
Calculated Moves: Generating Air Combat Behaviour
Toubman, A.

Citation
Toubman, A. (2020, February 5). Calculated Moves: Generating Air Combat Behaviour. SIKS
Dissertation Series. Retrieved from https://hdl.handle.net/1887/84692

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/84692

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/84692

Cover Page

The handle http://hdl.handle.net/1887/84692 holds various files of this Leiden
University dissertation.

Author: Toubman, A.
Title: Calculated Moves: Generating Air Combat Behaviour
Issue Date: 2020-02-05

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/84692
https://openaccess.leidenuniv.nl/handle/1887/1�

Appendices

Appendix A

The Lightweight Air Combat

Simulator

In this appendix we present the Lightweight Air Combat Simulator (lwacs). The appendix is
organised as follows. First, we provide a general description of lwacs (Appendix A.1). Next, we
describe the cgfs in lwacs (Appendix A.2), and then briefly introduce the scripting language by
which behaviour models for the cgfs are created (Appendix A.3). Furthermore, we present the
air combat scenarios that we have developed for use in lwacs (Appendix A.4).

A.1 Description

lwacs simulates a section of airspace. The simulated section of airspace is inhabited by air combat
cgfs (see Appendix A.2) that engage each other in predefined scenarios (see Appendix A.4).
lwacs was designed to require few computational resources to run, so that it can comfortably
run many simulations in parallel on a modern desktop computer. The term “lightweight” in the
name of the simulator refers to the low system requirements of the simulator.

The lwacs program is written in the Java programming language. It can be run in two modes:
(1) with a graphical user interface (gui) that allows inspection of the simulated airspace, and
(2) with a command-line interface (cli) (a.k.a. headless). In the headless mode, lwacs is able
to run automated simulations in two ways: both (1) in faster-than-real-time and (2) in parallel.
lwacs currently does not support human-in-the-loop simulations.

lwacs was developed at nlr in the context of the Smart Bandits (sb) project (see Appendix D).
In the sb project, lwacs served as a platform for (1) testing behaviour models and (2) to explore
the use of machine learning within air combat simulations. Because lwacs was completely
developed at nlr, we had access to the entire source code. This allowed us to adapt lwacs to
our research purposes (i.e., the automated simulations in Chapters 3, 4, and 5) as needed.

160 A.2 Computer generated forces

A.2 Computer generated forces

lwacs supports one kind of cgf, which represents a generic fighter jet. In lwacs, each cgf
carries three types of devices: (1) a radar, (2) air-to-air missiles, and (3) a radar warning receiver.
We describe the devices below.

Radar. The radar is a sensor that detects other aircraft. In the simulation, it produces a forward-
looking cone, emanating from the front of the aircraft carrying the radar. Any aircraft
inside this cone are detected by the radar. The radar has two modes: (1) the search mode,
which produces a wide cone (120°), and (2) the tracking mode, which produces a narrow
cone (30°). The search mode is used to find opposing aircraft. The tracking mode is used
to track the movement of one specific opposing aircraft. The radar has a detect range of
100 km. Because of the limited range of the radar, deliberate manoeuvring is required to
find and track opponents.

Air-to-air missiles. Each aircraft carries four air-to-air missiles. These missiles can only be fired
at opponents. A prerequisite for firing a missile at an opponent is that the opponent should
be tracked by the radar of the aircraft firing the missile. Hitting an opponent with a missile
disables their aircraft and removes it from the simulation. Each aircraft only carries four
missiles. Furthermore, missiles do not hit in a deterministic manner. Upon impact, each
missile calculates its so-called probability-of-kill (Pk, see Chapter 4). The Pk of a missile
decreases as the distance flown towards the target of the missile increases. The precise
decrease of the Pk is defined by means of a predefined curve. The curve used in lwacs is
shown in Figure 4.2. The Pk of missiles in lwacs starts at 1, and stays 1 until the missile
has flown 50 km. From 50 km onward, the Pk of missiles declines until it reaches 0 after
80 km. After having flown 80 km, missiles are removed from the simulation.

Radar warning receiver (rwr). The rwr is a device that detects whether the aircraft is inside
the radar cone of another aircraft. The pilot may use this information to assume that a
missile will be fired or has already been fired at him, and then take action accordingly.
The rwr has a detection range of 200 km.

A screenshot of lwacs is shown in Figure A.1. The cgfs in lwacs are graphically displayed
as F-16 fighter jets. All cgfs belong to one of two teams: either (1) the blue team or (2) the red
team. The graphical models of the cgfs are coloured to indicate team membership.

Three different indicators can be shown next to each cgf. The indicators appear as small
coloured triangles. They serve to visualise the status of each cgf. The three indicators are as
follows. First, a light blue indicator shows whether the cgf has detected another cgf by means
of its radar. Second, a red indicator shows whether the cgf has detected another cgf by means
of its rwr. Third, white indicators show the number of missiles remaining in the inventory of
each cgf.

The Lightweight Air Combat Simulator 161

1

2

3

4
5
6

7

81

2

3

4
5
6

7

8

Figure A.1 A screenshot of LWACS, showing: (1) a blue CGF, (2) a red CGF, (3) a missile (with

magnification), (4) a light blue radar indicator, (5) a red radar warning receiver indicator, (6)

white missile inventory indicators, (7) a wide radar cone (search mode), (8) a narrow radar

cone (tracking mode).

In lwacs, the cgfs have two restrictions on their movement. The first restriction is the use of
a basic flight model. The flight model allows the cgfs to either (1) move at a constant velocity,
(2) accelerate, and (3) decelerate, all as if the cgfs were in a vacuum. In other words, the flight
model has no notion of aerodynamics or gravity. The second restriction is that the cgfs are
only allowed to move in the horizontal plane. The reason for the second restriction is that the
radars of the cgfs were unable to operate in a three-dimensional environment at the time of
our research. Regardless, vertical movement in lwacs is meaningless because the flight model
provides no speed penalties for ascending or speed gains for descending. The two restrictions
on cgf movement make lwacs a simulator with a relatively low fidelity. However, the cgfs in
lwacs still represent the basic functions that are required in air combat (e.g., manoeuvring, the
use of radar and rwr, firing and evading missiles). Many combinations of these functions are
possible in lwacs, making it difficult to design good behaviour models manually. Therefore, we
consider lwacs an adequate simulator for our investigation into the use of machine learning for
the automatic generation of behaviour models.

A.3 Scripting language

In lwacs, cgf behaviour is defined by scripts. The scripts are written in a custom scripting
language. The grammar of this language and the available functions are described in Appendix B.

The scripts are collections of rules. Each cgf is assigned a script. At a rate of 50Hz, the

162 A.4 Scenarios

simulation checks the scripts of all cgfs to determine if any rules should fire. If a rule fires, the
actions in the consequence of that rule are executed.

It may occur that multiple rules fire at the same time, e.g., if the rules have overlapping
observations in their conditions. In order to provide some control over rule execution in such
occurrences, we assign a priority value to each rule. The priority value allows the creators of the
rules to specify which rules provide the most urgent or important behaviour. Now, when multiple
rules fire, only the rule with the highest priority value is allowed to execute its consequence. In
the rare case that multiple rules fire with the same priority value, only the rule that first appears
in the script is allowed to execute its consequence.

The cgfs are allowed to maintain a state variable. The state is expressed as an alphanumeric
identifier. The scripting language can read and write the state variable, so that (1) certain rules
can only fire if the cgf is in a particular state, and (2) rules can change the state of the cgf
when certain observations are made. The state variable enables sequential scripting, i.e., firing
one rule first, and then a second rule, and so on. For instance, we used sequential scripting to
create a script that described a patrol route for a cgf. We assigned the value ’patrolling’ to the
state variable of the cgf. We defined two points in the simulation airspace that the cgf had to
patrol, which we call point A and point B. In the script, we included two rules that defined the
patrol between points A and B. The first rule was written as “if I am near point A, and my state
is ’patrolling’, fly towards point B”. Vice versa, the second rule was written as “if I am near point
B, and my state is ’patrolling’, fly towards point A”. Additionally, we included a rule that said “if
my state is patrolling, and I detect an opponent cgf, change my state to ’engaging’”. The result
of these rules was that the cgf would fly its patrol between points A and B as long as it did not
detect an opponent cgf. Once it detected an opponent cgf, the cgf would no longer consider
firing the rules that were written for its patrol, since its state variable did no longer satisfy these
rules (i.e., it was not longer set to ’patrolling’).

A.4 Scenarios

We developed four two-versus-one scenarios, and four two-versus-two scenarios. In the two-
versus-one scenarios, two red cgfs encounter a single blue cgf. In the two-versus-two scenarios,
the two reds encounter two blue cgfs. The scripts that governs the behaviour of the blue cgfs in
each scenario are presented in Appendix C. Below, we describe the two-versus-one scenarios
(Appendix A.4.1) and the two-versus-two scenarios (Appendix A.4.2) in detail.

A.4.1 Two-versus-one scenarios

We developed four two-versus-one scenarios for use in lwacs: (1) the basic scenario, (2) the
close range scenario, (3) the evasive scenario, and (4) the mixed scenario. We describe the four
scenarios below.

The Lightweight Air Combat Simulator 163

Figure A.2 The initial positions of the CGFs in the four LWACS scenarios. Two red CGFs (left)
approach the blue CGF (right), who is flying a CAP.

The basic scenario. One blue cgf flies a combat air patrol (cap) from north to south (see
Figure A.2). When the blue cgf detects an opponent by means of its radar or rwr, it
engages that opponent. The blue cgf does not attempt to evade missiles that are fired at
it. Two red cgfs fly from east to west and then try to engage the blue cgf.

The close range scenario. The close range scenario is equal to the basic scenario, with one
change. The blue cgf only fires missiles from a shorter range. This makes missiles more
dangerous, as they need to travel less distance to reach their target, and therefore have a
higher Pk on impact.

The evasive scenario. The evasive scenario is equal to the basic scenario, with one change. The
blue cgf performs evasive actions when it detects that it is being fired upon.

The mixed scenario. The mixed scenario is a special scenario, because it is a combination of
the other three two-versus-one scenarios. Rather than defining new behaviour for the blue,
the mixed scenario enables the blue to switch behaviours between encounters. We refer to
the mixed scenario as one of the scenarios for convenience. However, in some cases it is
helpful to distinguish the mixed scenario from the other three scenarios. In these cases,
we refer to the other three two-versus-one scenarios as the individual scenarios.

The mixed scenario works as follows. At the start of a run of encounters, one of the three
individual scenarios is selected at random, and then used for the first encounter between
red and blue. At the end of each encounter, the following individual scenario is selected
based on the winner of the encounter. If blue wins the encounter, the same scenario is used
in the next encounter. However, if red wins the encounter, the next individual scenario is
selected at random. The mixed scenario is inspired by the consecutive tactic by Spronck
et al. (2006, p. 230).

164 A.4 Scenarios

Compared to only using one of the three individual scenarios, the mixed scenario presents
the red team with a moving target learning problem (cf. Buşoniu, Babuška and De Schutter,
2010). In other words, red is pressured to come up with behaviour that is effective against
an unpredictable opponent. We designed that the mixed scenario to form a more difficult
challenge for the red team than only having to find effective behaviour in the three
individual scenarios.

The four scenarios have two properties in common. First, the initial positions of the cgfs are
the same in all four scenarios. These initial positions are shown in Figure A.2. Second, the four
scenarios share their termination criteria. All of the scenarios terminate when either (1) one cgf
on either team is hit by a missile, or (2) ten minutes of simulated time has passed.

A.4.2 Two-versus-two scenarios

We developed four two-versus-two scenarios for use in lwacs. The first three of these scenarios
are based on the three individual two-versus-one scenarios. In these scenarios, we supplied the
single blue cgf with a wingman blue cgf. This made the first blue cgf the lead of the blue
two-ship. In all three of the scenarios, the wingman flies the same cap as the lead, lagging half a
pattern behind the lead. The remaining behaviour of the wingman is governed by the same rules
as the lead. Thus, during the encounters with the reds, the wingman uses the same tactics as
the lead: either (1) attacking the reds without evading (basic scenario), (2) attacking the reds
from close range (close range scenario), or (3) attacking the reds while also evading incoming
missiles (evasive scenario).

As the fourth scenario, we developed a novel two-versus-two scenario. This scenario is called
the lead-trail scenario. We describe this scenario below.

The lead-trail scenario. This scenario is based on the lead-trail tactic that is commonly used by
two-ship formations. In this scenario, the blue lead flies head-on towards the red two-ship.
The blue wingman flies straight after the blue lead as they approach the reds. When the
reds detect the blue lead, the blue lead turns away, with the intention of keeping the
attention (viz. a radar lock) of the reds. Then, the blue wingman is able to stay undetected,
and then create an opportunity to fire at the reds.

The two-versus-two scenarios have the same two termination criteria as the two-versus-one
scenarios.

Appendix B

The LWACS scripting language

In this appendix, we present the lwacs scripting language. The language is used to write the
scripts that define the behaviour of the cgfs in lwacs. Below, we first describe the grammar of
the scripting language (Appendix B.1). Next, we describe the functions that are available for use
in the scripts (Appendix B.2).

B.1 Grammar

Listing B.1 is a formal description of the grammar of the lwacs scripting language in Extended
Backus-Naur form. The boolean functions, numerical functions, and action functions are further
explained in Section B.2.

Listing B.1 Grammar of the LWACS scripting language.

〈script〉 ::= 〈list-of-rules〉

〈list-of-rules〉 ::= 〈rule〉 end-of-line 〈list-of-rules〉
| ‘#’ comment-string end-of-line 〈list-of-rules〉
| end-of-line 〈list-of-rules〉
| 〈empty〉

〈rule〉 ::= 〈name〉 [〈weight〉] 〈priority〉 〈condition〉 ‘→’ 〈consequence〉 ‘;’

〈name〉 ::= ‘[’ identifier ‘]’

〈weight〉 :: = ‘[’ integer ‘]’

166 B.1 Grammar

〈priority〉 :: = ‘[’ integer ‘]’

〈condition〉 :: = 〈boolean-expression〉

〈boolean-expression〉 ::= 〈boolean〉
| 〈boolean-function〉
| ‘not’ 〈boolean-expression〉
| ‘(’ 〈boolean-expression〉 ‘)’
| 〈boolean-expression〉 (‘and’ | ‘or’ | ‘==’) 〈boolean-expression〉
| 〈numerical-expression〉 (‘>’ | ‘<’ | ‘==’) 〈numerical-expression〉
| ‘state == ’ 〈state〉

〈boolean〉 ::= ‘true’ | ‘false’

〈boolean-function〉 ::= ‘isAlive(’ 〈cgf 〉 ‘)’
| ‘isRadarMode(’ 〈radar-mode〉 ‘)’
| ‘messageReceived(’ 〈message〉 ‘)’
| ‘missileFlyingAt(’ 〈cgf 〉 ‘)’
| ‘missilesLeft’
| ‘onEvent(’ 〈event〉 ‘)’

〈cgf 〉 ::= ‘ownship’
| ‘wingman’
| ‘nearestRadarObservation’
| ‘nearestRadarWarningReceiverObservation’
| ‘entity(target)’

〈event〉 ::= ‘newRadarObservation’
| ‘newRadarWarningReceiverObservation’
| ‘newMissileFlyingAtMe’

〈team〉 ::= ‘enemy’

〈message〉 ::= identifier

〈state〉 ::= identifier

The LWACS scripting language 167

〈radar-mode〉 ::= ’searching’ | ’track’

〈numerical-expression〉 ::= 〈number〉
| 〈numerical-function〉
| 〈numerical-expression〉 (‘+’ | ‘-’ | ‘*’ | ‘/’) 〈numerical-expression〉

〈number〉 ::= integer | float

〈numerical-function〉 ::= ‘countRadarObservations(’ 〈team〉 ‘)’
| ‘countRWRObservations(’ 〈team〉 ‘)’
| ‘distanceToPoint(’ 〈cgf 〉 ‘,’ 〈numerical-expression〉 ‘,’
〈numerical-expression〉 ‘,’ 〈numerical-expression〉 ‘)’

| ‘heading(’ 〈cgf 〉 ‘)’
| ‘random(’ 〈number〉 ‘,’ 〈number〉 ‘)’
| ‘relativeBearing(’ 〈cgf 〉 ‘,’ 〈cgf 〉 ‘)’

〈consequence〉 ::= 〈action-list〉

〈action-list〉 ::= 〈action-function〉
| 〈action-function〉 〈action-list〉

〈action-function〉 ::= ‘changeHeading(’ 〈numerical-expression〉 ‘);’
| ‘changeState(’ 〈state〉 ‘);’
| ‘fireMissile(’ 〈cgf 〉 ‘);’
| ‘flyTo(’ 〈number〉 ‘,’ 〈number〉 ‘,’ 〈number〉 ‘);’
| ‘radarTrackTarget(’ 〈cgf 〉 ‘);’
| ‘radarSearchTarget;’
| ‘sendMessage(’ 〈message〉 ‘,’ 〈cgf 〉 ‘);’
| ‘skip;’
| ‘turn(’ 〈numerical-expression〉 ‘);’

Three comments regarding the scripting language and its grammar:

• identifier represents any alphanumeric word. Dashes are allowed in identifiers, but not
as leading or trailing characters.

• comment-string represents any comment in natural language.

• entity(target) represents the point in space that is the center of the blue cgf’s cap.
It can be used in place of a 〈cgf 〉 parameter. In some scripts and rulebases, it is used to
explicitly steer the red team towards the blue team at the beginning of a simulation.

168 B.2 Function descriptions

B.2 Function descriptions

Below, we describe the boolean functions (Subsection B.2.1), the numerical functions (Subsection
B.2.2), and the action functions (Subsection B.2.3).

B.2.1 Boolean functions

isAlive(target: 〈cgf 〉)
Returns true if target is alive, returns false otherwise.

isRadarMode(mode: 〈radar-mode〉)
Returns true if the cgf’s radar is set to mode, returns false otherwise.

messageReceived(message: 〈message〉)
Returns true if the cgf’s has received message, returns false otherwise. The message is
consumed.

missileFlyingAt(target: 〈cgf 〉)
Returns true if a missile is flying at target, returns false otherwise.

missilesLeft

Returns true if there are missiles left in the cgf’s inventory, returns false otherwise.

onEvent(event: 〈event〉)
Returns true if the cgf has been notified of event, returns false otherwise. The event is
consumed.

B.2.2 Numerical functions

countRadarObservations(team: 〈team〉)
Returns the number of cgfs belonging to team that are detected by the cgf’s radar.

countRadarWarningReceiverObservations(team: 〈team〉)
Returns the number of cgfs belonging to team that are detected by the cgf’s rwr.

distanceToPoint(target: 〈cgf 〉, x: 〈numerical-expression〉, y: 〈numerical-expression〉, z:
〈numerical-expression〉)
Returns the distance (in kilometers) of target to the point (x, y, z).

The LWACS scripting language 169

missilesLeft

Returns true if there are missiles left in the cgf’s inventory, returns false otherwise.

B.2.3 Action functions

changeHeading(heading: 〈numerical-expression〉)
Steer the cgf towards heading heading (in degrees).

changeState(state: 〈state〉)
Set the cgf’s state to state.

fireMissile(target: 〈cgf 〉)
Fire a missile at target.

flyTo(x: 〈numerical-expression〉, y): 〈numerical-expression〉, z: 〈numerical-expression〉)
Steer the cgf towards point (x, y, z).

sendMessage(message: 〈message〉, target: 〈cgf 〉)
Send message to target.

skip(mode: 〈radar-mode〉)
Do nothing (viz. continue flying on the current heading with the current speed).

radarTrackTarget(target: 〈cgf 〉)
Set the radar to tracking mode and direct it to track target.

radarSearchTarget

Set the radar to search mode.

turn(offset: 〈numerical-expression〉)
Change the cgf’s heading by offset (in degrees).

Appendix C

Rulebases and scripts

Appendix C contains a listing of the rulebases and scripts that are used in this thesis. The rulebases
and scripts are available for download at http://www.armontoubman.com/phd. The rules in
the rulebases and scripts are formatted as follows:

[name] [weight] [priority] condition → consequence

Below, we provide an index of the rulebases and scripts that were used in this thesis. Each
starred item has been archived as a separate file. For reasons of confidentiality, we are unable to
distribute the rulebases and scripts that were used in Chapter 7.

Red team

• Team coordination (Chapter 3)
– cent method

∗ Red lead (rulebase)
∗ Red wingman (script)

– tacit method
∗ Red lead (rulebase)
∗ Red wingman (rulebase)

– decent method
∗ Red lead (rulebase)
∗ Red wingman (rulebase)

• The aa-reward reward function (Chapter 4)
– Red lead (rulebase)
– Red wingman (rulebase)

• Transfer of behaviour models between scenarios (Chapter 5)

http://www.armontoubman.com/phd

172

– Red lead (rulebase)
– Red wingman (rulebase)

Blue team

• Two-versus-one scenarios
– Basic scenario

∗ Blue lead (script)
– Close range scenario

∗ Blue lead (script)
– Evasive scenario

∗ Blue lead (script)
– Mixed scenario

∗ Note: in the mixed scenario, the blue cgf used the scripts from the other three
scenarios. Therefore, no specific scripts were made for the blue in the mixed
scenario.

• Two-versus-two scenarios
– Basic scenario

∗ Blue lead (the same script as in the two-versus-one basic scenario)
∗ Blue wingman (script)

– Close range scenario
∗ Blue lead (the same script as in the two-versus-one close range scenario)
∗ Blue wingman (script)

– Evasive scenario
∗ Blue lead (the same script as in the two-versus-one evasive scenario)
∗ Blue wingman (script)

– Lead-trail scenario
∗ Blue lead (script)
∗ Blue wingman (script)

Appendix D

The Fighter 4-Ship simulator

Appendix D describes the Fighter 4-Ship simulator. The Fighter 4-Ship is a research fighter aircraft
simulator used by the Netherlands Aerospace Centre nlr (Netherlands Aerospace Centre, 2017b).
The simulator allows four human fighter pilots to participate simultaneously in a simulated
air combat mission. The purpose of the Fighter 4-Ship is to enable concept development and
experimentation in the area of training simulations.

The Fighter 4-Ship consists of (a) four cockpit mock-ups (referred to as the ships), and (b)
a station for the instructor, i.e., the person who controls the operation of the Fighter 4-Ship.
This station is accordingly called the instructor operating station (ios). Below, we describe
the hardware of the ships (Appendix D.1), the ios (Appendix D.2), and the software packages
(Appendix D.3) that make up the Fighter 4-Ship.

D.1 The ships

The four ships of the Fighter 4-Ship are modelled after the cockpit of the F-16 fighter jet. Figure D.1
shows a schematic top view of a ship, and Figure D.2 shows a photograph of one of the ships in
operation. Each of the four ships is comprised of the following nine items. The items are marked
in Figure D.1.

1. A seat.

2. A touchscreen monitor in front of the seat.

3. A physical side stick controller to the right of the seat.

4. A physical throttle to the left of the seat.

5. Physical rudder pedals.

174 D.1 The ships

1

2

3

4
5

6

7

8

Figure D.1 Schematic top view of a ship.

6. Projector screens that present the participant with (1) the outside view, and (2) an overlayed
head-up display (hud). Two of the ships are equipped with three screens: a left screen, a
right screen, and a centre screen. The remaining two ships are equipped with a centre
screen only.

7. A projector for each projector screen.

8. Computers that (1) generate the outside visuals which are projected onto the projector
screens, (2) control the touchscreen, and (3) handle the voice communications.

9. A headset (not depicted in Figure D.1) for (1) sound effects (e.g., engine noise, warning
signals) and (2) voice communication with the instructor and the participants in the other
ships over simulated radio channels.

The seat, stick, throttle, and pedals are replicas of the equipment in a real-world F-16
cockpit. The touchscreen monitor shows representations of the F-16 consoles and controls. The
representations include two mfds, viz. square screen which provide overviews of the aircraft’s
situation, and allow the pilot quick access to various functions by means of hierarchical menus.

The ships are fixed-base, viz. they do not provide any motion effects. Each of the four ships is
located in a separate but adjacent room. The aircraft noise that is to be heard over the headsets
prevent any verbal communication between the pilots, other than using the simulated radio
channels. Furthermore, because of the physical separation, a participant in one of the ships is
unable to see any of the other ships.

The Fighter 4-Ship simulator 175

Figure D.2 Photograph of a ship being operated by a participant.

D.2 The instructor operating station

The simulation is controlled from the instructor operating station (ios). This station provides the
instructor with the capability to (1) control the operation of the individual ships, (2) start and
stop scenarios, (3) add and remove cgfs, (4) assign behaviour models to cgfs, (5) communicate
with the participants in the ships, (6) view and record the mfds of the four ships in order to
monitor the actions of the participants, and (7) view and record the simulated environment and
all entities within it. The ios is comprised of the following two items.

1. A desktop computer with five monitors.

i. A monitor that displays eurosim, the software that starts/stops/pauses the operation
of each of the four ships. The functions of eurosim and the other software that is
displayed on the monitors are explained in Appendix D.3.

ii. A monitor that displays stage, the software that creates the cgfs.

iii. A monitor that displays smart bandits, the software that executes the behaviour
models of the cgfs.

iv. A monitor that displays a video stream of the mfds of the four cockpits.

v. A monitor that displays the debrief software that records the simulated environment.

2. A headset for voice communication with the participants in the ships. Additionally, this
headset monitors all simulated radio channels. So, the instructor at the ios remains
informed of all communication that happens among participants.

176 D.3 Software packages

The use of five monitors allows the instructor to easily view and access all functions that are
relevant to controlling and monitoring the simulations.

D.3 Software packages

The Fighter 4-Ship runs on four software packages: (1) eurosim, (2) stage, (3) smart bandits,
and (4) pcds. We describe the four software packages below.

eurosim. EuroSim (2017) is a simulation framework that provides interfaces for air and space
simulations. In the Fighter 4-Ship, eurosim executes the models of the flight dynamics
the aircraft that the four ships represent. Additionally, eurosim simulates the avionics
(e.g., the radar) of the ships. eurosim provides a gui by which the operation of individual
ships can be controlled and inspected by the instructor.

stage. stage (Presagis, 2012) is a “simulation development framework” that provides an en-
vironment for building and executing scenarios. The instructor can select cgfs from a
database, and place them into the simulated world. stage includes a basic behaviour
editor, which is currently not used in the Fighter 4-Ship. Finally, stage provides a gui by
which the state of cgfs can be inspected and manipulated during simulations.

smart bandits. smart bandits (Netherlands Aerospace Centre, 2017a) is software by which
cgf behaviour can be modelled as a fsm. In smart bandits, the states and transitions
that make up fsms can be combined by means of drag-and-drop functionality. This way,
it allows professionals such as training specialists to create behaviour models without
any explicit programming knowledge. During simulations, the behaviour of cgfs can be
inspected and manipulated.

pcds. pcds (Naval Air Systems Command, 2010) provides record and playback facilities for
simulation environments. It is intended to aid debriefing, i.e., the meeting after a simulation
session when the instructor reviews the simulation with the participants (e.g., to identify
learning opportunities). Video files (e.g., recordings of the mfd streams) can be connected
to the playback of simulations, so that the internal situation in each ship can be seen when
a simulation is reviewed.

The four software packages communicate with each other and with the four ships by means
of the distributed interactive simulation (dis) standard (IEEE, 2012). This standard defines a
common format for the exchange of information regarding, e.g., the location and status of cgfs.
This information is used by the four software packages to determine, e.g., how a cgf should be
visualised.

The Fighter 4-Ship simulator 177

D.4 Dynamic scripting in the Fighter 4-Ship

At the beginning of our research, the Fighter 4-Ship had no machine learning capabilities.
Therefore, the integration of a machine learning technique such as dynamic scripting required
us to determine the placement of this technique between the Fighter 4-Ship’s software packages.
In other words, we needed to consider the architecture of the Fighter 4-Ship’s software.

In the Fighter 4-Ship, stage is the software package that generates the cgfs. stage exposes
an api by which other software packages can (1) read the state and observations of its cgfs,
(2) direct the actions of the cgfs, and (3) start and stop predefined scenarios. smart bandits
controls the cgfs in stage by means of this api. In smart bandits, the state and observations
of a cgf are read from the api, and then serve as input for a behaviour model. The behaviour
model then outputs the actions that the cgf should take. The actions are sent back to the cgf in
stage via the api.

To implement dynamic scripting, we require software with a function similar to how smart
bandits executes behaviour models for the cgfs in stage. However, compared to smart bandits,
we require two additional functions: (1) running the dynamic scripting algorithm to generate new
behaviour models (particularly, the rule-based fsm models that are described in Appendix E),
and (2) control over the scenarios that are run in the simulator.

For our research, we developed a new program which combines the three functions. We call
this program stageds. stageds provides us with two capabilities: (1) to let cgfs learn by means
of the dynamic scripting algorithm, and (2) to halt the learning process and only execute the
learned behaviour models. We make extensive use of these two capabilities in Chapter 7. Ideally,
in the future, these capabilities will be built into the software that is currently used for the design
and execution of cgf behaviour models (i.e., smart bandits).

Appendix E

Generating finite-state

machines

Appendix E discusses the generation of finite-state machines by means of dynamic scripting.

In the automated simulations that were performed in lwacs, the rules in the scripts of
cgfs produced behaviour in an ad-hoc manner: whenever the condition of a rule was met, the
actions in that rule’s consequence would immediately be executed. As we have shown in the
Chapters 3 to 5, the behaviour which is produced in this manner is effective for cgfs in automated
simulations. However, since then, we have been informed that this way of producing behaviour is
not completely suitable for human-in-the-loop simulations.

During simulations, scripts are sensitive to small changes in the environment. Some of these
small changes should have no effect on the behaviour of a cgf, but may still cause different rules
to fire. As an example, assume that a cgf is under attack, and a defensive rule fires which causes
the cgf to make a defensive manoeuvre. However, during this manoeuvre, the cgf simultaneously
detects another opponent by means of its radar, and an offensive rule is prompted to fire. At this
point, the cgf is still in danger from the first opponent, and should continue with its defensive
manoeuvre instead of preparing an attack on the second opponent. Moreover, from an external
point of view, such sudden jumps between rules make the cgf appear erratic and indecisive,
i.e., not precisely the way how a formidable adversary should behave. To remedy such a jump
in behaviour, the cgf needs to be able to remember what it is doing and why. In other words,
the cgf needs a concept such as a state in which it feels situated, so that the cgf can select and
display behaviour that is relevant for that state.

Returning to the topic of representation, in Chapter 2, we mentioned fsms as one of the
executable forms that a behaviour model can take. The management of states and the behaviours
therein, e.g., the states and behaviours of a cgf, is the prime function of fsms. Furthermore, since
fsms are comprised of graph-like structures, they are highly suitable for graphical representation

180 E.1 Expressing finite-state machines as rules

as demonstrated in, e.g., the smart bandits program. Consequently, we have a preference to
generate cgfs with dynamic scripting.

Below, we show how the states and transitions that make up an fsm can be readily expressed
in the form of rules (Appendix E.1). By expressing states and transitions in the form of rules,
dynamic scripting is able to combine the states and transitions into new fsms, in the same way
that dynamic scripting combines “regular” if-then rules into scripts. However, at this point we
foresee that the dynamic scripting algorithm needs to be modified so that it can combine these
rules into functioning fsms. We present the exact modifications that we make to the original
dynamic scripting algorithm (Appendix E.2). Thereafter, we conclude the appendix by a summary
(Appendix E.3).

E.1 Expressing finite-state machines as rules

In this section, we explain how fsms can be expressed as rules. We do so by means of the
following example. Consider a cgf that performs a patrol between two points, namely point
A and point B. Patrolling between point A and point B should take place until the cgf detects
some hostile cgf. At that point, it should engage the hostile cgf. Then, when the hostile cgf is
defeated, it should return to its patrol.

The fsm for the example above is shown in Figure E.1. This fsm contains two states: (1) the
Patrol state, shown at the top, and (2) the Engage state, shown at the bottom. The fsm has two
transitions between the states. The cgf starts in the Patrol state, and flies between point A and
point B. When the cgf is in the Patrol state and detects a hostile cgf, a transition from the Patrol
state to the Engage state takes place. While in the Engage state, the cgf performs some actions
with the goal of defeating the hostile cgf. Once the hostile cgf is defeated in some way, our cgf
transitions back from the Engage state to the Patrol state, and then continues its patrol.

Patrol

Engage

Hostile CGF detectedHostile CGF defeated

Figure E.1 A basic example of an FSM as a behaviour model.

We translate the fsm from Figure E.1 into rules as follows. The resulting rules are shown in
Listing E.1. In the first rule (shown on line 1–3), we define the behaviour that the cgf should
perform when it is in the Patrol state. We call this type of rule a state rule. When the cgf is in
the Patrol state, it should fly between point A and point B. We capture this behaviour in the rule
by introducing control statements (e.g., if/then/else or while) into the consequence of the rule.

Generating finite-state machines 181

Listing E.1 The FSM from Figure E.1 expressed in the form of rules.

1 in_state(Patrol) →
2 if near(point_A) then fly_towards(point_B)

3 else if near(point_B) then fly_towards(point_A);

4 in_state(Patrol) and hostile_CGF_detected () →
change_state_to(Engage);

5 in_state(Engage) → attack(detected_hostile_CGF);

6 in_state(Engage) and is_defeated(detected_hostile_CGF) →
change_state_to(Patrol);

In the second rule (line 4) we define the transition from the Patrol state to the Engage state.
We call this rule a transition rule. When the cgf is in the Patrol state and it detects a hostile cgf,
it transitions to the Engage state.

The third rule (line 5) defines the behaviour for the Engage state. Here, we tell the cgf to
attack the detected hostile cgf. Afterwards, when the hostile cgf is defeated, the fourth rule
fires (line 6) and the cgf returns to its patrol between point A and point B.

The resulting rules can now be stored in a rulebase, which serves as the input for dynamic
scripting. A script with state rules and transition rules then becomes the implementation of a
fsm. By creating variations of the state rules and the transition rules, and storing these variations
in the rulebase as well, dynamic scripting is able to explore the space of possible fsms.

E.2 The modified dynamic scripting algorithm

In the original description of dynamic scripting (Spronck et al., 2006), rules are selected in a
probabilistic manner, under the assumption that all rules are valid choices for inclusion in a
script. However, when the rulebase is filled with state rules and transition rules, a problem arises:
namely, the rules that are selected for inclusion in a generated script must together form a valid
fsm. We define an invalid fsm as one that contains unreachable states.

To help dynamic scripting create valid fsms, we restrict the generation of fsms to those that
follow a specific template. We define a template to be a collection of (1) states and (2) transitions
between two states, without any specification of the behaviour that these states and transitions
represent. Henceforth, we use the term element to refer to either a state or a transition. For
example, the fsm shown in figure 7.2 has four elements: (1) the Patrol state, (2) the Engage state,
(3) the transition from Patrol to Engage, and (4) the transition from Engage to Patrol. The use of a
template allows us to define the structure that a fsm should follow, thereby providing a guarantee
that the fsm is valid. However, templates make it possible to leave the choice of implementation

182 E.3 Summary

Listing E.2 Modified script generation algorithm.

1 # input: rulebase , fsm_template

2 # output: script

3 script = []

4 for element in fsm_template:

5 sum_of_weights = 0

6 candidate_rules = []

7 for rule in rulebase:

8 if rule.is_implementation_of(element):

9 candidate_rules.append(rule)

10 sum_of_weights += rule.weight

11 if sum_of_weights == 0:

12 selected_rule = random.choice(candidate_rules)

13 script.append(selected_rule)

14 else:

15 selected_rule = roulette_wheel(candidate_rules)

16 script.append(selected_rule)

17 return script

(i.e., the actual behaviour for states, and the specific conditions on which transitions are made)
to dynamic scripting.

We replace the original script generation algorithm (Spronck et al., 2006, p. 224, Algorithm
1) by the new algorithm shown in Listing E.2. The new algorithm takes as input a rulebase and
an fsm template. First, an empty script is created (line 3). Next, for each element in the fsm
template, an implementation is selected for inclusion in the script (line 4–16). This is done per
element by first filtering out the candidate rules in the rulebase that are an implementation of
that element (line 8–10). From these candidate rules, an implementation is selected by means of
the original weight-proportionate roulette wheel selection (as explained in Subsection 2.3.3).

E.3 Summary

In this appendix, we enabled the dynamic scripting algorithm to generate fsms. In some cases,
the use of scripts as a behaviour model allows cgfs to jump erratically between behaviours. The
use of fsms provides the cgfs with a sense of state, so that the cgfs will only display behaviour
that is relevant to the state they are in.

Two steps were required for generating fsms by means of dynamic scripting. First, we
translated the states and the transitions between the states to the form of rules. This way, the

Generating finite-state machines 183

states and transitions can be treated as rules in the rulebase of dynamic scripting. Second,
we altered the mechanism by which the dynamic scripting algorithm selects rules from its
rulebase, so that the generated fsms follow a pre-specified template. The use of this templates
ensures that all generated fsms are valid, i.e., they contain states and the appropriate transitions
between the states. By enabling the dynamic scripting algorithm to generate fsms, we gain the
benefits of fsms (i.e., the concept of state and the possibility of graphical representation) while
maintaining the benefits of dynamic scripting (i.e., easily inspectable rules and rulebases, and
diverse combinations of behaviour from the rulebase).

Appendix F

The Assessment Tool for

Air Combat CGFs

In this appendix, we present our implementation of the atacc questionnaire. We implemented
the atacc as a single-page form. This form was used by expert assessors to assess the behaviour
of cgfs in human-in-the-loop simulations (see Chapter 7).

On the form, we included (a) the nine rating items of the atacc, and (b) four fields for
additional information. The nine rating items of the atacc are discussed in Section 6.4. The four
fields are labelled as follows: (1) Tactical, (2) Set code, (3) Start time, and (4) Operational status.
Below, we explain these four fields.

Tactical The tactical is a personal code name that is used for both operational security and
convenience. We included the tactical of the assessors to be able to quickly refer to specific
forms that were filled in.

Set code In the preparation of the recorded human-in-the-loop simulations, we assigned a code
consisting of a letter and a number to each specific encounter (a.k.a. a setup or set by the
assessors) that was recorded. Each assessor was provided with a sheet that showed all
the set codes in an individually randomised order. The assessors were instructed to (1)
take the codes in the order that they were listed on the sheet, then (2) use each code to
look up the encounter belonging to that set in the pcds program that was running on
their laptop, after which they were to (3) take an empty form, note down the code, and
assess the behaviour of the cgfs in the recording. The set code field on the form acted as
a control to ensure that the assessors viewed the recorded encounters in the order that
was assigned to them.

Start time When an assessor used a set code to look up a recorded encounter in the pcds
program, pcds displayed a time index for the start of that encounter. The assessors were

186

instructed to write down that time index in the start time field. The start time field acted
as a control that allowed us to determine whether the assessors had correctly selected and
viewed the encounter which was indicated by the set code.

Operational status The operational status of the assessors indicates their level of experience.
The seven options that are provided (i.e., wingman, 2fl, 4fl, mc, ip, wip, and tip) refer
to the qualifications that can be obtained by the assessors.

The following page shows the exact form that was used in Chapter 7.

Assessment Tool
for Air Combat CGFs

Tactical: Set code:

Position flown: 1 / 2 / 3 / 4 Start time:

Operational status: Wingman / 2FL / MC / WIP

 / 4FL / IP / TIP

N
ev

er

R
ar

el
y

So
m

et
im

es

O
ft

e
n

A
lw

ay
s

Red air forced blue air to change their tactical plan. O O O O O

Red air forced blue air to change their shot
doctrine.

O O O O O

Red air was within factor range. O O O O O

Blue air was able to fire without threat from red
air.

O O O O O

Red air acted on blue air’s geometry. O O O O O

Red air acted on blue air’s weapons engagement
zone.

O O O O O

Red air flew with kinematic realism. O O O O O

Red air’s behaviour was intelligent. O O O O O

St
ro

n
gl

y

d
is

ag
re

e

D
is

ag
re

e

U
n

d
ec

id
ed

A
gr

ee

St
ro

n
gl

y
ag

re
e

Red air’s behaviour tested blue air’s tactical air
combat skills.

O O O O O

