subgroup sequences of a subgroup Gϕ of
D are given by:

S(Gϕ) = {x[i](0:mi) | di ∈ Gϕ} (7.2)

The size of subgroup Gϕ is ∑
di∈Gϕ

(mi + 1) and is denoted by |Gϕ|.

7.3.3 Comparing subgroups

In TEMM, a model shall be fitted on the subgroup’s sequences. We refer to the
model fitted on the data S(G) of a subgroup G as its subgroup model. When we
wish to compare subgroups in TEMM, we shall compare the subgroup models
associated to these subgroups, hence this comparison is based on the space of
temporal targets.

The notion of exceptional subgroups involves comparing subgroups based on
some notion of distance. We define a distance notion with some desirable properties
that serves as a basis for the development of distance measures for specific class
of temporal models.

Definition 7.4 (Distance function). Given a multiset D, the distance function between
two subgroups G and H of D is a real number denoted by d(G, H). This distance has the
following properties:

d(G, H) ≥ 0 non-negativity (7.3)

d(G, H) = 0 if G = H weak identity of indiscernibles (7.4)

d(G, H) = d(H, G) symmetry (7.5)

Other properties can be added to the above ones depending on the desired
characteristics of the distance function. For example, by strengthening the second
assumption and adding the triangle inequality, one would arrive at a distance
function that would be a metric. The distance function should, however, be
designed in such a way to support these properties.

7.3.4 Exceptional subgroups

One way to determine whether a subgroup G is exceptional is by considering a
reference subgroup upon which the distance to G can be computed. We introduce
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the notion of exceptional relation next, which has a few desirable properties of
interest.

Definition 7.5 (Exceptional subgroup). Given a multiset D, we define a relation
ex ⊆ 2D × 2D, called exceptionality which has the following properties for two any
subgroups G and H of D:

ex(G, H) =⇒ ex(H, G) (symmetry) (7.6)

¬ex(G, G) (anti-reflexive) (7.7)

If ex(G, H) holds, we say that G is an exceptional subgroup with regard to the
subgroup H.

The precise definition of which subgroups are exceptional depends on the
definition of the distance function. An exceptionality relation will be defined in
Section 7.4.4.

7.3.5 Problem statement

In TEMM, we wish to find all the subgroups G which are exceptional with regard
to the population. One additional requirement is that every exceptional subgroup
G must have a minimal size, i.e. |G| ≥ σ|D|, where σ ∈ [0, 1] is the minimal size
threshold. One can also specify some kind of preference for more specialized or
more general subgroups (see, e.g., [112]).

7.4 exceptional dynamic bayesian networks

In this work, we consider dynamic Bayesian networks [68, 104, 124] as model
class to represent subgroup models. We define a distance function for DBNs
and instantiate it for a scoring function, allowing for the discovery of exceptional
dynamic Bayesian networks.

7.4.1 Dynamic Bayesian networks

Dynamic Bayesian networks extend Bayesian networks for modeling processes
with uncertainty. In this work, DBNs model the temporal targets from Definition
7.1.

In order to keep the model compact, a few assumptions are considered in
dynamic systems such as DBNs. We say that a dynamic system over the temporal
targets X is Markovian if P(X(t+1) | X(0:t)) = P(X(t+1) | X(t)), for all t ≥ 0. This
means that predicting the future state depends only on the current state. Another
useful assumption is the time homogeneity, which holds in a dynamic system if
the transitions P(X(t+1) | X(t)) are fixed for every t ≥ 0. We refer the reader to
Section 2.4 for more details on DBNs.
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7.4.2 Distance function

Definition 7.6 (Mismatch score). Let D be a multiset over {A, X(0), X(1), . . .} and
G, H be two subgroups of D. Further, let us denote by MG and MH the dynamic Bayesian
networks learned from G and H respectively by maximizing some scoring function. The
mismatch score between MG and MH is:

mismatch(MG, MH) = (score(MG : G)− score(MH : G))

+ (score(MH : H)− score(MG : H))
(7.8)

where score(M : G) refers to the score of model M based on data G. The mismatch
distance resembles the idea of learning and validation sets (e.g. as used in cross-
validation [104])). However, here we are considering a more general situation,
because we assume that G and H might not have come from the same distribution.
In fact that is what we want to evaluate: the error that a model makes when given
data not used to learn it. Intuitively, if the DBNs induced from G and H are
similar one would expect a small mismatch value, while a high mismatch would
be obtained had the models been too different. A few properties regarding the
mismatch score are given next.

Proposition 7.1 (Weak identity of indiscernibles). Let MG be a DBN fitted to the
subgroup G of D. Then it holds that:

mismatch(MG, MG) = 0 (7.9)

Proof. Directly from the definition of mismatch score.

Proposition 7.1 means that the weak identity of indiscernibles holds for the
mismatch. However, it is not the case that a mismatch equal to zero implies that
the subgroups G and H are the same. This is because D is a multiset, hence
G and H might be associated to the same sequences while being two different
subsets of D. Another relevant property is symmetry, which is formalised in the
next proposition.

Proposition 7.2 (Symmetry). Given two DBNs MG and MH learned from two sub-
groups G and H of D, it holds that:

mismatch(MG, MH) = mismatch(MH , MG) (7.10)

Proof. Directly from the definition of mismatch score.

A relevant property concerns the sign of the mismatch distance is given as
follows.

Proposition 7.3 (Non-negativity). Let MG and MH be the DBNs learned from the
subgroups G and H of D. Then it holds that:

mismatch(MG, MH) ≥ 0 (7.11)
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Proof. If G = H, the claim holds by Proposition 7.1. Otherwise, if MG is the
model learned from G, then it must hold that score(MG : G) ≥ score(MH : G) for
any model MH . This is because by Definition 7.6 MG was learned by maximizing
the score given the data G, then no other model can have better score given G.

As the mismatch distance is non-negative, symmetric and has the weak identity
of indiscernibles property, it follows that it can be taken as a distance function
for TEMM, as discussed in Section 7.3.3.

7.4.3 Scoring function

In this work, we use Bayesian information criterion as scoring function (see
Section 2.3.2), which is proportional to the log-likelihood of the model and
includes a penalty to control for model complexity. For convenience, we repeat
the definition of the BIC of a model MG given data G as follows:

BIC(MG : G) = 2 logL(MG : G)− |MG| log |G| (7.12)

where logL(MG : G) denotes the log-likelihood of the model MG, |MG| the
number of parameters of MG, and |G| is the number of observations of G. The
negative value of the standard BIC was taken for the convenience of maximizing
the score.

We assume that MG is fitted by maximizing the BIC score as denoted by
BIC(MG : G), and we shall denote by BIC(MG : H), with H 6= G, the score of MG
given data H different than that used to fit MG. The BIC score corresponds to the
score term of Definition 7.6.

7.4.4 Exceptional subgroups

We define next a general notion of exceptional DBNs.

Definition 7.7 (Exceptional subgroups). Consider the exceptionality relation ex ⊆
2D× 2D. We say that G is an exceptional subgroup with regard to a subgroup H, denoted
by ex(G, H), if the distribution of the DBN MG is different from the distribution of the
DBN MH .

Definition 7.7 implements the idea of exceptional subgroups delineated by
Definition 7.5 applied to exceptional DBNs. It is straightforward to verify that
the exceptionality relation just defined is symmetric and anti-reflexive, hence the
relationship has the desired properties as discussed in Section 7.3.4.

In EMM, the reference subgroup used for determining the exceptionality of
a subgroup is typically the full data D, also referred to as population [161]. This
means that a subgroup of interest G would be compared with D, however,
this comparison is made more convenient by instead comparing G with its
complement denoted by Ḡ [57], which results in a comparison involving two
disjoint subgroups. TEMM uses the population as reference subgroup as well,
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thus for determining whether a subgroup G is exceptional we compare the
subgroup models of G and Ḡ.

7.5 identifying exceptional subgroups

In this section, we discuss how the exceptionality of DBNs can be identified from
data by considering reasonable assumptions on what can be seen as exceptional
in real-world situations.

7.5.1 Distribution of false discoveries

In practice, one way to use Definition 7.7 for identifying exceptionality is to
consider the extent to which subgroup models differ from the population model.
In this case, we would like to identify models which are significantly different
from the population model. The reason for shifting the focus to significantly
different subgroups is that the true distribution of subgroups is unknown, and
we therefore need to account for the error in the estimated model. Based on these
ideas, the identification of exceptional subgroups is described next.

To determine how exceptional a subgroup G is, a sampling-based approach
with the distribution of false discoveries (DFD, for short) [59, 112] is used. Suppose G
has size |G|, then random subgroups of size |G| are drawn without replacement
from D, such that for each random subgroup its mismatch distance is computed.
In order to compute the mismatch of each random subgroup, we fit a DBN on the
random subgroup data and another DBN on its complement data. This sampling
procedure approximates the distribution of mismatch distances that characterizes
the mismatch of subgroups with size |G|.

By constructing a distribution of distances of random subgroups, we are able
to assess how unusual the mismatch distance of a subgroup G is. In order to
do so, we execute a hypothesis testing procedure as follows. By taking large
enough number of sampled subgroups, the resulting distribution of random
mismatch distances will be approximately Normal (see, e.g., [59, 112]). We can
then compute a z-score for the mismatch of G, from which we can obtain a
p-value. If the p-value of G is smaller than a significance level α, we conclude
that G is an exceptional subgroup.

7.5.2 Subgroup search

In order to generate subgroups and test their exceptionality, we introduce a
general search algorithm outlined in Algorithm 3. The central idea of Algorithm
3 is to specialize all exceptional subgroups that have been found so far, until there
are no further exceptional subgroups to be specialized. The algorithm does not
specialize subgroups considered as non-exceptional.

Algorithm 3 starts with c = ∅ as the current subgroup, i.e. the total popu-
lation. By entering the outer loop, new candidate subgroups are generated by
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specializing c with the addition of one descriptor that is not in the descriptor
set of c (Line 8). For brevity sake, Line 8 in fact generates several subgroups,
one for each value from the domain of the new descriptor. Then, each new
candidate subgroup is tested for a minimal size σ and for exceptionality. If the
candidate subgroup passes these tests, it is stored into the set E′, which keeps the
exceptional subgroups found so far. The new exceptional subgroup is also added
to F, which stores the subgroups to further expand. Once the new exceptional
subgroups have been processed, a subgroup to be further specialized is picked at
random from F. While F 6= ∅, the whole specialization process is repeated.

Algorithm 3 Subgroup search

Input: D: a dataset of data points of the form {A, X(0), X(1), . . .}; σ: minimal size
threshold; α: significance level for exceptionality test.
Output: E: set of exceptional subgroups.

1: E← ∅
2: F ← ∅ // Subgroups to further expand
3: c← ∅ // Current subgroup
4: cand_descs← {A1, . . . , Ak}
5: do
6: E′ ← ∅
7: for all Ai ∈ get_cand_descriptors(c) do
8: G ← c ∪ {Ai = ai}, for each ai ∈ dom(Ai)
9: if check_size(G, D, σ) and exceptional(G, D, α) then

10: E′ ← E′ ∪ {G}
// Add new exceptionals and select new one for expansion

11: E← E ∪ E′

12: F ← F ∪ E′

13: c← select_random(F)
14: F ← F− {c}
15: while F 6= ∅
16: return E

7.5.3 Exceptionality test

Algorithm 3 makes use of an exceptionality test, which is detailed in Algorithm 4.
Algorithm 4 does intensive computation as it learns subgroup models, calculates
their mismatch distances, and calculates the DFDs. These steps are necessary
to assess how unusual the mismatch of a particular subgroup is compared to
random subgroups.
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Algorithm 4 Exceptionality test

Input: G: a subgroup; D: a dataset of data points of the form {A, X(0), X(1), . . .}; α:
significance level for exceptionality test.
Output: a Boolean value indicating whether G is exceptional.

1: MG ← learn_dbn(S(G))
2: MḠ ← learn_dbn(S(Ḡ))
3: d← mismatch(MG, MḠ)

// Distribution of false discoveries
4: Sample subgroups from D with size |G|.
5: for all sampled subgroup H do
6: MH ← learn_dbn(S(H))
7: MH̄ ← learn_dbn(S(H̄))
8: dH ← mismatch(MH , MH̄)

9: Calculate the mean and standard deviation from the set of distances dH , and denote
them by x and s respectively.

10: z← d− x
s

// z-score of the subgroup
11: Calculate the p-value corresponding to the z-score.
12: if p-value < α then
13: return true
14: return false

7.5.4 Search optimization

The computation of DFDs is a costly step of the exceptionality test used by
Algorithm 3. In order to evaluate the exceptionality of a subgroup G, we check
whether a subgroup H with |H| = |G| has been considered before during search.
If so, we can reuse the previously computed DFD of H as the DFD of G, because
the DFD is a function of the subgroup size. This can save substantial computation
because in problems with several descriptor variables (the set A), one would
expect that some subgroups have the same size. We can take advantage of this
fact by storing a list of sizes and a DFD for each size, so that a DFD is actually
computed only when it is not found in this list.

By Proposition 7.2, the mismatch distance is symmetric. This means that if we
ask whether a subgroup G with size |G| is exceptional, we could equivalently ask
whether the complementary subgroup (which has size |D| − |G|) is exceptional.
This means that when we look up for a DFD in our table of stored DFDs, we can
look up for DFDs associated to size |G| and to DFDs associated to size |D| − |G|.
This yields additional computational savings.
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7.6 experiments with simulated data

7.6.1 Data

We consider two simulation scenarios to assess the method by varying the
set X = {X1, . . . , Xn}, with Xi binary. In the first scenario, we use n = 10
variables inspired by previous research [112] which used Markov chains with
1,024 states. In the second scenario, we consider 100 times more MC states,
requiring n = log2 100 · 1024 ' 17 variables, allowing for a more comprehensive
evaluation.

In order to build a dataset for a scenario, simulated data was generated from
two ground truth DBNs based on the variables X. The number of time points
was 10 for both n = 10 and n = 17. The structure of each DBN was generated by
uniformly sampling DAGs [122], while node parameters are sampled from Beta
distributions.

The next step is to define the descriptor space. We defined a descriptor vari-
able A1 such that the sequences from one DBN were assigned to the subgroup
(A1 = a−1 ) and the sequences from the other DBN to (A1 = a+1 ). The same
amount of data was generated for these subgroups. We also added 5 binary de-
scriptors R1, . . . , R5 to act as noisy variables by randomly assigning the generated
sequences to the noisy variables (with uniform probability).

Given a scenario, we now assign ground truth labels to unitary subgroups as
follows:

• The subgroups (a+1 ) and (a−1 ) are seen as positive instances, as the sequences
of each come from a single DBN, thus making these subgroups exceptional
by definition.

• The subgroups described by Ri, such as R1 = r+1 and R2 = r−2 , are seen as
negative instances, as they correspond to random selections of sequences.

Based on the true and predicted labels, we measure how well we can identify
exceptional subgroups (described by A1) and non-exceptional subgroups (de-
scribed by Ri). Further, by having only one descriptor for exceptional subgroups
(A1) and multiple ones for non-exceptional subgroups (Ri), it becomes more
challenging to distinguish the two types of subgroups. This way we evaluate the
robustness of the proposed algorithm.

Based on the described procedure, simulated data for a scenario consists of data
points over the variables {A1, R1, . . . , R5, X(0), . . . , X(9)}. The whole simulation
process, including the generation of ground truth models, was executed 10 times
for better assessment of each scenario.

7.6.2 Evaluation

Algorithm 3 always generates unitary subgroups, which allows for evaluating
the labeling done by the proposed method using several metrics. The AUC-ROC
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MC n = 10 DBN n = 10 MC n = 17 DBN n = 17

Seq Pr Rec Pr Rec Pr Rec Pr Rec
10 0.6 0.6 0.82 1 0 0 0.9 1

20 0.87 1 0.95 1 0 0 0.9 1

40 0.85 1 0.87 1 0.15 0.2 0.9 1

60 0.92 1 0.87 1 0.53 0.6 0.89 1

80 0.92 1 0.83 1 0.75 0.85 0.88 1

Table 7.2: Precision (Pr) and recall (Rec) achieved by Markov chains and DBNs on simu-
lated data. Seq = number of data sequences.

(area under the ROC curve) evaluates how the method separates the positive
from the negative instances. We also compute precision and recall values, where
precision is TP/(TP+FP) and recall is TP/(TP+FN) and TP, FP and FN denote the
number of true positives, false positives, and false negatives.

Algorithm 3 also generates specialized subgroups if unitary exceptional sub-
groups are found. Specialized subgroups described by A1 are also considered as
exceptional. A subgroup such as (a+1 , r−1 ) can be seen as a selection of half the
sequences of subgroup (a+1 ), making the models of (a+1 , r−1 ) and (a+1 ) similar. By
opposition, specialized subgroups without A1 are considered as non-exceptional.
To facilitate comparisons, we evaluate unitary and specialized subgroups sepa-
rately as the number of generated specialized subgroups can vary over different
simulations. We used a size threshold σ = 0.05.

As a baseline, we consider Markov chains for representing the temporal targets
instead of a DBN. In this case, the search algorithm is the same but the temporal
targets are represented by a MC. To learn a MC, each variable X(t) was mapped
into a single variable X′(t) which has as domain the Cartesian product of the
domains of X1, . . . , Xn. As a result, the state space of this MC can have up to 1,024

and 131,072 states for n = 10 and n = 17 respectively. Then, the temporal data of
each sequence X(0), X(1), . . . was mapped into X′(0), X′(1), . . .. This allows for an
additional assessment of the DBN representation. To avoid zero probabilities, a
Laplace smoothing [104] with λ = 1 is used in MC and DBN learning.

7.6.3 Results

Figure 7.1 shows the results based on simulated data for unitary subgroups. The
results suggest that the DBN and the MC representation achieved good results
with datasets of n = 10 target variables (or 1,024 MC states). However, substantial
differences arose with n = 17 variables (or 131,072 MC states), a situation where
DBNs were able to provide optimal AUC values even with the minimal amount
of data, as opposed to MCs. In this case, MCs had to count on substantially larger
amounts of data in order to provide comparable AUC values to those of DBNs.
Table 7.2 shows the precision and recall of MCs and DBNs based on the threshold
α = 0.05 of Algorithm 4.
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Figure 7.1: Effect of the amount of simulated data on the AUC-ROC of Markov chains and
DBNs. Every sequence has 10 time points.

As previously discussed, specialized subgroups that include A1 are supposed
to be labeled as exceptional subgroups. Figure 7.2 shows the mean number of
specialized subgroups which include A1 and were labeled as exceptional. As the
amount of data increases, the results show that more subgroups were produced
by both the MC and DBN representations. However, it is clear that DBNs were
able to capture significantly more specialized exceptional subgroups.
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Figure 7.2: Mean number of specialized subgroups with A1 which were labeled as excep-
tional (simulated data).

7.6.4 Similar ground truth models

Now we consider simulations where we control how similar the ground truth
models are. This allows for a complementary evaluation of the search algorithm
than that where we essentially varied the amount of data supplied to the algo-
rithm. As before, two ground truth models are associated to the binary descriptor
A1.
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In the following experiments, the second ground truth DBN was defined by
copying the structure and parameters of the first DBN. For a variable Xi in the
second DBN we have p = P(X(0)

i = x−i | π(x(0)i )) and p′ = P(X(0)
i = x+i |

π(x(0)i )). These parameters were changed by picking at random a real number
called change from the interval [0, min(δ, 1− p)], with uniform probability, where
δ ∈ [0, 1] is the maximal change threshold. Next, we set p = p + change and
p′ = p′ − change. The lower the threshold δ, the more similar the DBNs are. It
is straightforward to see that the modified p and p′ values constitute a valid
probability distribution.

Based on the previous results, we focus the analysis on DBNs in the remain-
ing of this chapter. Figure 7.3 shows the AUC-ROC of simulations based on
different maximal change thresholds. The results suggest that the search algo-
rithm achieved better results with higher δ, which is expected because with more
dissimilar ground truth models detecting exceptional behavior becomes more
straightforward. On the other hand, the method made more mistakes under
lower δ, particularly when there was little data, which can be seen as difficult
situations for the method. In general, with larger amounts of data the method
had better performance with any δ, which supports a behavior consistent with
the previous experiments.
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Figure 7.3: AUC-ROC achieved by DBNs on simulated data from different ground truth
models. δ = maximal change threshold.

7.6.5 Discussion

Table 7.3 shows a fragment of subgroups from a simulation iteration using DBNs,
together with their mismatch distances. This shows that the method is robust
at identifying exceptional subgroups even when most of other subgroups are
noisy subgroups. Moreover, the mismatch distances of exceptional subgroups are
usually very different from those of non-exceptional subgroups.

The proposed mismatch score can be seen as a data-based score, as it is computed
based on goodness-of-fit scores (the BIC score). By opposition, previous research
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Subgroup Size z-score p-value Labels (I & T)
(a+1 ) 0.50 195.8 ' 0 1 1

(a−1 , r−2 ) 0.27 49.4 ' 0 1 1

(a+1 , r+1 , r+2 ) 0.11 15.1 ' 0 1 1

(r−2 ) 0.49 -1.2 0.22 0 0

(r−3 ) 0.49 0.5 0.64 0 0

Table 7.3: A simulation iteration based on DBNs (n = 17, 80 data sequences). Size =
subgroup size normalized by |D|, Labels (I&T) = inferred and true labels
respectively. The labels ‘1’ and ‘0’ indicate positive and negative instances
respectively.

[112] for discovering exceptional MCs used a measure based on statistical distance
between transition distributions. While structure learning is not required for MC
learning, the number of parameters in DBNs is typically substantially lower due
to its factorized representation. This is because the dimension of the transition
matrices of MCs is prone to become very large even with a moderate number of
target variables (e.g. n = 17).

As experiments have shown, this parameter issue makes the MC representation
to scale poorly, particularly when n is larger and there is a reduced availability of
data for model learning. Furthermore, the DBN-based search made substantially
less mistakes in the simulations, which makes this representation suitable for
TEMM.

7.7 data of funding applications

In order to evaluate the proposed TEMM method, we consider data from the
business process intelligence challenge (BPIC18, for short) [56]. The BPIC18 dataset
contains event log data of applications submitted to the European Union for
direct payments for German farmers in 2015, 2016 and 2017. The goal of applying
TEMM to the BPIC18 data is to identify the subgroups in which the dynamic of events is
exceptional.

7.7.1 Data

Each application in the BPIC18 data is associated to descriptor variables (domain
size) as follows: Land Area (437), Department (4), Number of Parcels (74),
Redistribution (2), Year of Submission (3), Success (2), Small Farmer (2), and
Young Farmer (2). Applications are also associated to events related to workflow
activities, where an event is described by the multinomial variables (domain size):
Activity (41), Doctype (8), Subprocess (8). Each application is associated to one
or more events, which are the temporal targets of the data. Hence, the ith data
point of this dataset has the form {Land Area, . . . , Young Farmer, Activity(0:mi),
. . . , Subprocess(0:mi)}, where mi is its last time point.
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The BPIC18 dataset has 4,800 applications randomly selected from the original
dataset, with an equal number of applications per year. The dataset considered
for the experiments has 275,226 events in total (mean [StDv] length of each
application: 57.3 [49.5] events).

7.7.2 Discovered subgroups

Table 7.4 shows the exceptional and non-exceptional subgroups that were dis-
covered from the BPIC18 data based on a minimal size σ = 0.05. The results
suggest that the most exceptional subgroups are unitary and described by a
particular year, be it 2015, 2016 or 2017. This might suggest that significant
changes took place in application processing between different years, such as
changes in application structure, time spent in application tasks, funding policies,
etc. Regardless of the year, each department has its own dynamics, as all unitary
subgroups (Department) were exceptional. However, their the exceptionality was
not as strong as that of (Year) subgroups.

As Table 7.4 shows, unitary subgroups of (Young Farmer) were not ex-
ceptional, which suggests that the exceptionality of subgroups as (Year =
2017∧ Young Farmer−) is only caused by other attributes. Due to the large size
of (young.farmer−), we conjecture that some specialized subgroups of (Young
Farmer) have distributions similar to their generalized subgroups without (Young
Farmer), which would make such specialized subgroups redundant.

7.7.3 Validation

The BPIC18 data provider [56] claims that the underlying process changed
between years due to changes implemented in the structure of the application
procedure. This is evidence that supports the exceptional subgroups found in
this chapter described by (Year), as shown in Table 7.4.

Such discovered exceptional subgroups are also in line with previous research
[135] applied to this dataset, which was able to identify concept drifts precisely
between each year of the data. Other research [174] has analyzed how the work-
flow of applications submitted in different years has changed, also suggesting
that differences exist in the workflow structure between years.

Differently than the other analyses from the literature on the BPIC18 data,
the method proposed in this chapter can be seen as a principled one due to its
automated nature. However, the discussed validation of the subgroups found
should be seen as a partial validation, as the true exceptional subgroups of
real-world data are usually unknown.

7.8 conclusions

In this chapter, we proposed TEMM, a generalization of EMM to allow for the
representation of multiple and temporal targets. We proposed a method able to
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Exceptional subgroups Size z-score
year = 2017 0.34 773.6
year = 2015 0.35 524.1
year = 2016 0.30 479.0
department = e7 0.30 23.4
department = d4 0.16 21.3
department = 4e 0.30 13.1
department = 6b 0.24 11.3
number_parcels = 2 0.06 7.2
year = 2017 ∧ young.farmer− 0.31 385.0
year = 2015 ∧ young.farmer− 0.32 363.7
department = e7 ∧ year = 2017 0.10 166.6
department = 6b ∧ year = 2017 0.09 110.9
department = 6b ∧ year = 2016 0.07 106.7
department = 6b ∧ young.farmer− ∧ year = 2016 0.06 147.6
department = e7 ∧ young.farmer− ∧ year = 2017 0.09 128.2
department = 4e ∧ young.farmer− ∧ year = 2017 0.09 124.9
department = 6b ∧ young.farmer− ∧ year = 2017 0.08 118.3
department = e7 ∧ young.farmer− ∧ year = 2016 0.08 69.6

Non-exceptional subgroups Size z-score
young.farmer− 0.91 1.7
young.farmer+ 0.09 1.3
number_parcels = 3 0.06 0.9
department = e7 ∧ year = 2015 0.11 0.2
department = 4e ∧ year = 2015 0.10 -1.6

Table 7.4: Exceptional (34) and non-exceptional (5) subgroups from the BPIC18 dataset.
For better visualization, the 5 most specialized subgroups are shown. Size =
subgroup size normalized by |D|. All p-values < 0.001 (exceptional subgroups)
and ≥ 0.05 (non-exceptional subgroups).
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identify exceptional DBNs from temporal data, which allows for an intuitive and
sound model class for TEMM.

The proposed TEMM method was empirically evaluated on simulated data
and a process data based on funding applications, showing that the identifiability
of the method in different scenarios is robust. Our method was able to discover
exceptional subgroups from the funding data in accordance to previous research,
as well other, yet less exceptional subgroups. Furthermore, our approach solved
this practical problem in a more principled manner.

As future work, we would like to better explain why models are considered as
exceptional, e.g., by looking at relevant structural or numerical parameters of the
DBNs. We also wish to summarize exceptional subgroups that might reflect the
same DBN distribution, e.g., by merging exceptional subgroups during search or
post-processing. Moreover, by investigating the relation between subgroup size
and the mismatch distance, the search mechanism could be further optimized.



8
D I S C U S S I O N

This thesis dealt with the discovery of the underlying structure of temporal
processes. The underlying structure of a process can be captured by different
mathematical representations, depending on which aspects one wishes to focus
on. Yet, the task of choosing suitable models to represent a particular real-world
problem is challenging.

In this work, we advocate that the proposed methods based on probabilistic
graphical models are advantageous when solving several real-world problems.
Just as PGMs, the methods introduced in this work can work well under situations
of varied data scarcity and are often interpretable. One advantage of being
interpretable is that insight can often be obtained from such models without a lot
of barriers. Although models such as deep neural networks have been recently
very successful at tasks such as supervised learning, they tend to require higher
amounts of data, large amounts of computational resources (e.g., computing time)
and are considerably less interpretable, characteristics which go in an opposite
direction to PGMs.

8.1 contributions

The central theme covered in this work is the different viewpoints on dynamics
of temporal processes, which we summarize in the following sections.

8.1.1 Asymmetry in models

Hidden Markov models have been used for providing a viewpoint of processes
based on latent variables. In order to increase the problem insight and model fit
that one can obtain from HMMs, we proposed asymmetric HMMs (HMM-As, for
short) in Chapter 3.

HMM-As allow for more expressive representation of observations by capturing
distribution asymmetries (also known as local structure). As a result, HMM-As
often need fewer latent states to achieve model fit at least as good as that of other
HMM models. The parsimonious representation of HMM-As is also valuable in
model interpretation. Due to the large number of variations of existing HMMs, it
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is often difficult to decide which model class would be suitable for the problem
at hand. The flexibility of the HMM-A representation reduces the need for
deciding which class of symmetric and other asymmetric HMMs one should use.
In Chapter 3, we demonstrated the aforementioned advantages of HMM-As by
means of simulated and real-world data from several domains.

8.1.2 Generation of hypotheses on processes

We proposed in Chapter 4 a method that helps the selection of hypotheses
to further investigate about disease processes. This method is semi-automatic
and is based on structured HMMs, particularly with the goal of generating
insight on disease processes. The formulation of outcomes is aided by means
of state reachability that one can build by looking at model aspects such as state
probabilities at different time points. The state reachability notion was shown to
help understanding patient trajectories in a compact way.

A case study of psychotic depression was considered in Chapter 4, for which
hypotheses were generated. One of the main results discussed is that patients
undergoing psychotic depression treatment showed to be sensitive to treatment
based on their initial psychotic symptoms. By using this methodology, new
knowledge about this mental disorder was acquired, which potentially helps
doctors to prescribe more efficient medication in the future.

8.1.3 Capturing hidden (non-observed) aspects of processes

Besides the independence structure of processes given by asymmetric HMMs
(Chapter 3), we investigated in Chapter 5 how to gain insight in health care data
by means of latent-variable modeling. In this chapter we introduced the notion
of cluster of hidden states based on hidden Markov models. Clusters of states
can be learned from datasets with a single event produced at each instant.

Based on health care data from Dutch practices, clusters of latent states were
learned. The clusters were shown to provide additional characterization to the
latent states by suggesting that states from each cluster are correlated to different
patient severity. Ultimately, the results of Chapter 5 also allow for gaining insight
on multimorbidity by analyzing the clusters of states learned for different disease
codes.

8.1.4 Taking into account the size of datasets

Learning insightful models from small datasets is known to be a challenging
problem. In this work, we proposed new methodologies and model classes that
showed to be useful in real-world situations of the limited availability of data. In
Chapter 6, we proposed partitioned dynamic Bayesian networks for representing
dynamic Bayesian networks with regime change over time. A heuristic was
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proposed for identifying regime cut-offs of PDBNs in a parsimonious way, which
favors the situation of small datasets.

Experiments based on simulations showed that PDBNs learned by the pro-
posed heuristic search dealt well with different situations, in particular with
small datasets generated by different underlying models. PDBNs learned from
psychotic depression treatment data provided a better model fit than DBNs and
more insight on the interaction between psychotic and depressive features. Dif-
ferent viewpoints on disease dynamics for psychotic depression treatment were
provided in Chapters 4 and 6 by investigating different variables and problem
aspects.

8.1.5 Temporal subgroups

A new problem called temporal exceptional model mining (TEMM, for short) was
defined in Chapter 7. TEMM aims to discover exceptional behavior associated to
subsets of the data that can be described by a configuration of variables.

We proposed a method that allows for the discovery of exceptional dynamic
Bayesian networks by means of a distance measure and a search algorithm.
The proposed temporal representation allows for more accurate retrieval of
exceptional subgroups than that based on simpler temporal models such as
Markov chains. The method for identifying exceptional DBNs was evaluated
based on real-world process data and was able to discover exceptional subgroups
in a principled fashion. The results were validated in comparison to previous
research, based on different techniques.

8.2 future work

In this section, we discuss limitations and directions for future work that we
believe might be relevant. We also discuss potential approaches that could be
relevant for achieving these goals.

8.2.1 Asymmetry in models

The number of states of HMM-As was selected by a trial and error approach. It
is worthwhile to investigate more principled ways to make this selection. One
alternative is to use infinite HMMs [8] to automatically determine the number of
hidden states. Another alternative is to predict the number of states by means of
Bayesian optimization [156], where the performance (e.g. the goodness of fit) of
each state could be seen as a complex black-box function.

8.2.2 Generation of hypotheses on processes

We would like to apply the hypothesis generation methodology proposed in
Chapter 4 in a more automatic fashion. This means automatizing the selection of
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baseline and target states, the computation of state reachabilities, and so on. This
is already possible given the proposed method, which would likely result in a set
of candidate hypotheses to further investigate.

By applying the method of Chapter 4 to other datasets, it would be possible to
evaluate the effectiveness of automatic generation of hypothesis. The advantage
of using multiple datasets is a more effective evaluation of the effect of different
definitions for selecting baseline and target states, including those definitions
proposed in Chapter 4.

One new challenge that would likely arise by automatizing hypothesis genera-
tion is how to properly assess different hypotheses that would be generated. To
that end, one could benefit from currently available electronic health records [30,
142], which might lead to additional sources of information, such as clinical notes
written by medical doctors (often in natural language). Such data could perhaps
give direction to which hypotheses could be promising to be investigated, e.g., by
assigning some kind of utility to the generated hypothesis.

8.2.3 Capturing hidden (non-observed) aspects of processes

In Chapter 5, the analysis of clusters based on a medical outcome (in this case,
disease counts) was carried out after the clusters of states were identified. We
would like to integrate medical outcomes as part of the models, so that the
relationship with the clusters of states and outcome measure could be direct and
more general, which would allow one to look at such relationship by different
angles. One could consider doing this by integrating such outcomes during
model learning, e.g., by means of covariates along the lines of Input-Output
HMMs [11].

A small number of diagnosis variables was considered when learning clusters
of states based on the case study of Chapter 5. It would be interesting to look at a
larger set of variables and the resulting clusters, which seems a natural extension
to the presented method since health care data often have hundreds or more
diagnosis codes.

To make multimorbidity analysis more effective, we would like to consider
data representations where multiple diseases occur at the same time. This
would, however, result in a significant departure from the modeling assumptions
considered of Chapter 5, as the observation space would likely have several active
variables, which could create the need for a different notion of cluster of states.
The advantage, however, is that multimorbidity could be analyzed in a more
direct way.

8.2.4 Taking into account the size of datasets

We would like to extend PDBNs to make it possible to model recurrent regimes
over time, such that the identified regimes could be seen as states similarly to
HMM states. This could make PDBNs more compact and more explainable



8.2 future work 147

models. Related research that considers recurrent regimes includes, e.g., gated
networks [10] and DBNs with an HMM-based dependence structure [78].

We also would like to broaden the evaluation of PDBNs by comparing them to
other non-homogeneous models, which are usually based on different assump-
tions. This would allow for evaluating different classes of models under different
assumptions and how they perform when some (or all) assumptions are not met.

8.2.5 Temporal subgroups

In TEMM, no relationship between discovered subgroups is explicitly computed.
Nevertheless, one can argue that some kind of relationship between the discov-
ered exceptional subgroups might exist. One simple example is when multiple
subgroups represent (approximately) the same exceptional behavior, i.e., they
deviate from the population in (approximately) the same way.

By identifying subgroups that are exceptional and yet similar, not only redun-
dancies could be reduced, but also more insight about the problem would be
obtained as to how exceptional behavior might occur. Redundancies could be
eliminated by rejecting specialized subgroups that are similar to more general
subgroups (see, e.g., [112]). Instead of rejecting subgroups, an alternative is to
introduce merge and split operations in the search algorithm. In that case, the lan-
guage for expressing subgroups could be extended to represent other description
patterns beyond pairs of attribute-value, which could allow for a more general
understanding between description patterns and exceptional behavior.

Another research direction that might be worthwhile to explore in TEMM is
what makes a model an exceptional model. While this might be more or less
evident when one deals with exceptional models based on just a few variables
(as in standard subgroup discovery, for example), this is no longer the case
for more complex models such as dynamic Bayesian networks. For DBNs, one
could be interested in knowing whether particular pieces of the model structure
or particular parameters are relevant for explaining why a DBN is considered
as exceptional. Sensitivity analysis [34, 72] might be of help for pursuing this
research direction.

The computation of distributions of false discoveries based on DBNs is expen-
sive. We would like to investigate whether further optimizations can be used
to reduce these computations. One idea is to try to predict new distributions
of false discoveries based on previously computed ones, e.g., by predicting its
parameters such as the mean and standard deviation. One method that might
help is Bayesian optimization [156, 160], as obtaining the distributions of false
discoveries can be seen as evaluating an expensive black-box function.
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S U M M A RY

Temporal processes, such as walking, sleeping, eating, and so on, are ubiquitous
in daily life as well as in more intricate situations such as medical treatment,
seasonal climate variation, events in a workflow, and so on. We are often interested
in understanding how aspects of objects of study evolve, such as signs and
symptoms of disorders of patients. On the one hand, we need expressive enough
models for capturing complex behavior. On the other hand, such models should
provide parsimonious descriptions of processes if one wishes to gain insight. This
balance is not trivial, as by increasing expressivity one often arrives at more
complicated models, which might make them less interpretable. It is often the
case that suitable descriptions of processes also need that uncertainty be explicitly
recognized.

In this thesis, we aim to increase model expressivity inspired by complex and
real-life problems, while retaining model interpretability. To this end, we describe
three new different viewpoints on processes based on probabilistic graphical
models.

We first provide a new process viewpoint based on latent states, which can be
seen as abstract representations of the observable data. Latent states can help
interpretation as they act as a dimensionality reduction tool.

In Chapter 3, we introduce asymmetric hidden Markov models for capturing
local structure in the space of observable variables. This is done by associating
each latent state to a Bayesian network. Asymmetric hidden Markov models often
lead to better model fit and increased insight into the domain, while reducing
the need for selecting an a priori model architecture. Simulated and real-world
datasets are used for empirical evaluation.

In Chapter 4, we propose a semi-automatic framework for understanding
disease dynamics based on the dynamics of latent states within hidden Markov
models. We apply the framework to psychotic depression treatments, where
latent states act as patient groups and are shown to reveal predictive symptoms
to patient prognosis.

In Chapter 5, we learn hidden Markov models from health-care event data. A
case study based on atherosclerosis events is used. The size of such datasets, in
contrast with a small number of events, makes the same event be associated to
multiple hidden states, a notion we call clustering of hidden states. We show that
events in a cluster associate to patients with different disease severity.

The second viewpoint on processes is based on the identification of process
change-points or regime change. The challenge lies in how to extend models that are
time invariant (such as dynamic Bayesian networks) for capturing regime change
in a parsimonious way, which can be suitable when the available dataset is small.
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In Chapter 6, we propose partitioned dynamic Bayesian networks for rep-
resenting models for which the time homogeneity assumption is not suitable.
Partitioned dynamic Bayesian networks are a collection of dynamic Bayesian
networks for which cut-off points are built heuristically. The resulting models are
evaluated in a wide set of experiments.

The last process viewpoint tries to discover subsets of temporal data associated
to models that deviate substantially from the model obtained from the whole
dataset. This can be seen as identifying significant subprocesses.

In Chapter 7, we introduce dynamic Bayesian networks for representing excep-
tional temporal models of data subgroups. This provides a general representation
for subprocesses within the context of subgroup discovery and exceptional model
mining. We evaluate the proposed approach by means of simulated and event
data on farmer financial support applications.



S A M E N VAT T I N G

Temporele processen beschrijven gebeurtenissen in het dagelijks leven, zoals
lopen, slapen en eten, etc., maar ook meer gecompliceerde situaties zoals medis-
che behandelingen, de jaargetijden, gebeurtenissen in een workflow, etc. We zijn
gewoonlijk geïnteresseerd om te begrijpen hoe bepaalde aspecten van objecten
zich ontwikkelen, zoals de ziektesymptomen van een patiënt. Aan de ene kant
hebben we expressieve modellen nodig om complex gedrag vast te leggen. Aan de
andere kant moeten dergelijke modellen compacte beschrijvingen van processen
opleveren om inzicht te verwerven. Het vinden van de juiste deze balans tussen
deze twee kenmerken van modellen is niet triviaal, want door het verhogen van
de expressiviteit komt men vaak tot complexere modellen, die wellicht minder
interpreteerbaar zijn. Vaak is het ook nog nodig dat geschikte beschrijvingen van
processen expliciet rekening houden met onzekerheid.

In dit proefschrift willen we de expressiviteit van het model vergroten, geïn-
spireerd door de complexiteit van reële problemen, met behoud van de interpre-
teerbaarheid van het model. Daartoe beschrijven we drie nieuwe verschillende
gezichtspunten op processen op basis van probabilistisch grafische modellen.

We geven eerst een nieuw procesperspectief op basis van latente toestanden, die
kunnen worden gezien als abstracte representaties van de waarneembare data.
Latente toestanden kunnen helpen bij de interpretatie, omdat ze fungeren als een
instrument voor dimensionaliteitvermindering.

In hoofdstuk 3 introduceren we asymmetrische hidden Markov modellen voor
het vastleggen van de lokale structuur tussen de waarneembare variabelen. Dit
wordt gedaan door elke latente toestand te associëren met een Bayesiaans netwerk.
Asymmetrische hidden Markov-modellen leiden vaak tot een betere kwaliteit van
modellen en meer inzicht in het domein, terwijl de noodzaak van het kiezen van
een a priori modelarchitectuur wordt verminderd. Een empirische evaluatie werd
uitgevoerd met behulp van gesimuleerde en echte datasets.

In hoofdstuk 4 stellen we een semi-automatisch raamwerk voor om ziektepro-
cessen te begrijpen op basis van de dynamiek van latente toestanden binnen de
hidden Markov modellen. We hebben het raamwerk toegepast op gegevens die
verkregen zijn bij de behandeling van patiënten met psychotische depressie, waar-
bij latente toestanden als patiëntgroepen fungeren, die symptomen voorspellen
als onderdeel van de prognose van de patiënt.

In hoofdstuk 5 leren we hidden Markov modellen uit gegevens van gebeurtenis-
sen in de gezondheidszorg. Er wordt gebruik gemaakt van een casus op basis
van gebeurtenissen die te maken hebben met aderverkalking. De grootte van
dergelijke datasets, in vergelijking met het kleine aantal mogelijke gebeurtenissen
in de datasets, maakt dat dezelfde gebeurtenis wordt geassocieerd met meerdere
latente toestanden, een begrip dat we clustering van latente toestanden noe-
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166 samenvatting

men. We laten zien dat gebeurtenissen in een cluster geassocieerd worden met
patiënten met een verschillende ernst van de ziekte.

Het tweede gezichtspunt op processen is gebaseerd op de identificatie van
procesveranderingspunten of regimeverandering. De uitdaging ligt in het uit-
breiden van modellen die tijdsinvariant zijn (zoals dynamische Bayesiaanse
netwerken) voor het vastleggen van regimeverandering op een eenvoudige manier,
die geschikt kan zijn wanneer de beschikbare dataset klein is.

In hoofdstuk 6 stellen we gepartitioneerde dynamische Bayesiaanse netwerken
voor om modellen te kunnen bouwen waarvoor de tijdshomogeniteitsaanname
niet geschikt is. Gepartitioneerde dynamische Bayesiaanse netwerken zijn een
verzameling van dynamische Bayesiaanse netwerken waarbij afkappunten heuris-
tisch worden geïdentificeerd. Deze modellen werden geëvalueerd in een brede
verzameling experimenten.

In het laatste procesperspectief wordt getracht deelverzamelingen van tijds-
gegevens te ontdekken die samenhangen met modellen die substantieel afwijken
van het model dat uit de hele dataset wordt verkregen. Dit kan worden gezien
als het identificeren van belangrijke subprocessen.

In hoofdstuk 7 introduceren we dynamische Bayesiaanse netwerken voor het
representeren van uitzonderlijke temporele modellen uit deelverzamelingen van
de data. Dit biedt een algemene representatie voor subprocessen binnen de
context van de ontdekking van subgroepen en exceptional model mining. We
evalueren de voorgestelde aanpak door middel van gesimuleerde data en een
casus rond subsidieaanvragen in de agrarische sector.
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