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Bioaccumulative and Toxic ; vPvB = very Persistent and very Bioaccumulative ; ED = Endocrine Disruption; 

SPOKs = Single Point of Knowledge structures ; Kow = octanol/water partition coefficient ; UVCB = Substances of 

Unknown or Variable composition, Complex reaction products or Biological materials ; ECFP = Extended 

Connectivity Fingerprints ; FCFP = Functional-Class Fingerprints ; JT = Jaccard-Tanimoto coefficient ; HL = 

Harris-Lahey coefficient ; CT4 = Consonni-Todeschini 4 coefficient ; SS3 = Sokal-Sneath 3 coefficient ; Coh = 

Cohen coefficient ; SM = Simple Matching coefficient ; Yu2 = Yule 2 coefficient; TP = True Positives ; FP = False 

Positives ; FN = False Negatives ; TN = True Negatives. 
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Highlights 22 

• Potential Substances of Very High Concern can be identified by chemical similarity. 23 

• High balanced accuracies (≥0.8) were obtained for all SVHC-subgroup models. 24 

• Improvement of the ED model by extending the database is considered necessary. 25 

• The best performing similarity models can be used for screening and prioritization. 26 
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Abstract 28 

There is a strong demand for early stage identification of potential substances of very high concern 29 

(SVHC). SVHCs are substances that are classified as carcinogenic, mutagenic or reprotoxic (CMR); 30 

persistent, bioaccumulative and toxic (PBT) or very persistent and very bioaccumulative (vPvB); or as 31 

substances with an equivalent level of concern, like endocrine disruption (ED). The endeavor to improve 32 

the identification of potential SVHCs is also acknowledged by the European Commission, in their long-33 

term vision towards a non-toxic environment. However, it has been shown difficult to identify substances 34 

as potentially harmful.  35 

With this goal in mind, we have developed a methodology that predicts whether a substance is a 36 

potential SVHC based on chemical similarity to chemicals already identified as SVHC. The approach is 37 

based on the structural property principle, which states that structurally similar chemicals are likely to 38 

have similar properties.  39 

We systematically analyzed the predictive performance of 112 similarity measures (i.e. all 40 

different combinations of 16 binary fingerprints and 7 similarity coefficients) classifying the substances in 41 

the dataset as (potential) SVHC or non-SVHC. The outcomes were analyzed for 546 substances that we 42 

collected within the Dutch SVHC database – with identified CMR, PBT/vPvB and/or ED properties - and 43 

411 substances that lack these hazardous properties. The best similarity measures showed a high 44 

predictive performance with a balanced accuracy of 85% correct identifications for the whole dataset of 45 

SVHC substances, and 80% for CMR, 95% for PBT/vPvB and 99% for ED subgroups.  46 

This effective screening methodology showed great potential for early stage identification of potential 47 

SVHCs. This model can be applied within regulatory frameworks and safe-by-design trajectories, and 48 

hence can contribute to the EU goal of achieving a non-toxic environment. 49 

Keywords: Substances of Very High Concern, Screening, Chemical similarity, Classification model.    50 
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1. Introduction 51 

In recent decades, exposure to specific chemicals appeared of greater concern than previously anticipated, 52 

including concerns for polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT) and 53 

perfluorooctanesulfonic acid (PFOS) [1]. In many cases, when safety concerns are raised, widespread 54 

exposure has often already occurred, and typically the set of available toxicity data is inadequate to 55 

introduce risk management measures immediately. Consequently, chemicals of potential concern continue 56 

to be emitted, with the risk of significant effects on human and environmental health in the long-term. 57 

Therefore, it is important to signal emerging concerns and improve the early stage identification of 58 

hazardous chemicals before widespread exposure occurs. This endeavor is also acknowledged by the 59 

European Commission in their long-term vision towards a non-toxic environment [2,3]. In particular, high 60 

priority is given to so-called substances of very high concern (SVHC), which include substances with 61 

carcinogenic, mutagenic or reprotoxic (CMR) properties, substances with persistent, bioaccumulative and 62 

toxic (PBT) or very persistent and very bioaccumulative (vPvB) properties, or substances with endocrine 63 

disrupting (ED) properties [4]. Substances can be identified as SVHC following a regulatory decision 64 

process in which all available data is evaluated. 65 

 To improve the identification of potential SVHCs, it is essential to make efficient use of the 66 

limited amount of available (fate and toxicity) data. Several models have been described in the literature 67 

that predict hazard properties of chemicals from simple properties, like aquatic toxicity based on the 68 

octanol/water partition coefficient (Kow) and/or structural alerts [5–7], or based on more complex 69 

algorithms [8–13]. Many of these models are (at least partially) based on the structural property principle, 70 

which assumes that (structurally) similar chemicals are likely to have similar properties [14]. Although 71 

these models are very useful to predict the effect of a chemical on a specific endpoint, their applicability 72 

to identify potential SVHC substances is limited. This is a consequence of the fact that the group of 73 

SVHC substances covers a broad range of different toxicological endpoints and mode of actions - and are 74 

only identified following a regulatory decision process. Within current models it is difficult to simulate 75 
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such a regulatory weight-of-evidence approach. Potentially, total chemical similarity to known SVHC 76 

substances can be a useful way to estimate (potential) SVHC status, as such a method might be able to 77 

cover more information on SVHC identification properties.  78 

To our knowledge, only two models, both with the aim of prioritization, attempt to identify 79 

potential SVHCs directly based on structural similarity to substances already identified as being SVHCs, 80 

including the SINimilarity tool developed by ChemSec [15], and screening scenarios as applied by the 81 

European Chemical Agency (ECHA) within the SVHC Roadmap program [16]. However, these methods 82 

do not provide optimized and cross-validated methodologies, resulting in an unknown predictive 83 

performance. If a high predictive accuracy could be achieved using only chemical similarity information, 84 

the lack of toxicity information can be bypassed, and those substances of potential SVHC concern, that 85 

are currently deemed “safe” in the absence of toxicity information, can be prioritized for further follow-up 86 

action. In addition, the chemical similarity information also provides a clear follow-up direction, as the 87 

potential concern is directly related to the concern of the most similar SVHC substance.  88 

The aim of the present study was to evaluate the efficiency of a broad set of similarity measures 89 

for the identification of potential SVHCs, with a specific focus on separately identifying CMR, 90 

PBT/vPvB and ED concerns. We built upon the knowledge gained (see e.g. [17]) for calculating chemical 91 

similarity, that generally consists of two main elements: a descriptor (or representation) of the chemical 92 

structure and a similarity coefficient. First, descriptors are used to characterize the molecules that are 93 

compared by assigning numerical values to structures [17–19]. These values are in most methods related 94 

to the absence or presence of specific chemical substructures and are often encoded in fixed-length bit-95 

strings (consisting of zeros and ones) [20]. These bit-strings are also known as fingerprints. Secondly, 96 

similarity coefficients are used to quantitatively express the similarity between two chemical descriptors 97 

[17,19,21]. For our purpose, the similarity between two fingerprints can be used to quantify the structural 98 

overlap between a chemical with unknown hazardous properties and known SVHCs. Many types of 99 

descriptors and similarity coefficients are available and there is no similarity measure that consistently is 100 

most effective (i.e. there is no single best “fingerprint - coefficient” combination for all applications) 101 
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[17,20,22]. Our study outcome provides the most optimal set of similarity measures as a first screening 102 

model to identify substances of potential SVHC concern.   103 
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2. Methods 104 

The study approach consists of four general steps (Figure 1). First, a dataset of substances with and 105 

without CMR, PBT/vPvB and/or ED properties was constructed (paragraph 2.1). Secondly, binary 106 

fingerprints were generated for all substances in the datasets (paragraph 2.2). Thirdly, similarity values 107 

(i.e. quantitative values of chemical similarity) were calculated between substances by comparing the 108 

fingerprints with similarity coefficients (paragraph 2.3). Only the extent of similarity to substances with 109 

identified CMR, PBT/vPvB and/or ED properties leading to the SVHC status was investigated. Finally, 110 

we determined an optimal similarity threshold and the predictive performance of each “fingerprint - 111 

coefficient” combination (paragraph 2.4). Steps two to four were reiterated for multiple “fingerprint - 112 

coefficient” combinations, as well as for different SVHC subgroups (i.e. for CMR, PBT/vPvB and ED 113 

separately and together), in order to identify the optimal model(s) based on balanced accuracy. A more 114 

elaborate description of these steps is provided in the following paragraphs.   115 

  116 

2.1 Dataset 117 

In order to identify chemicals of (potential) concern based on structural similarity to known toxicants, a 118 

set of known CMR, PBT/vPvB and ED substances is required. For this purpose, a Dutch list of substances 119 

of very high concern  was selected, as all substance on this list have CMR, PBT/vPvB and/or ED 120 

properties (see [23]; extracted on 01-03-2018). This list covers a broader range of chemicals than the EU-121 

SVHC list under REACH, but are identified based on the same hazard criteria as the EU-SVHC 122 

substances (i.e. REACH article 57 [4]). The generation and composition of this list of substances is more 123 

elaborately described in Supplemental Material S.1.  124 

In addition, for modelling purposes we also compiled a list of substances that are known not to 125 

have CMR, PBT/vPvB and/or ED properties. All substances on the REACH Annex IV - which lists 126 

chemicals that are considered to be inherently safe - were selected for this purpose, as well as all 127 

approved biocides and pesticides (see [24,25]; extracted on 23-05-2018). The list of biocides and 128 
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pesticides is suited for our purpose as all substances approved for introduction on the European market 129 

have been tested experimentally and are negative for CMR, PBT/vPvB and ED endpoints, according to 130 

the SVHC criteria.  131 

Several adjustments were made to the compiled substance lists, as chemical similarity searches 132 

require a specific and unambiguous chemical structure as input information. In cases that a group of 133 

substances was included in one of the above-mentioned lists (e.g. polychlorinated naphthalenes), 134 

representative chemical structures were generated and selected for inclusion in order to ensure that the 135 

structures represent the varying types of branching and/or substituents (e.g. tri- up till octachloro 136 

naphthalene, with two isomers per chlorine-atom count). When a substance is a mixture or a UVCB 137 

(Substances of Unknown or Variable composition, Complex reaction products or Biological materials), 138 

only the (representative) chemical structures of those components causing the concern were included (e.g. 139 

benzene in some of the UVCBs). When a substance is considered a non-SVHC substance, the main 140 

constituent(s) were included. Each unique chemical structure was included once in the final list. In 141 

addition, specific metal-complexes (i.e. based on arsenic, beryllium, cadmium, chromium, lead, mercury, 142 

nickel and cobalt) and fibers were excluded. For these metal-based complexes, it is generally the metal 143 

atom causing the concern, irrespective of the organic counterparts. In case of fibers, the toxicity is (also) 144 

determined by physical aspects other than their chemical structure (e.g. diameter, length and shape). In 145 

addition, all inorganic substances were removed from the list of non-SVHC substances.  146 

In total, a dataset of 546 SVHC and 411 non-SVHC single chemical structures was compiled (see 147 

Supplemental Material Excel). Of the 546 SVHC substances, 306 are known to have CMR properties, 148 

209 to have PBT/vPvB properties, and 52 are known to have ED properties. All chemical structures were 149 

represented by a (single) SMILES code [26] and all charged structures were converted to their neutral 150 

counterparts, where possible (Supplemental Material S.2). These SMILES codes were used for the 151 

analyses.  152 

 153 

2.2 Fingerprints 154 
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We restricted this study to binary fingerprints based on 2D-fragments, as they tend to be more selective 155 

than whole molecule descriptors. Moreover, 2D-fragments descriptors are (computationally) easier to 156 

handle than 3D-fragment descriptors [17]. The fingerprints were selected in such a way to ensure 157 

maximum diversity and include dictionary-based, path-based, circular-based and pharmacophore-based 158 

fingerprints (Table 1) [27]. The fingerprints were generated using freely available resources, including the 159 

software packages RDkit and PaDEL-Descriptor (based on the Chemistry Development Kit (CDK) 160 

libraries) [28,29]. For all non-dictionary based fingerprints, a string length of 1024 bits was used. More 161 

details on the generation of the fingerprints are given in Supplemental Material S.3. 162 

2.3 Similarity coefficients 163 

The similarity between two 2D-binary fingerprints of known SVHCs and non-SVHC substances can be 164 

computed by using various formulas, the so-called similarity coefficients. When comparing two binary 165 

fingerprints, four different bit-combinations could be identified - denoted as a, b, c and d. A, b, c and d 166 

represent the counts that a feature is present in one structure and absent in the other (“x=1 and y=0”), 167 

absent in the first and present in the second structure (“x=0 and y=1”), present in both (“x=1 and y=1”) 168 

and absent in both (“x=0 and y=0”), respectively. These four numbers are combined in similarity 169 

coefficients to quantify chemical similarity. In total, 44 different similarity coefficients are available to 170 

calculate similarity values between binary fingerprints [21]. We selected seven coefficients for our 171 

analysis based on diversity and based on their performance as observed by Todeschini et al. (2012) and 172 

Floris et al. (2014) [21,30] (see Table 2). Similarity coefficients “SS1”, “Ja” and “Gle” all showed a high 173 

performance within Todeschini et al. 2012, but have an exactly similar performance as the JT-coefficient. 174 

Therefore, it has been decided to only include the JT-coefficient within this study. All included similarity 175 

coefficients were rescaled to provide similarity values between 0 and 1 using Equation 1, similar to 176 

Todeschini et al. (2012) [21]. 177 

 178 
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𝑠′ =  
𝑠 +  𝛼

𝛽
                                                                 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1 179 

Where s is the original similarity value (Table 2), s’ is the rescaled function in the range [0, 1], and α and 180 

β are numerical parameters whose values are reported in Table 2. When α = 0 and β = 1, this means that 181 

no transformation has been applied [21]. 182 

 183 

Table 1: Binary fingerprints included in this study.  184 

Name Number of bits Type of fingerprint Source 

Substructure Fingerprints 307 

Dictionary based 

fingerprints 
PaDEL-

Descriptor [29] 

MACCS Fingerprints 166 

E-State Fingerprints 79 

PubChem Fingerprints 881 

Klekota-Roth Fingerprints 4860 

CDK Extended Fingerprints 1024 
Topological or Path-

based fingerprints 
Atom Pairs Fingerprints  1024 

RDkit [28] 

 

Topological Torsion Fingerprints 1024 

Extended Connectivity Fingerprints (diameter = 0) (ECFP0) 1024 

Circular fingerprints * 
Extended Connectivity Fingerprints (diameter = 2) (ECFP2) 1024 

Extended Connectivity Fingerprints (diameter = 4) (ECFP4) 1024 

Extended Connectivity Fingerprints (diameter = 6) (ECFP6) 1024 

Functional-Class Fingerprints (diameter = 0) (FCFP0) 1024 

Circular/pharmacophore 

fingerprints * 

Functional-Class Fingerprints (diameter = 2) (FCFP2) 1024 

Functional-Class Fingerprints (diameter = 4) (FCFP4) 1024 

Functional-Class Fingerprints (diameter = 6) (FCFP6) 1024 

*Morgan fingerprints were calculated using RDkit with radius of 0, 1, 2 and 3; which is roughly equivalent to 185 

ECFP and FCFP0, 2, 4, and 6.  186 

 187 

Table 2: Similarity coefficients included in this study (obtained from [21]).  188 

Name Formula Α β Class Conditions 

Jaccard-Tanimoto  

(JT)  
𝑠 =

𝑐

𝑐 + 𝑎 + 𝑏
 0 1 A c=0 → s=0 

Harris-Lahey  

(HL) 
𝑠 =  

𝑐(2𝑑 + 𝑎 + 𝑏)

2(𝑐 + 𝑎 + 𝑏)
+ 

𝑑(2𝑐 + 𝑎 + 𝑏)

2(𝑎 + 𝑏 + 𝑑)
 0 P S 

c=p or d=p → s=1;  

den=0 → s=0 

Consonni-Todeschini 4 

(CT4) 
𝑠 =  

ln (1 + 𝑐)

ln (1 + 𝑐 + 𝑎 + 𝑏)
 0 1 A None 

Sokal-Sneath 3  

(SS3) 
𝑠 =  

1

4
[

𝑐

𝑐 + 𝑎
+

𝑐

𝑐 + 𝑏
+

𝑑

𝑎 + 𝑑
+

𝑑

𝑏 + 𝑑
] 0 1 S 

c=p or d=p → s=1; 

c=0 and d=0 → s=0 

Cohen  

(Coh) 
𝑠 =  

2(𝑐𝑑 − 𝑎𝑏)

(𝑐 + 𝑎)(𝑎 + 𝑑) + (𝑐 + 𝑏)(𝑏 + 𝑑)
 +1 2 Q 

c=p or d=p → s=1;  

den=0 → s=0 
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Simple Matching  

(SM) 
𝑠 =  

𝑐 + 𝑑

𝑐 + 𝑎 + 𝑏 + 𝑑
 0 1 S None 

Yule 2  

(Yu2) 
𝑠 =  

√𝑐𝑑  −  √ 𝑎𝑏 

√𝑐𝑑  +  √ 𝑎𝑏
 +1 2 Q 

c=p, d=p or ab=0 → 

s=1 

Names of the coefficients are provided as in accordance to Todeschini et al. 2012 [21], though the definition of a 189 

and c are switched in Todeschini et al. 2012 [21]. The column “Class” represents the type of coefficient: S = 190 

symmetric coefficient (counts a and d are considered equally); A = asymmetric coefficient (only count a is 191 

considered); Q = correlation based coefficients that are transformed to obtain a value between zero and one. The 192 

column “conditions” represents conditions that were assumed in order to avoid singularities. Den = denominator; p 193 

= a + b + c + d. 194 

2.4 Performance assessment 195 

2.4.1 Performance statistics 196 

In total, 112 different similarity measures were selected (i.e. all different combinations of 16 fingerprints 197 

and 7 similarity coefficients) and we analyzed their predictive performance on classifying the substances 198 

in the dataset as (potential) SVHC or non-SVHC. For non-SVHC substances, similarities were calculated 199 

to all substances in the SVHC set based on the fingerprint-coefficient combination. Similarities for SVHC 200 

substances were calculated to all other substances on the SVHC set. Iteratively, one SVHC molecule at a 201 

time was left out of the dataset and compared to the other SVHC substances. For each substance, only the 202 

highest similarity value was retained.  203 

For each fingerprint-coefficient combination, we determined the maximum balanced accuracy 204 

(Equation 2), by selecting the optimal threshold (i.e. a value between 0 and 1) to predict (potential) SVHC 205 

status versus non-SVHC status. Substances with a similarity value equal to or above this threshold are 206 

predicted to be structurally similar to a substance with CMR, PBT/vPvB or ED properties to such an 207 

extent that they are potential CMR, PBT/vPvB or ED themselves (and vice versa). When using a 208 

threshold value, the number of ‘True Positives (TP)’, ‘False Positives (FP)’, ‘False Negatives (FN)’ and 209 

‘True Negatives (TN)’ predictions can be determined for a fingerprint-coefficient combination, as well as 210 

the balanced accuracy (Equation 2). By iteratively assessing the fingerprint-coefficient performance for 211 
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all distinguishing threshold values (ranging from 0-1), the optimal threshold, with maximum balanced 212 

accuracy could be determined. The optimal threshold was selected for each specific fingerprint-coefficient 213 

combination to ensure equal model comparisons.   214 

 215 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 =   

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

 + 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
2

                    𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2 216 

  217 

2.4.2 Best model selection 218 

In addition to the overall performance (with all CMR, PBT/vPvB and ED substances together in the 219 

reference set), also the predictive performance of all fingerprint-coefficient combinations for specific 220 

subgroups were analyzed (i.e. for the subgroups of CMR, PBT/vPvB and ED substances separately). The 221 

whole set of non-SVHC substances was used as truly negative data in each case. The best performing 222 

model was selected based on the balanced accuracy. 223 

 224 

2.4.3 Best model evaluation 225 

Within the best performing models, we analyzed whether potential bias was introduced by the optimal 226 

similarity coefficient. Specifically, symmetric similarity coefficients may tend to predict small substances 227 

- with many ‘0-bits’ - as similar to small SVHC substances, because of common absence of many features 228 

(i.e. d-fragments). Although such a model could be considered most optimal based on statistical 229 

performance of the dataset, the occurrence of this type of similarities is undesirable, as upon application 230 

many small substances will incorrectly be classified as (potential) SVHC. Therefore, when potential 231 

symmetric coefficient bias was identified in a best performing model, we decided to use an asymmetric 232 

similarity coefficient for substances with a low number of ‘1-bits’ (i.e. JT or CT4, which only considers c-233 

fragments as similar). The most optimal fragment count cut-off was analyzed based on balanced accuracy.  234 

Furthermore, we analyzed the robustness of the best performing models by assessing the 235 

performance after two different robustness checks. Within the first robustness check, we extended the 236 
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non-SVHC dataset by adding the substances of the “non-relevant” SVHC subgroup to the non-SVHC 237 

dataset. To illustrate, for the CMR-model, all PBT/vPvB and ED SVHC substances that do not have CMR 238 

properties were considered as not-CMR, and thus added to the non-SVHC set for this robustness check. 239 

This robustness check could not have been conducted on the overall model, as in this case all SVHC 240 

subgroups are relevant. Within a second robustness check, we reduced the number of representative 241 

structures of group entries that were included within the SVHC as well as within the non-SVHC set to 242 

generally two structures (see Supplemental Material Excel). In addition, some structurally similar 243 

substances are represented various times in the SVHC or non-SVHC datasets, including a large number of 244 

individual PCB isomers, chlorinated dibenzofurans, chlorinated dibenzodioxins and polybrominated 245 

diphenyl ethers on the PBT/vPvB dataset. To determine the robustness of the best performing models, 246 

such groups have also been reduced to a representation of generally two representative structures (see 247 

Supplemental Material Excel). The performance of the adjusted datasets within the different robustness 248 

checks was assessed similarly as described above, using the optimal threshold of the best-performing 249 

model.  250 

In addition, hierarchical cluster diagrams were generated for the different SVHC subgroups in 251 

order to analyze the diversity within the subgroups. Hierarchical clusters were based on the similarity 252 

matrix of the subgroup, using single-linkage method.  253 

The performance of the best predictive models was also compared to existing methodologies – 254 

using the SVHC dataset – including Toxtree (i.e. Benigni/Bossa rulebase for mutagenicity and 255 

carcinogenicity), DART and the PB-score tool [6,7,31]. For this analysis, the presence of a structural alert 256 

from Toxtree and/or DART was interpreted as a prediction of SVHC status based on CMR properties.  257 

Besides performance evaluation, also applicability domain was analyzed by determining the 95th  258 

percentile of molecular weight, log Kow [5], number of atoms, number rings and number of aromatic rings 259 

within the applied datasets. 260 

All data was analyzed in R (version 3.5.1) [32], using caret, ChemmineR, caTools, ROCR and rcdk 261 

[33–37].   262 
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3. Results 263 

3.1 Best model selection  264 

3.1.1 Overall model performance 265 

Table 3 shows the ten best performing models when all CMR, PBT/vPvB and ED substances are taken 266 

together in a single SVHC dataset. A wide variety of fingerprints was identified in the top ten models, 267 

including dictionary-based, path-based, circular-based and pharmacophore-based fingerprints. In contrast, 268 

one similarity coefficient, the Simple Matching (SM), is dominating the top ten models. Furthermore, it 269 

can be observed that relatively high optimal similarity thresholds are determined. The height of the 270 

threshold is highly related to the used similarity coefficient, and is specifically high for the SM coefficient 271 

(Figure S.1). This is a consequence of the fact that c and d variables are treated as similar in this 272 

coefficient (Table 2).    273 

The overall best performing model, PubChem-SM combination, has an overall balanced accuracy 274 

of 0.846. However, this specific combination is not the most optimal for the specific subgroups, having 275 

different (toxicological) concerns. Therefore, we also analyzed model performances for the CMR, 276 

PBT/vPvB and ED groups separately. 277 
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   278 

Table 3: Ten best performing fingerprint-coefficient combinations for the dataset with all CMR, PBT/vPvB and ED substances included. Also 279 

specific subgroup performances – in balanced accuracy - are provided based on the optimal overall threshold values. The numbers represent the 280 

number of SVHC substances, 411 non-SVHC substances were included. Highest balanced accuracies are given in italic bold. AUC is the area 281 

under the curve of ROC-plot. 282 

Model Threshold Overall model performance (n=546 SVHC) Balanced accuracy of 

subgroups using overall 

threshold value 

Fingerprint Coefficient Sensitivity Specificity Precision AUC 

(ROC)  

Balanced 

accuracy 

CMR  

(n=306 

SVHC) 

PBT/vPvB 

(n=209 

SVHC) 

ED  

(n=52 

SVHC) 

Pubchem SM 0.985 0.810 0.883 0.902 0.904 0.846 0.801 0.929 0.988 

Extended SM 0.957 0.806 0.878 0.898 0.897 0.842 0.811 0.889 0.981 

MACCS SM 0.970 0.734 0.946 0.948 0.897 0.840 0.760 0.951 0.960 

FCFP4 SM 0.991 0.835 0.842 0.875 0.893 0.839 0.802 0.911 0.990 

KlekotaRoth SM 0.998 0.773 0.898 0.909 0.889 0.835 0.777 0.921 0.942 

ECFP2 SM 0.992 0.852 0.813 0.858 0.900 0.832 0.798 0.925 0.987 

ECFP4 SM 0.984 0.832 0.832 0.868 0.882 0.832 0.791 0.900 0.990 

Extended SS3 0.895 0.714 0.942 0.942 0.888 0.828 0.775 0.902 0.971 

Extended Coh 0.884 0.711 0.934 0.935 0.887 0.822 0.769 0.899 0.981 

MACCS SS3 0.923 0.716 0.922 0.924 0.875 0.819 0.739 0.924 0.969 
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3.1.2 Subgroup model performance 283 

The best performing similarity models optimized for the separate CMR, PBT/vPvB and ED subgroups are 284 

shown in Table 4 (in row one till three, respectively). For the ED subgroup, 30 out of the 112 tested 285 

different similarity measures showed similar predictive performance, but the rank of the fingerprints and 286 

coefficients separately shows a highest rank for the FCFP4 fingerprint and the SS3 similarity coefficient. 287 

The best performing combination of fingerprint and similarity coefficient is different for the different 288 

subgroups, and a (slightly) higher balanced accuracy is obtained when compared to the best performing 289 

overall model (Table 3).  290 

   291 



 

Page 17 of 35 
 

Table 4: Best performing fingerprint-coefficient combination for the CMR, PBT/vPvB and ED subgroups, including balanced accuracies after 292 

robustness checks (see section 3.2). The CMR model was improved by combining a symmetric and asymmetric coefficient in order to prevent 293 

symmetric coefficient bias (see section 3.2). In robustness check 1, the SVHC substances that did not belong to the subgroup of concern were 294 

added to the dataset as non-SVHCs. In robustness check 2, the number of representative structures for group entries and structurally similar 295 

substances were reduced to generally two structures in the SVHC and non-SVHC set. The numbers represent the number of SVHC substances. The 296 

number of non-SVHC substances varies between the full model assessment (n=411) and the robustness checks (see 3.2.2). ‘-’ means that it is not 297 

possible to calculate a single AUC for a combination of two models. AUC is the area under the curve of ROC-plot. 298 

Subset Model Threshold Sensitivity Specificity Precision AUC 

(ROC) 

Balanced 

accuracy 

Robustness check 

Fingerprint Coefficient 1  2 

CMR 

(n=306) 
Extended SM 0.944 0.784 0.854 0.800 0.859 0.819 0.735 0.799 

PBT/vPvB 

(n=209) 
MACCS SM 0.970 0.919 0.983 0.965 0.971 0.951 0.942 0.911 

ED 

(n=52) 
FCFP4 SS3 0.866 0.981 1.000 1.000 0.984 0.990 0.969 0.917 

CMR 

improved 

(n=306) 

Extended 
CT4 (<85) 

SM (≥85) 

0.851 

0.944 
0.650 0.949 0.905 - 0.800 0.742 0.769 
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3.2 Best model evaluation 299 

3.2.1 Symmetric coefficient bias 300 

By applying the “Extended fingerprint – SM coefficient” combination for the CMR dataset, with a 0.944 301 

similarity threshold, all substances with less than 63 fingerprint bits were considered to be similar to 302 

CMR-SVHCs (Figure 2A). This coefficient bias is also observed upon visual inspection of the FP-303 

substances, perceiving a better similarity assessment with increased number of fingerprint bits (e.g. 304 

‘methyl octanoate’ and ‘3-propanolide’; or ‘Captan’ and ‘Captafol’; Figure 2B).  305 

Based on our assessment, finding an optimal cut-off within the range of 63 to 100 fingerprint bits, 306 

the combination of the CT4 coefficient for substances with less than 85 fingerprint bits and the SM 307 

coefficient for substances with 85 or more fingerprint bits is most optimal, with a balanced accuracy of 308 

0.800 and threshold values of 0.851 and 0.944, respectively (Table 4, row 4). The statistical performance 309 

of the CT4-SM combination is lower than the SM coefficient only (when looking at the balanced 310 

accuracy), due to an increase in FN-classified substances. On the contrary, also more substances are 311 

correctly classified as negative, including structures with a relative low number of fingerprint bits, like 312 

methyl octanoate and the terpenoid blend QRD-460 (Figure 2B; Figure S.2). This results in a much better 313 

specificity and precision (Table 4; Table S.1). The PBT/vPvB and ED models do not require a 314 

combination of asymmetric and symmetric coefficients as no symmetric coefficient bias was observed 315 

(Supplemental Material S.4; Figure S.2). 316 

 317 

3.2.2 Robustness checks 318 

The robustness of the best-performing subgroup models was investigated via two robustness checks 319 

(Table 4). Within the first robustness check, the SVHC substances that did not belong to the subgroup of 320 

concern were added to the dataset as non-SVHCs (i.e. ‘robustness check 1’). For the best performing 321 

CMR model, 651 non-SVHC substances were included, for the best PBT/vPvB model 748 non-SVHC 322 

substances and for the best ED model 905 non-SVHC substances. Within the second robustness check, 323 
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we reduced the number of representative structures for group entries and structurally similar substances of 324 

the SVHC and non-SVHC set to generally two structures (i.e. ‘robustness check 2’). In total, 30 325 

substances were excluded from the non-SVHC set, 35 from the CMR subset, 96 from the PBT/vPvB 326 

subset, and 34 from the ED subset.  327 

Adding the non-target SVHC-substances to the non-SVHC set lowered the balanced accuracy and 328 

hence the predictive performance, specifically for the CMR similarity model. Conversely, removal of 329 

close structural analogues resulted in a larger decrease in predictive performance for the PBT/vPvB and 330 

ED specific models.  331 

 332 

3.2.3 Single-point-of-knowledge  333 

The CMR and PBT/vPvB subgroup have a quite broad basis with 306 and 209 substances, respectively, 334 

whereas the ED subgroup only consists of 52 substances. Within the PBT/vPvB and ED subgroups, some 335 

groups of very similar structures can be identified, and only a few single-point-of-knowledge structures 336 

(SPOKs) are included (Figure 3). SPOKs are substances that are not comparable to any other substance in 337 

the subgroup and thus are single-point-of-knowledges within the dataset (i.e. the FN). Within the ED 338 

substances, four groups and one distinct substance are present; in the PBT/vPvB subgroup, 15 groups and 339 

17 distinct substances were identified (giving 1 and 17 false negatives, respectively). On the contrary, the 340 

CMR-SVHC dataset is much more diverse in chemical structures and contains much more SPOKs, 341 

reflected in the high number of FN-classified substances (n=107). For the CMR subgroup, no 342 

unambiguous hierarchical clustering can be generated as the CT4-SM coefficient combination does not 343 

fulfill the mathematical conditions for all substances (i.e. similarity between substance x and y is not 344 

necessarily similar to the similarity between y and x). Nevertheless, some groups can be identified, 345 

including polycyclic aromatic hydrocarbons, haloalkanes, cyclic and acyclic ethers, alkyl phenols, 346 

phthalates, aromatic amines, nitroaromatics and chloroaromatics. As a consequence of the high structural 347 

diversity, the calculated balanced accuracy is also lower for the CMR subgroup compared to the 348 
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PBT/vPvB and ED groups. It should be noted that the SPOK false negatives will be included in the full 349 

dataset of SVHC substances when applying the model to a new substance.  350 

3.2.4 Performance of existing models 351 

The performance of a CMR model (i.e. the sum outcome from Toxtree and DART [7,31]) on the used 352 

SVHC-set was analyzed. Substances were considered as CMR by the model when a Toxtree or DART 353 

alert was identified. A balanced accuracy of 0.62 was determined, with a sensitivity of 0.78 and a 354 

specificity of 0.47. Furthermore, the performance of a PBT model was evaluated (i.e. PB-score tool [6]). 355 

For four substances no PB-score could be calculated as no log Kaw could be estimated. For the used 356 

dataset, a balanced accuracy of 0.73 was determined, with a sensitivity of 0.53 and a specificity of 0.93. 357 

No ED model was analyzed because of the limitations identified in the ED-similarity model (see 358 

discussion).  359 

 360 

  361 
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4. Discussion 362 

As ever-increasing amounts of substances are produced, applied and emitted, it is important to focus 363 

attention on assessing the risks of those substances that are most likely to actually cause problems. 364 

Therefore, there is a need for efficient screening and prioritization methods to identify chemicals with a 365 

high potential of being hazardous. Within this study we evaluated the efficiency of a set of similarity 366 

measures for the identification of (potential) SVHCs. Based on our approach, we identified the three best 367 

performing models for CMR, PBT/vPvB and ED subgroups, that all show a promising balanced accuracy 368 

(≥0.8) based on the used dataset. 369 

 370 

4.1 Model performance 371 

The three subgroup-specific models showed a better performance than one single overall model. This is 372 

likely related to a difference in mode(s) of action between CMR, PBT/vPvB and ED substances, and is 373 

also reflected in the most optimal fingerprints. In addition, predictive performance appeared reasonably 374 

robust with less than 10% reduction of balanced accuracy following the two robustness checks for all best 375 

performing models.  376 

For the PBT/vPvB substances, the MACCS fingerprint performed best. The MACCS fingerprint 377 

contains only 166 predefined bits and was particularly developed to categorize substances in functional 378 

groups [38]. The PBT/vPvB dataset has a low structural diversity, with many substances sharing common 379 

structural features (Figure 3), including aromatic-rings and high levels of halogenation. In addition, small 380 

substances are often not considered PBT/vPvB, as in general a lower octanol-water-partitioning is 381 

observed for smaller substances, and this in turn is related to the bioaccumulation potential [39]. 382 

Apparently, the MACCS fingerprint is very effective in making a distinction between PBT/vPvB and 383 

non-PBT/vPvB substances based on these common features. Consequently, a high predictive performance 384 

is observed for this dataset (0.951).  385 
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The CMR substances are structurally much more diverse, with 107 SPOKs in the SVHC dataset. 386 

This diversity is also reflected in the most optimal fingerprint, the Extended Fingerprint. This path-based 387 

fingerprint, which is based on the well-known Daylight fingerprint [40], recognizes all paths within a 388 

structure consisting of 1-9 atoms (i.e. search depth of 8 bonds) and also includes some additional bits that 389 

describe ring features [29]. Compared to dictionary-based fingerprints, it is assumed that this method is 390 

more suitable to capture the broad diversity in CMR substances, as it characterizes all possible fragments 391 

within a structure.  392 

As the balanced accuracy for the CMR subgroup was relatively low (compared to the PBT/vPvB 393 

and ED groups), we added an extra fingerprint that encodes for the presence of CMR-specific fragments 394 

identified in expert-models like Toxtree and DART [7,31]. Nonetheless, the inclusion of the 395 

mechanistically based substructures in the fingerprint did not lead to any improvement in the predictive 396 

performance (Supplemental Material S.5). Apparently, the size of the dataset and the fragments present in 397 

the optimal fingerprint already cover the specific structural features that have been linked to our collective 398 

knowledge of mechanisms of action leading to CMR effects. The additional fingerprint is therefore 399 

excluded again. 400 

For ED substances, the FCFP-4 is identified as best performing fingerprint. FCFP-4 identifies 401 

fragments based on functional group patterns. It recognizes atoms as hydrogen donors, hydrogen 402 

acceptors, aromatics, halogens, basic-atoms and acidic-atoms, and it identifies fragments based on 403 

patterns between these atoms (e.g. hydrogen donor – hydrogen acceptor – hydrogen donor) [28]. 404 

Endocrine disruptors generally interact with specific hormone receptors or interact with proteins in the 405 

hormone pathway [41], and such (receptor) binding properties are potentially identified best by the 406 

features covered in the FCFP-fingerprint. Furthermore, the diameter of 4 (FCFP-4) scored slightly better 407 

for the similarity search than a diameter of 2 or 6, which is in line with earlier findings [42]. Rogers and 408 

Hahn (2010) [42] concluded that a diameter of four is typically sufficient for similarity searches whereas 409 

a diameter of six or eight is best for activity learning methods.  410 
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Despite the very high performance for the ED subgroup (0.990), prediction results from this 411 

model should be interpreted with caution. The currently used ED-SVHC dataset is limited as it only 412 

consists of a few number of substances that have a large structural overlap (Figure 3) and consequently 413 

results in higher uncertainty around the optimal threshold value compared to the other models (Figure 414 

S.3). In addition, there is only one substance on the ED-list with a hormone backbone (i.e. Diosgenin). 415 

The reason for the low number of identified ED-SVHC substances is partially related to the fact that only 416 

those substances are identified as ED for which SVHC-identification is of added regulatory value. In 417 

addition, only recently guidance and criteria are developed for the identification of ED substances [43]. It 418 

is recommended to further develop the ED model when more substances are classified as ED-SVHC, or 419 

by including known endocrine disrupting substances such as the natural substrates (and synthetic variants 420 

derived thereof) interacting with estrogen/androgen/thyroid and steroidogenic pathways. With a broader 421 

dataset, a more sophisticated screening model will be possible. Based on the current dataset the ED-422 

SVHC similarity model is expected to miss many (potential) ED substances. 423 

A higher performance is observed for the best-scoring CMR and PBT/vPvB similarity models 424 

compared to existing models [6,7,31], when using the SVHC dataset. This indicates the value and 425 

relevance of the structural property principle for identifying potential SVHC substances. For the ED 426 

model, no comparison was made with existing models because of the limitations as mentioned above.  427 

 428 

4.2 Focus and restriction of the modelling 429 

We limited our assessment to the performance of 2D-binary fingerprints, and the presence or absence of 430 

2D-fragments. More sophisticated fingerprints are also available, including count-based fingerprints, 431 

taking into account how many times a fragment is present, or 3D-fingerprints that consider chemical 432 

conformation. Particularly, 3D-fingerprints could be relevant to identify potential ED substances, as 433 

receptor-binding properties are highly important for this group. In general, however, 2D-binary 434 
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fingerprints are most popular as they are an acceptable trade-off between the wealth of (possible) 435 

information and simplicity, enabling an easy and quick comparison [17,30]. Especially for the proposed 436 

screening activities, the currently evaluated methodology is considered adequate.  437 

In principle, all non-SVHC substances that have been used for modelling purposes within this 438 

study are tested on CMR, PBT/vPvB and ED properties. Nevertheless, it is possible that some substances 439 

are currently not identified as such, but will become a SVHC substance in future, when new information 440 

becomes available or when new evaluations are conducted. For instance, glyphosate is included in the 441 

non-SVHC list used in this study, although its carcinogenicity is currently extensively discussed [44,45]. 442 

Furthermore, as shown in Figure 2, Captafol is considered as CMR substance whereas its close structural 443 

analogue Captan is not (see Supplemental Material S.1). Captafol is classified as a carcinogen category 444 

1B (leading to SVHC status), and Captan as a carcinogen category 2 [46]. Although the model identifies 445 

Captan as a false positive, the results could be very useful and may provide further arguments for (de)-446 

classification of these substances. For instance, within European regulatory frameworks, a category 2 447 

classification (for carcinogenicity but also for mutagenicity and reproductive toxicity) is often the highest 448 

classification that can be agreed upon when there are insufficient (experimental) data to support a 449 

category 1B classification [47].  450 

Despite the conductance of a performance analysis, including robustness checks, we were not 451 

able to conduct a proper external validation in order to analyze the performance on an external dataset. As 452 

SVHCs are identified after a regulatory decision process in which all available data is evaluated, we are 453 

not in the position to mark substances as SVHC for external validation purposes. Similarly, non-SVHC 454 

substances are challenging to assign, as many substances are not extensively evaluated on all SVHC 455 

endpoints (i.e. CMR, PBT/vPvB and ED). A proper external validation set can therefore only be 456 

developed in future, when new SVHC and non-SVHC substances are identified. Future work will focus 457 

on the application of the developed methodology to large sets of substances to obtain a better idea of the 458 

application performance.  459 
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 460 

4.3 Use and applicability domain of the model 461 

The assumption, that structurally similar substances are likely to have similar properties, seems valid 462 

based on our analysis and model performances. The proposed similarity models focus on multiple 463 

endpoints (i.e. CMR, PBT/vPvB and ED) and could be applied as a first screening model, enabling to 464 

prioritize further follow-up analyses. The model directly highlights the most similar SVHC substance(s), 465 

which could provide additional information on the specific concerns. The absolute results should not be 466 

interpreted as a conclusive outcome. The methodology is framed to give systematic and transparent ways 467 

to identify relations that would not manually be identified. Based on the follow-up, it could be concluded 468 

that 1) the substance is likely to have similar effects, 2) that further data is required to substantiate the 469 

outcome, or 3) that the substance is not expected to have CMR, PBT/vPvB or ED properties.  470 

Furthermore, it should also be highlighted that the developed model considers a screening model 471 

to identify whether new chemicals are structurally similar to known SVHC substances. It should be kept 472 

in mind that SVHCs are identified based on a regulatory decision process in which available data is 473 

evaluated. Consequently, a negative model results (i.e. not structurally similar to a SVHC substance) does 474 

not necessarily means that the substance for instance has no carcinogenic, or persistent properties. What it 475 

does mean is that the chemical is not structurally similar to a SVHC and that related regulatory 476 

consequence may - at the moment - not be applicable for the new chemical.  477 

A short guide on the application of the methodology is provided in Supplemental Material S.3. 478 

With respect to the applicability domain, an increase in reliability is observed with an increase in structure 479 

complexity for all three models, especially for the CMR model (i.e. number of atoms and different atom 480 

types). The structure similarity models are not applicable to arsenic, beryllium, cadmium, chromium, 481 

lead, mercury, nickel and cobalt-metal derivatives. For these chemicals, the metal atoms (or ions) are 482 

thought to be the cause of concern, irrespective of the (organic) groups present in the inorganic molecule. 483 
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These metal-based complexes are by definition predicted to be SVHC substances. However, the models 484 

can be used to generate a first prediction for non-dissociating metals (e.g. organotin substances). In 485 

principle, the chemical similarity itself is an applicability domain descriptor. If the new substance is 486 

sufficiently similar to an existing SVHC, the substance is clearly within the applicability domain of the 487 

model. Furthermore, physicochemical boundaries (i.e. 95th percentiles) have been calculated for the 488 

different models based on molecular weight, log Kow, number of atoms, number of rings and the number 489 

of aromatic rings (Table S.2). The similarity methodology does not discriminate between pristine 490 

substances or environmental and/or metabolic breakdown products; this model is applicable to both. Risk 491 

assessors, we therefore advise not only to apply the predictive model to the parent substance, but also to 492 

the breakdown products as well as possible tautomers, as these may give different similarity outcomes.  493 

This effective screening method can particularly be applied during product development and 494 

chemical synthesis. By enhancing attention on chemicals of potential SVHC concern as early as possible 495 

within regulatory frameworks and safe-by-design trajectories, this methodology contributes to the 496 

transition towards a non-toxic environment. 497 

  498 
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5. Conclusions 499 

Within this study, a systematic and transparent methodology was established that could identify potential 500 

SVHCs based on structural similarity to a known set of SVHCs. We have analyzed the influence of 501 

selected similarity characterizations (fingerprints and coefficients) on the identification of chemicals of 502 

potential SVHC concern. A good statistical performance was obtained for CMR, PBT/vPvB and ED 503 

substances, but nevertheless further work is considered necessary to improve the ED part due to the small 504 

reference dataset for this SVHC concern.  505 

Application of the developed methodology is considered useful to identify chemicals of potential concern 506 

as early as possible, and as such may ensure that up-front more adequate risk management measures can 507 

be applied to contribute towards a non-toxic environment. It is foreseen that this scientifically-based 508 

model is beneficial to (environmental) risk assessors, industrial partners and academia. 509 
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9. Figures 624 

 625 

Figure 1. Overview of the methodology divided into four steps. Steps two to four were reiterated for multiple 626 

fingerprint-coefficient combinations. 627 
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 629 

Figure 2: Classification of the CMR-SVHC and non-SVHC substances using the “Extended Fingerprint – SM 630 

coefficient” combination. A) Fingerprint bit count distributions across the different classifications: True Positive, 631 

False Positives, True Negatives and False Negatives. All substances with less than 63 fingerprint bits are classified 632 

as positive (dashed-line). B) Illustration of some False Positive classified substances and the most similar CMR 633 

substance. With an increase in the number of fingerprint bits, less ambiguous similarities are established. 634 
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636 
Figure 3: Hierarchical clustering for the ED and PBT/vPvB subgroups based on single linkage method. For ED, the 637 

FCFP4 fingerprint and SS3 coefficient are plotted, and for PBT/vPvB the MACCS fingerprint and SM coefficient. 638 

The y-axis describes the dissimilarity between the SVHC structures and is equal to 1 minus the similarity. The blue 639 

dotted line represents the used threshold (i.e. 1 minus threshold values). The red-colored boxes represent clusters of 640 

similar substances. A) ED clusters. Five different clusters can be identified: 1 = Diosgenin, 2 = Phthalates, 3 = 641 

Ethoxylated phenols, 4 = Nonyl and heptyl phenols, 5 = Octyl, pentyl and bi-phenols (Bisphenol A). B) PBT/vPvB 642 

clusters. Thirty-two different clusters can be identified, including some large clusters: 1 = Phenolic benzotriazoles, 643 

2 = Halogenated Dioxins, 3 = Chlorinated paraffins, 4 = Brominated diphenyl ethers, 5 = Perfluorinated 644 

carboxylic acids, 6 = Polycyclic aromatic hydrocarbons, 7 = Halogenated dibenzofurans, 8 = Halogenated 645 

aromatics and cycloalkanes.  646 
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