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S.1 Dutch national Substances of Very High Concern 22 

Within the Netherlands, national policy is particularly focusing on Dutch national Substances of Very 23 

High Concern (nSVHC). These substances could seriously harm man and environment and are therefore 24 

of very high concern. Although the nSVHC substances cover a broader range of chemicals than the EU-25 

SVHC substances under REACH, nSVHC substances are identified based on the same hazard criteria as 26 

the EU-SVHC substances (i.e. REACH article 57; 1907/2006): 27 

a. Carcinogenic category 1A or 1B according to Regulation (EC) 1272/2008. 28 

b. Mutagenic category 1A or 1B according to Regulation (EC) 1272/2008. 29 

c. Toxic for reproduction category 1A or 1B according to Regulation (EC) 1272/2008. 30 

d. Persistent, Bioaccumulative and Toxic in accordance with the criteria set out in REACH 31 

Annex XIII. 32 

e. Very Persistent and Very Bioaccumulative in accordance with the criteria set out in REACH 33 

Annex XIII. 34 

f. Substances for which there is scientific evidence of probable serious effects to human health 35 

or the environment which give rise to an equivalent level of concern to those of other 36 

substances listed above, like endocrine disruptors. 37 

A substance is considered nSVHC when it is included on any of the following lists: 38 

- Substances that are classified as C, M, or R category 1A or 1B according to Regulation (EC) 39 

1272/2008. 40 

- Substances on the candidate list for REACH Annex XIV. 41 

- Substances that are identified as POP in the Stockholm Convention regulation (EC) 850/2004. 42 

- Priority Hazardous substances according to the Water Framework Directive 2000/60/EC. 43 

- Substances on the OSPAR list for priority action. 44 

The list of nSVHC substances is compiled and updated on https://rvszoeksysteem.rivm.nl/ZZSlijst/Index.   45 

https://rvszoeksysteem.rivm.nl/ZZSlijst/Index
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S.2 SMILES charge conversion 46 

SMILES were adjusted to neutral versions where possible (see Table below). 47 

Functional 
group or 
salts of the 
functional 
group 

Neutral or 
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H
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  49 
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S.3 Model application 50 

1. Generate SMILES 51 

For substances of interest, SMILES / .sdf files need to be generated. The applicability domain should be 52 

taken into account (section 4.3) and charged structures should be converted to their neutral versions where 53 

possible (see Supplemental Material S.2). There are multiple possibilities to generate a correct SMILES 54 

code (e.g. non-canonical or canonical), these should provide similar outcomes. 55 

2. Generate Fingerprint 56 

For the substances of interest, fingerprints need to be generated: 57 

- Extended fingerprint for CMR model. 58 

- MACCS fingerprint for PBT/vPvB model. 59 

- FCFP4 for ED model.  60 

The extended fingerprint and MACCS fingerprint can be generated using PaDEL-Descriptor [23] 61 

(http://www.yapcwsoft.com/dd/padeldescriptor/). The following settings were enabled: “remove salt”, 62 

“detect aromaticity”, “standardize all tautomers” and “standardize nitro groups”.   63 

The FCFP4 fingerprint can be generated by using RDkit in python [22]. Python version 2.7 and RDkit 64 

version 2017.09.3.0 were applied. The following script can be used to generate the FCFP4 fingerprint: 65 

http://www.yapcwsoft.com/dd/padeldescriptor/
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 66 

   67 

3. Calculate similarity 68 

In order to run the models, the generated fingerprints need to be order in separate .csv files with in the 69 

first three columns: “Name”, “CAS or EC” and “SMILES” (Note: these columns could be left blank). In 70 

the other columns each fingerprint bit should be placed (n=166 for MACCS and n=1024 for the Extended 71 

Fingerprint and FCFP4).   72 

The files need to be ordered in the following folder structure in order to run the R-script as shown below. 73 

Note that the working directory and files location need to be adjusted within this script.    74 

- Folder: R_import_files: 75 
o CMR_ExtendedFingerprint (Sheet 3 from Supplemental Material Excel as .csv file) 76 
o PBT_MACCS (Sheet 4 from Supplemental Material Excel as .csv file) 77 
o ED_FCFP4 (Sheet 5 from Supplemental Material Excel as .csv file) 78 
o Subfolder: Test_data: 79 

 File_CMR (the ExtendedFingerprint file as generated for the substances of 80 
interest) 81 

 File_PBT (the MACCS file as generated for the substances of interest) 82 

### Load packages 
from __future__ import print_function 
from rdkit import Chem 
from rdkit.Chem import AllChem 
import csv 
import os 
 
### Set working directory 
os.chdir(“C:/...) 
 
### Import .sdf file 
suppl = Chem.SDMolSupplier("C:/….sdf") 
 
### Check SMILES 
m = [x for x in suppl if x is not None] 
 
### Calculate FCFP4 fingerprint 
Fingerprint_FCFP4 = [AllChem.GetMorganFingerprintAsBitVect(x, 2, 
useFeatures=True, nBits=1024) for x in m] 
 
### Export fingerprint 
with open('FCFP4_fp_TestCase.csv', 'w') as output: 
    writer = csv.writer(output, lineterminator='\n') 
    writer.writerows(Fingerprint_FCFP4)     
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 File_ED (the FCFP4 file as generated for the substances of interest) 83 
- Folder: R_export_files.  84 
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 85 

  86 

# -------------------------- 
# Load Packages 
# -------------------------- 
 
### Load packages 
library("caret") 
library("ChemmineR") 
library(caTools) 
library(xlsx) 
library(ROCR) 
library(dplyr) 
 
### Set working directory 
setwd("C:..../R_export_files") 
 
# -------------------------- 
# Load similarity measures 
# -------------------------- 
 
### CMR 
CMR_Substances <- read.csv("C:..../R_Import_files/CMR_ExtendedFingerprint.csv", sep=";") 
CMR_Substances <- filter(CMR_Substances, CMR_Substances$CMR == 1) 
 
### PBT/vPvB 
PBT_Substances <- read.csv("C:..../R_Import_files/PBT_MACCS.csv", sep=";") 
PBT_Substances <- filter(PBT_Substances, PBT_Substances$PBT.vPvB == 1) 
 
### ED 
ED_Substances <- read.csv("C:..../R_Import_files/ED_FCFP4.csv", sep=";") 
ED_Substances <- filter(ED_Substances, ED_Substances$ED == 1) 
 
### Similarity coefficients 
SS3 <- function(a,b,c,d){ifelse(c==(a+b+c+d),1,ifelse(d==(a+b+c+d),1,ifelse(c==0 & 
 d==0,0,ifelse(c==0 & a ==0, 
 ((1/4)*(((c)/(c+b))+((d)/(a+d))+((d)/(b+d)))),((1/4)*(((c)/(c+a))+((c)/(c+b))+((d)/(a
 +d))+((d)/(b+d))))))))} 
SM <- function(a,b,c,d){(c+d)/(c+a+b+d)} 
CT4 <- function(a,b,c,d){(log(1+c))/(log(1+c+a+b))} 
 
### Thresholds 
CMR_Threshold_Below <- 0.85054337568321992 
CMR_Threshold_Above <- 0.9443359375 
PBT_Threshold <- 0.96987951807228912 
ED_Threshold <- 0.86632190004714749 
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  88 

# -------------------------- 
# Compare similarity - Test data  
# -------------------------- 
 
### CMR 
CMR_test_data <- read.csv("C:..../R_Import_files/Test_data/File_CMR.csv", sep=";") 
Top1_CMR_test_data <- apply(CMR_test_data[,c(4:1027)],MARGIN = 1, function(x) ifelse(sum(x) 
 < 85,fpSim(x, y=data.matrix(CMR_Substances[,c(12:1035)]), method = CT4, 
 top=1),fpSim(x, y=data.matrix(CMR_Substances[,c(12:1035)]), method = SM, top=1))) 
 
CMR_Results <- CMR_test_data[,1:3] 
names(CMR_Results) <- c("Identifier","CAS","SMILES") 
CMR_Results$CMR_SimValue <- Top1_CMR_test_data 
CMR_Results$CMR_Concern <- apply(CMR_test_data[,c(4:1027)],MARGIN = 1, function(x)   
 ifelse(sum(x) < 85, ifelse(fpSim(x, y=data.matrix(CMR_Substances[,c(12:1035)]), 
 method = CT4, top=1) >= CMR_Threshold_Below, "Yes", "No"),ifelse(fpSim(x, 
 y=data.matrix(CMR_Substances[,c(12:1035)]), method = SM, top=1) >= 
 CMR_Threshold_Above, "Yes", "No"))) 
CMR_Results$CMR_MostSimilar_Name <- c(NA) 
CMR_Results$CMR_MostSimilar_SMILES <- c(NA)  
MostSimilarID <- apply(CMR_test_data[,c(4:1027)],MARGIN = 1, function(x) which.max(fpSim(x, 
 y=data.matrix(CMR_Substances[,c(12:1035)]), method = SM, sorted=FALSE))) 
CMR_Results$CMR_MostSimilar_Name <- as.character(CMR_Substances[MostSimilarID,2]) 
CMR_Results$CMR_MostSimilar_SMILES <- as.character(CMR_Substances[MostSimilarID,3]) 
CMR_Results$CMR_NumberSimilar <- apply(CMR_test_data[,c(4:1027)],MARGIN = 1, function(x) 
 ifelse(sum(x) < 85, sum(fpSim(x, y=data.matrix(CMR_Substances[,c(12:1035)]),method = 
 CT4, sorted=FALSE)>= CMR_Threshold_Below), sum(fpSim(x, 
 y=data.matrix(CMR_Substances[,c(12:1035)]),method = SM, sorted=FALSE)>= 
 CMR_Threshold_Above))) 
 
### PBT 
PBT_test_data <- read.csv("C:..../R_Import_files/Test_data/File_PBT.csv", sep=";") 
Top1_PBT_test_data <- apply(PBT_test_data[,4:169],MARGIN = 1, function(x) fpSim(x, 
 y=data.matrix(PBT_Substances[,12:177]), method = SM, top=1)) 
 
PBT_Results <- PBT_test_data[,1:3] 
names(PBT_Results) <- c("Identifier","CAS","SMILES") 
PBT_Results$PBT_SimValue <- Top1_PBT_test_data 
PBT_Results$PBT_Concern <- apply(PBT_test_data[,c(4:169)],MARGIN = 1, function(x) 
 ifelse(fpSim(x, y=data.matrix(PBT_Substances[,12:177]), method = SM, top=1) >= 
 PBT_Threshold, "Yes", "No")) 
PBT_Results$PBT_MostSimilar_Name <- c(NA) 
PBT_Results$PBT_MostSimilar_SMILES <- c(NA)  
MostSimilarID <- apply(PBT_test_data[,c(4:169)],MARGIN = 1, function(x) which.max(fpSim(x, 
 y=data.matrix(PBT_Substances[,c(12:177)]), method = SM, sorted=FALSE))) 
PBT_Results$PBT_MostSimilar_Name <- as.character(PBT_Substances[MostSimilarID,2]) 
PBT_Results$PBT_MostSimilar_SMILES <- as.character(PBT_Substances[MostSimilarID,3]) 
PBT_Results$PBT_NumberSimilar <- apply(PBT_test_data[,c(4:169)],MARGIN = 1, function(x) 
 sum(fpSim(x, y=data.matrix(PBT_Substances[,c(12:177)]),method = SM, sorted=FALSE)>= 
 PBT_Threshold)) 
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  91 

### ED 
ED_test_data <- read.csv("C:..../R_Import_files/Test_data/File_ED.csv", sep=";") 
Top1_ED_test_data <- apply(ED_test_data[,4:1027],MARGIN = 1, function(x)  fpSim(x, 
 y=data.matrix(ED_Substances[,12:1035]), method = SS3, top=1)) 
 
ED_Results <- ED_test_data[,1:3] 
names(ED_Results) <- c("Identifier","CAS","SMILES") 
ED_Results$ED_SimValue <- Top1_ED_test_data 
ED_Results$ED_Concern <- apply(ED_test_data[,c(4:1027)],MARGIN = 1, function(x) 
 ifelse(fpSim(x, y=data.matrix(ED_Substances[,12:1035]), method = SS3, top=1) >= 
 ED_Threshold, "Yes", "No")) 
ED_Results$ED_MostSimilar_Name <- c(NA) 
ED_Results$ED_MostSimilar_SMILES <- c(NA)  
MostSimilarID <- apply(ED_test_data[,c(4:1027)],MARGIN = 1, function(x) which.max(fpSim(x, 
 y=data.matrix(ED_Substances[,c(12:1035)]), method = SS3, sorted=FALSE))) 
ED_Results$ED_MostSimilar_Name <- as.character(ED_Substances[MostSimilarID,2]) 
ED_Results$ED_MostSimilar_SMILES <- as.character(ED_Substances[MostSimilarID,3]) 
ED_Results$ED_NumberSimilar <- apply(ED_test_data[,c(4:1027)],MARGIN = 1, function(x) 
 sum(fpSim(x, y=data.matrix(ED_Substances[,c(12:1035)]),method = SS3, sorted=FALSE)>= 
 ED_Threshold)) 
 
 
# -------------------------- 
# Export data 
# -------------------------- 
 
TestData_Results <- cbind(CMR_Results, PBT_Results[,c(4:8)], ED_Results[,c(4:8)]) 
write.xlsx(TestData_Results, "TestData_Results.xlsx", col.names = TRUE, row.names = TRUE) 
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S.4 Symmetric coefficient bias 92 

For the CMR dataset specifically, we adjusted the best performing model by using a symmetric-93 

asymmetric coefficient combination as all small substances were classified as positive. Although the 94 

PBT/vPvB and ED models are also based on a symmetric similarity coefficient, they do not require a 95 

symmetric-asymmetric combination, as the models have slightly different characteristics compared to the 96 

CMR subgroup. The PBT/vPvB model is based on the MACCS fingerprint, which consists of only 166 97 

bits. With a similarity threshold of 0.970, substances with five or less different bit-pairs will always be 98 

considered as similar. As the lowest number of fragments in any of the PBT/vPvB substances is already 99 

six, small substances in the reference datasets are not automatically identified as structurally similar to 100 

PBT/vPvB SVHCs (as was the case for the CMR SVHC subgroup). The ED subgroup, where the FCFP4 101 

fingerprint gave the best predictive performance, has a much better balance in ED and non-SVHC 102 

fragment distribution (Figure S.2). Additionally, no ED substances with a low fragment count are 103 

included and the fragments are more specific. Furthermore, the optimal ED model uses the SS3 104 

coefficient, which takes c and d bit-pairs equally into account, but does not consider them as exactly 105 

similar, as the SM coefficient does (Table 2).The PBT/vPvB and ED models therefore do not require a 106 

combination of asymmetric and symmetric coefficients.  107 

  108 
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S.5 CMR model extension with ToxTree and DART Structural Alerts (Addition of extra fingerprint) 109 

The best observed accuracy for the subset of CMR substances was 0.819, and is lowest for all subsets (i.e. 110 

CMR, PBT/vPvB and ED). A test was conducted in order to analyze whether the accuracy could be 111 

improved by adding a CMR specific fingerprint – containing (larger/specific) structural alerts that are 112 

related to CMR properties. Potentially, such CMR-specific fragments could improve the performance and 113 

fill the information gap of the plain similarity measures. 114 

We developed a CMR-specific dictionary-based fingerprint, based on structural alerts as included in 115 

ToxTree (for C and M) [7] and DART classification scheme (for R) [34]. The CMR-fingerprint contained 116 

a total of 115 bits (35 CM related from ToxTree; 80 R related from DART). This fingerprint was 117 

combined with the seven selected similarity coefficients (Table 2), resulting in seven different 118 

“fingerprint-coefficient” combinations. Subsequently, these seven “fingerprints-coefficient” combinations 119 

were combined with the CMR model (i.e. “Extended fingerprint – SM coefficient” combination) using 120 

different weights, by using the following equation:  121 

𝑆𝑆 =  𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶−𝐹𝐹𝐹𝐹 ∗  𝑊𝑊𝐶𝐶𝐶𝐶𝐶𝐶−𝐹𝐹𝐹𝐹 +  𝑆𝑆𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐶𝐶𝐶𝐶𝐶𝐶 ∗  𝑊𝑊𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐶𝐶𝐶𝐶𝐶𝐶 122 

Where, S represents the final similarity value per substance. This similarity value is subsequently used to 123 

determine the final model performance similar as described in section 2.4 (i.e. determination of optimal 124 

threshold and calculation of balanced accuracy) SCMR-FP are the highest similarity values for a substance to 125 

a CMR-SVHC substance, as obtained by using the CMR-specific fingerprint and one of the seven 126 

similarity coefficients. SOverall CMR are the highest similarity values for a substance to a CMR-SVHC 127 

substance, as obtained by using the “Extended-fingerprint - SM coefficient” combination. WCMR-FP and 128 

WOverall CMR, represent the weights given to the different similarity values. The applied weight 129 

combinations are shown in the Table below. By using this scheme the performance of 71 models was 130 

obtained (i.e. 10 weight combination * 7 coefficients + 1 weight combination [WCMR-FP = 0, WOverall CMR = 131 

1]). 132 
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WCMR-FP W Overall CMR 

1 0 
0.9 0.1 
0.8 0.2 
0.7 0.3 
0.6 0.4 
0.5 0.5 
0.4 0.6 
0.3 0.7 
0.2 0.8 
0.1 0.9 
0 1 

 133 

Of all models, the WCMR-FP = 0 resulted in highest balanced accuracy (0.819). This model is exactly 134 

similar to the best overall model (“Extended-fingerprint - SM coefficient” combination; thus without 135 

inclusion of the CMR-specific fingerprint). In addition, all models based on the Yu2-coefficient (except 136 

Yu2 with WCMR-FP = 1) and the SM-coefficient WCMR-FP = 0.1 had a similar accuracy to the best model, 137 

indicating that these models do not influence the model performance. All other models resulted in a lower 138 

balanced accuracy, with a lowest balanced accuracy for all WCMR-FP = 1 models. This indicates that the 139 

CMR-FP do not provide additional information for an improved distinction between CMR and non-CMR 140 

substances (see Table below). All weighing values in between resulted in balanced accuracies between 141 

the extreme values. It is observed that the asymmetric coefficient (i.e. JT and CT4) perform much better 142 

than the symmetric coefficient. This can be explained by the fact that only a few alerts are present per 143 

substance, and thus many zero fingerprint bit values are included.  144 

WCMR-FP = 1 Balanced Accuracy 
CMR-FP_JT 0.651 
CMR-FP_CT4 0.651 
CMR-FP_Hl 0.501 
CMR-FP_SS3 0.501 
CMR-FP_Coh 0.501 
CMR-FP_SM 0.500 
CMR-FP_Yu2 0.500 

  145 
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Figure S.1. Optimal threshold values for the analyzed similarity coefficients in combination with the 146 

sixteen investigated fingerprints. 147 

 148 

  149 
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Figure S.2. Distribution of fragments (i.e. “1-bits”) across TP, FP, TN and FN substances. 1) for 150 

PBT/vPvB using the MACCS fingerprint, 2) for ED using the FCFP4 fingerprint, and 3) for CMR using 151 

the extended fingerprint and CT4-SM combination.  152 

 153 

 154 

  155 
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Figure S.3. Highest similarity values as calculated for 1) CMR CT4, 2) CMR SM, 3) PBT/vPvB, and 4) 156 
ED substances and non-SVHC substances (based on the best performing models). The vertical dashed 157 
line represents the optimal threshold. 158 

 159 

 160 

 161 
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Table S.1. Best performing fingerprint-coefficient combination for the CMR subgroups based on one 164 
similarity coefficient; and the improved CMR model by combining a symmetric and asymmetric 165 
coefficient in order to prevent symmetric coefficient bias. In total, 411 non-SVHC substances were 166 
included. ‘-‘ means that it is not possible to calculate a single AUC or threshold value for a combination of 167 
two models. AUC is the area under the curve of ROC-plot. 168 

Subset Model Threshold Sensitivity Specificity Precision AUC 
(ROC) 

Balanced 
accuracy Fingerprint Coefficient 

CMR 
(n=306) Extended 

SM (<85) 0.944 0.978 0.222 0.728 0.832 0.600 
SM (≥85) 0.944 0.634 0.968 0.908 0.826 0.801 

Total 0.944 0.784 0.854 0.800 0.859 0.819 
CMR 
improved 
(n=306) 

Extended 
CT4 (<85) 0.851 0.672 0.841 0.900 0.748 0.756 
SM (≥85) 0.944 0.634 0.968 0.908 0.826 0.801 

Total - 0.650 0.949 0.905 - 0.800 
  169 
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Table S.2. Physicochemical applicability domain for the similarity models based on the 95th percentiles of 170 
the dataset substances.   171 

Properties CMR PBT/vPvB ED 
Molecular weight 59 – 632 100 – 717 70 – 556 
Log Kow 2.19 – 9.40 -1.62 – 10.20 -2.42 – 7.7 
Number of atoms 7 – 84 12 – 70 11 – 84 
Number of rings 0 – 5 0 – 6 0 – 4 
Number of aromatic rings 0 – 5 0 – 4 0 – 3 
 172 
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