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Chapter 7

Summary and Conclusion

With low network latency, high bandwidth, good scalability, and reusability, a Network-
on-Chip is a promising communication fabric for the future many-core systems. How-
ever, NoCs consume too much power in real chips, which constraints the utilization of
NoCs in future large-scale many-core systems. Meanwhile, with more advanced semi-
conductor technologies, applied in chip manufacturing, the static power consumption
takes a larger proportion of the total power consumption. Thus, in this thesis, we
have focused our attention on reducing the static power consumption of NoCs in two
directions: applying efficient power gating on NoCs to reduce the static power con-
sumption and realizing a confined-interference communication on a simplified NoC
infrastructure to achieve energy-efficient packet transmission.

By powering off the idle components/routers in a NoC, power gating is an effec-
tive way to reduce the power consumption of a NoC. However, when the power gating
is applied on a NoC, the powered-off components/routers block the packet transmis-
sion and cause significant packet latency increase. This is because the powered-off
components/routers need some clock cycles to be fully charged (i.e., to be powered-
on). During the time period of charging powered-off routers, some packets cannot
be transferred and have to be blocked until the powered-off routers are fully charged.
As a consequence, applying power gating on a NoC causes significant packet latency
increase. Furthermore, the power gating process (i.e., switching off/on the power of
components/routers) itself consumes extra power. This implies that frequent power
gating or power gating in a short time may cause more power consumption or in-
efficient power consumption reduction. Thus, to reduce the packet latency increase
caused by power gating and achieve significant reduction of the power consumption
in NoCs, we have proposed three novel power gating approaches: duty buffer based
(DB-based) power gating, dynamic bypass (D-bypass) power gating, and express vir-
tual channel based (EVC-based) power gating. These power gating approaches are
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effective in reducing the power consumption of NoCs, but with different properties,
they have different advantages. We summarize the properties of the DB-based power
gating approach (DB_PG), the D-bypass power gating (D-bypass), and the EVC-based
power gating approach (EVC_PG) in Figure 7.1. In Figure 7.1, the axes PL_I, PL_m,
and PL_h represent the packet latency (PL) in a NoC under low traffic workloads
(1), medium traffic workloads (m), and high traffic workloads (h), respectively. The
axes PC_l, PC_m, and PC_h represent the power consumption (PC) of a NoC under
low traffic workloads (1), medium traffic workloads (h), and high traffic workloads
(h), respectively. For example, the PL._m axis crosses the block edges of DB_PG, D-
bypass, and EVC_PG at three points, respectively. These points represent the packet
latency (normalized to the same baseline) of DB_PG, D-bypass, and EVC_PG under
medium traffic workloads. Thus, according to Figure 7.1, under medium traffic work-
loads, DB_PG has the highest packet latency among our three approaches, whereas
EVC_PG has the lowest packet latency. Based on the different properties of our power
gating approaches, shown in Figure 7.1, we draw the following conclusions:

— DB_PG

— D-bypass
PF—' — EVC_PG

PC_h

PC

Figure 7.1: Packet latency (PL) and power consumption (PC) at low traffic workloads
(1), medium traffic workloads (m), and high traffic workloads (h).

e Our DB-based power gating approach is effective in reducing the power
consumption of a NoC in a wide range of traffic workloads, but at medium
traffic workloads, it has the highest packet latency among our three power
gating approaches. This is because, our DB-based power gating is a fine-
grained power gating approach, in which each input port of a router can be
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separately powered-off. In this way, our DB-based power gating approach can
fully utilize the idle time of each input port in a router to reduce the static power
consumption. Thus, at different traffic workloads, our DB-based power gating
approach achieves significant reduction of the power consumption in a NoC.
Furthermore, taking advantage of our novel duty buffer (BD) structure to re-
place the powered-off input port to transfer packets, our DB-based power gating
approach achieves lower packet latency then D-bypass at low traffic workloads
in as shown Figure 7.1. However, being a fine-grained power gating approach,
our DB-based power gating approach needs to separately switch the power of
each input port in a router. At medium traffic workloads, packets experience
many power gating processes. As a consequence, our DB-based power gating
approach has the highest packet latency among our three approaches at medium
traffic workloads.

o At low traffic workloads, our D-bypass power gating is the most power-
efficient approach among our three approaches, and it is effective in reduc-
ing the power consumption of a NoC only at low traffic workloads. How-
ever, at low traffic workloads, our D-bypass power gating has the high-
est packet latency among our approaches. This is because, in our D-bypass
power gating approach, we add one special hardware bypass structure in each
router. When a router is powered-off, only this special hardware bypass struc-
ture is kept powered-on. Compared with the DB-based power gating approach
and the EVC-based power gating approach, our D-bypass power gating ap-
proach can power off more components in a router to reduce the static power
consumption. Thus, at low traffic workloads, in which most of the routers are
idle and can be powered-off, our D-bypass power gating approach consumes the
least power among our three approaches. Furthermore, the special hardware by-
pass structure in each router makes it possible for packets to bypass powered-
off routers. In this way, our D-bypass power gating approach can efficiently
reduce the extra power consumption caused by power gating. However, being
a course-grained power gating approach, our D-bypass power gating approach
cannot fully utilize the idle time of each component in a router. When the traf-
fic workload increases, most of the routers in a NoC become busy and cannot
be powered off to reduce the static power consumption. As a consequence, our
D-bypass power gating approach is effective only at low traffic workloads. In
terms of the packet latency, as packets can bypass powered-off routers in our
D-bypass power gating approach, the packet latency increase caused by power
gating is reduced. However, limited by the low transmission capacity of the
special hardware bypass structure in powered-off routers, our D-bypass power
gating approach still causes significant increase of the packet latency. As a con-
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sequence, our D-bypass power gating approach has the highest packet latency
among our three approaches at low traffic workloads.

e Our EVC-based power gating approach achieves the lowest packet latency
among our three approaches at different traffic workloads. Furthermore,
it is also the most effective approach in reducing the power consumption at
high traffic workloads. This is because, in the EVC-based power gating ap-
proach, we pre-define multiple virtual bypass paths between different routers.
Packets can take these virtual bypass paths to bypass intermediate routers that
can be powered-on or powered-off. Furthermore, compared with the D-bypass
power gating approach, the pre-defined virtual bypass paths in our EVC-based
power gating approach are much more efficient to allow packets to bypass the
powered-on/powered-off routers. Therefore, our EVC-based power gating ap-
proach achieves the lowest packet latency among our three power gating ap-
proaches. In addition, packets can bypass not only powered-oft routers but also
they can bypass powered-on routers as well. Thus, even at high traffic work-
loads, our EVC-based power gating approach still can reduce the power con-
sumption by allowing packets to bypass the powered-on routers.

A confined-interference communication in a NoC-based System-on-Chip is a use-
ful quality-of-service. In confined-interference communication, the packets of differ-
ent applications are grouped into different domains and packet interference can oc-
cur only in the same domain, whereas there is no packet interference between do-
mains. By supporting a confined-interference communication, NoCs can support
composability to facilitate the temporal verification of (hard) real-time applications.
However, realizing a confined-interference communication on a conventional (virtual
channel/buffer based) NoC requires a large number of virtual channels, which causes
high power consumption. Therefore, there is an urgent need for realizing a confined-
interference communication on a more power-efficient NoC architecture. Bufferless
NoCs have simplified NoC architectures. By eliminating virtual channels/buffers in
routers, bufferless NoCs consume much less power than conventional NoCs. However,
as there are no buffers in bufferless NoCs to temporarily store packets, packets have to
keep moving, which makes it more difficult to control the interference between pack-
ets. As a consequence, current bufferless NoCs do not support a confined-interference
communication.

To overcome this issue, we have proposed a novel routing approach, called Surfing
on a Bufferless NoC (Surf-Bless). Based on our Surf-Bless routing approach, it be-
comes possible for bufferless NoC to support a confined-interference communi-
cation. Furthermore, our Surf-Bless routing approach is much more power/energy-
efficient than related approaches. This is because, our Surf-Bless approach is based
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on a specific assignment and scheduling of the resources in a bufferless NoC. This spe-
cific assignment and scheduling can be visualized as multiple “waves" which move
in space and time over the NoC in a specially designed repetitive pattern. The spe-
cially designed repetitive pattern for the waves guarantees that packets “surfing” on a
wave can keep moving, which is essential to correctly use a bufferless NoC to transfer
packets. This is because, in a bufferless NoC, there are no buffers and packets have
to keep moving. Furthermore, the specially designed repetitive pattern also guaran-
tees that there is no interference between different waves. Thus, by assigning different
domains on different waves, there is no interference between domains and a confined-
interference communication is achieved. In this way, we realize confined-interference
communication on a bufferless NoC infrastructure. Furthermore, as the routers in our
Surf-Bless approach do not have virtual channels/buffers, our Surf-Bless routing con-
sumes much less power/energy than related approaches.
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