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Abstract
Introduction It is widely recognized that LCA is in most cases relative and contains uncertainties due to choices and data. This
paper analyses the combination of the two comparative uncertainties.
Basic concepts We carefully define the idea of relativity and uncertainty within LCA.We finish off by giving an example of case
where inappropriate handling of comparative uncertainties will lead to a misleading result for a decision-maker.
Correlations We develop a generic framework for probabilistic comparative LCA and analyse at which places correlations may
be present. We also discuss the most convenient approaches for handling such correlated uncertainties.
Conclusion We put the elements discussed in a structure that provides a research agenda for dealing with comparative uncer-
tainties in LCA.
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1 Introduction

Benjamin Franklin’s aphorism that “in this world nothing can
be said to be certain, except death and taxes” ranks along with

Albert Einstein’s apocryphal expression that “everything is
relative” as famous statements that apply to almost anything.
Here, we will argue that they also apply to life cycle assess-
ment (LCA). But we will do more: we will connect the two
statements, and connect the uncertainty in LCA to the relative
nature of LCA. A central issue in this storyline is the place of
correlation: correlated LCA results have been recognized to
disturb the interpretation of comparative LCA.

Our story develops around the two themes, uncertain-
ty and relativity. We will first briefly introduce both,
and then concentrate on their combination, because most
LCA studies are comparative by nature and they invari-
ably involve uncertainties. The two themes have been
mostly studied in isolation, but new problems appear
whenever we combine them.

The aim of this discussion article is to provide an overview
of the ramifications of this combination. It will point out some
of the issues in a casual, not too formal way, without
overloading it with literature references. It is to a large extent
based on a synthesis of a number of recent publications by the
authors, and in particular Henriksson et al. (2014, 2015a,
2015b), Groen and Heijungs (2017) Mendoza Beltrán et al.
(2016, 2018) and Heijungs et al. (2017).
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2 Basic concepts

In this section, we study the two main ideas, uncertainty and
relativity, in relation to LCA.

2.1 Uncertainty

The topic of uncertainty in LCA has been brought up almost
as soon as the entire idea of LCA popped up. This is not
surprising, because LCA deals with a lot of data and involves
many choices. Various consensus procedures and standardiza-
tion attempts have resulted in a slightly smaller spectrum of
options for data and choices, but it is well known that different
LCA studies on the same topic within the same geographical,
temporal and technological context can still produce markedly
different results, due to a difference in, for instance

& functional unit;
& unit process data (including sampling design, measure-

ment errors, temporal variability, variation in space, as-
sumptions with respect to end-of-life infrastructure, etc.);

& system boundaries;
& allocation rules;
& characterisation methods;
& characterisation factors (including variation in space, ex-

trapolations from laboratory to field conditions, etc.);
& normalization principles;
& weighting factors;
& calculation principles.

To account for such differences, LCA guidebooks
usually recommend reporting the choices made, and, if
time allows, to do a few extra calculations, using for
instance another allocation principle, system boundary
or choice for one or two critical parameters, such as
the product’s life time.

To an increasing extent, differences in data are processed
with a probabilistic approach, where the input data are con-
sidered to have a stochastic component, which propagates
into a stochastic LCA result. The Monte Carlo simulation is
a widely used technique for the propagation of such input
uncertainties, although some authors prefer the use of other
methods.

While the incorporation of variations due to data un-
certainties and methodological choices is from a scien-
tific point of view unavoidable, from a practical and
policy point of view it has definite drawbacks. We just
want to know if there will be rain tomorrow or not, but
science often only tells us that there will be a 30%
chance of rain. Dealing with uncertain information is
obviously a challenge for any decision-maker, and this
applies in particular when the stakes are high.

2.2 Relativity

LCA answers in the vast majority of cases relative questions.
Is product A better than product B? Is a redesigned version of
this product better than the currently available version? Is it
better to outsource the electricity production or to generate it
on-site? Purchase decisions, investment decisions, ecolabels,
it’s all done on the basis of comparisons. While we recognize
that there are perhaps a few situations where LCAs are done
on a stand-alone basis, without comparison, this discussion
article will further build on the typical situation of comparative
assessments, in one form or another.

Conceptually, it may be important to further differentiate
between comparing two systems and comparing more than
two systems. In many contexts, a comparison of two systems
is easier than a comparison of several systems. Just think
about most sport matches, ranging from football to chess
and from boxing to hockey, where two teams or players com-
pete for priority. Whenever there are more competing teams or
players, we need to set-up more complicated systems for find-
ing out a winner or a ranking. This differentiation between
simple comparison and multiple comparisons is also present
in scientific procedures, for instance in statistical analysis,
where we have an independent samples t test for the case of
two options and an ANOVA with an F-test for the case of
more than two options. In our discussion, we will take the
general point of view of comparing several systems.
Occasionally, we will study the simpler case of comparing
only two systems.

2.3 Uncertainty in a relative perspective

Combining the two points made, we are now invited to
study how comparisons are to be done in the case of
uncertain information. Here, an important complication
enters the scene.

Consider the following case: we have information about
the price of two cars, but the price information is not entirely
accurate. Car 1 costs about 45,000$ but it might be a few
thousand more or less. Let us symbolize this as 45,000$ ±
2,000$. Car 2 costs 50,000 ± 2,000$. It seems clear: the first
car is likely to be cheaper than the second car. But now, I’m
living in Europe and wish to decide on the basis of prices in
euro. I do not know the precise exchange rate between dollars
and euros, but typically 1 dollar is approximately 1 euro, al-
though sometimes it is 20 cents less and sometimes 20 cents
more. Let us write this as 100$ = 100 ± 20€. A straightforward
calculation now tells me that car 1 costs approximately
45,000 ± 11,000€ and car 2 approximately 50,000 ± 12,000€,
so there is a tremendous region of overlap, and a naive sug-
gestion would be that there is no significant difference be-
tween the two cars in terms of its price in euro. Figure 1
illustrates the case.
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This is of course a weird situation, because the uncertainty
of the exchange rate should apply equally to the two cars. If I
want to buy a car tomorrow, I will face tomorrow’s exchange
rate, and in a comparative sense car 1 will be cheaper than car
2, for sure.

This example is supposed to make clear that in a compar-
ative analysis with uncertainties, there may be shared uncer-
tainties as well as uncertainties that are specific to each option.
In order to still see the signal, and not drown in the noise by
uncertainties on top of uncertainties, we need to develop cal-
culation procedures which can distinguish such nuances. It is
unclear to which extent the currently used software allows for
such more sophisticated analyses, and if it allows so, to which
extent LCA practitioners indeed employ it.

3 Correlations

The issue presented has been recognized within LCA, often
under the term correlation or correlated uncertainty.
Correlation, however, is a much wider concept, and an un-
qualified application of this term is likely to mislead the audi-
ence. We will therefore discuss the issue of correlations in the
context of LCA in more detail.

3.1 General reflections

Correlation has to do with dependence; one thing depends on
another thing, and the other way around. The terms imply a
“betweenness”: we can only speak of a correlation “between”
two or more things or a dependence of one or more things on
another thing or things. In the present case, the ultimate vari-
able is the product’s score, which can be a single number (e.g.,
weighted index or carbon footprint), or a set of numbers (e.g.,
a normalized environmental profile), for each product alterna-
tive. These numbers are the result of calculations which in-
volve input data and choices. Some of these data and choices

are common to all products compared. For instance, we usu-
ally take the same GWP list for product 1 and 2; we will not
use GWP-20 years from the 2007 list for product 1 and GWP-
100 years from the 2013 list. And we usually include or ex-
clude capital goods for product 1 and 2. But there are also
numbers and choices that usually differ per product alterna-
tive. For instance, if we compare electricity produced by fossil
fuel to electricity produced by biomass, only the second prod-
uct requires data on carbon sequestration. All the numbers and
choices that play a role in the LCA procedure can interact to
create correlations or dependencies in different ways.

Correlated uncertainties are a ubiquitous phenomenon in
comparative LCAwith uncertainties due to choices and data.
So ubiquitous in fact that a generic treatment is impossible. In
the remainder of this article, we will focus on the issue of
correlated uncertainty.

3.2 Correlated inputs and correlated outputs

A basic distinction in modelling is between inputs and out-
puts. These two words can, certainly in the context of LCA, be
misleading. LCA traditionally discerns inputs, such as mate-
rials and resources from outputs, such as waste and emissions.
A more general modelling theory, however, discerns inputs
and outputs in a mathematical sense. This can be aptly de-
scribed by

y ¼ f xð Þ
where the input x is transformed into a model output y, by
means of some model, symbolized through f. In case we have
more than one input and output, say n inputs x1, x2,…, xn and
m outputs y1, y2, …, ym, we can write this as

y1 ¼ f 1 x1; x2;…; xnð Þ
y2 ¼ f 2 x1; x2;…; xnð Þ
… ¼ …
ym ¼ f m x1; x2;…; xnð Þ

8>><
>>:

By recognizing multiple outputs, we should make it very
clear that this embraces two kinds of multiple outputs:

& one product with several LCA results, for instance a score
for global warming (y1), one for acidification (y2) and one
for smog (y3);

& several products with one LCA result, for instance a car-
bon footprint for product A (y1), for product B (y2) and for
product C (y3);

& the combination of the two aspects above.

We will now move from the situation of deterministic in-
puts to stochastic inputs. We follow the usual convention in
probability theory to write stochastic variables as a capital
letter, and their realizations as a lowercase letter. Therefore,
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Fig. 1 The price of car 1 and car 2 in $ (left) and in € (right) given an
uncertainty in price and exchange rate. Choosing the cheapest car in $ is
straightforward, but there does not seem to be a significant difference
between the car prices in €
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instead of x1, etc. we will write X1, etc. For example, if in a
deterministic model the first input variable has a value of 5, we
would write x1 = 5. If on the other hand a probability distribu-
tion has been specified for this first variable, say, a normal
distribution with mean 5 and standard deviation 1, we can
write X1~N(5, 1). More generally, we write

X 1∼N μ1;σ
2
1

� �
when X1 is normally distributed with mean μ1 and variance σ2

1

(or equivalently, standard deviation σ1).
The functions f1, etc. will remain as they were. We will not

assume stochastic models, only stochastic model inputs. If
needed, uncertainty of the model itself due to choice uncer-
tainty may be introduced through one of the inputs. For in-
stance, if we have a choice between mass allocation, energy
allocation and economic allocation, each of which have equal
probability, we may specify this as one of the input parameters
with a discrete uniform distribution between 1 and 3, so as
X2~Udiscrete(1, 3):

x2 ¼
1 mass allocation
2 energy allocation
3 economic allocation

8<
:

See also Mendoza Beltrán et al. (2016).
As a result of the stochastic inputs, the deterministic out-

puts y will become stochastic as well; the symbol Y will be
used to refer to them. So the previous system of model equa-
tions now becomes

Y 1 ¼ f 1 X 1;X 2;…;X nð Þ
Y 2 ¼ f 2 X 1;X 2;…;X nð Þ
… ¼ …
Ym ¼ f m X 1;X 2;…;X nð Þ

8>><
>>:

Which correlations can now be present? Recognizing that
correlations always imply two items, we can now discern:

& correlations between a pair of input variables, say X1 and
X2;

& correlations between a pair of output variables, say Y1 and
Y2;

& correlations between an input and an output variable, say
X1 and Y1.

We will discuss each of these cases below.

3.3 Correlations between a pair of input variables

The first case we consider is of correlated model inputs,
where, it should be recalled, inputs have a broader meaning
than usual, comprising all data that is inserted into the

calculation, so including emission factors, characterisation
factors and allocation choices. The existence of correlations
between such input data is a realistic case in LCA. Unit pro-
cess data that refer to the same process will often be correlated
in some way, due to the laws of physics, chemistry and biol-
ogy. A less-efficient engine needs more fuel and will emit
more exhaust gases. Amore efficient cattle-breeding farmwill
consume less feed and produce less waste. Similar relation-
ships will exist at other places of the LCA. If we decide to
choose allocation principle 1 (mass-based) for one process,
probably we will choose it for another process as well. It also
applies to impact assessment choices (like the time horizon of
GWP) and uncertainties in characterisation factors (the half-
life time of a toxic will affect both human toxicity and
ecotoxicity). Summing up, there may exist correlations be-
tween many of the input variables X1, …, Xn.

In general, expressing a multivariate probability distribu-
tion is much more cumbersome than for univariate case. An
important exception if the multivariate normal case, in which
the notation

X∼N μX ;ΣXð Þ
is used, and where the bold symbols code for vectors and
matrices:

X ¼
X 1

X 2

…
X n

0
BB@

1
CCA;μX ¼

μX 1

μX 2

…
μXn

0
BB@

1
CCA;ΣX

¼
σ2
X 1

σX 1X 2 … σX 1X n

σX 2X 1 σ2
X 2

… σX 2X n

… … … …
σX nX 1 σXnX 2 … σ2

Xn

0
BB@

1
CCA

Of particular interest is the (symmetric) covariance matrix
ΣX, of which the diagonal elements contain the usual univar-
iate variances, but of which the off-diagonal elements contain
the covariances that express the correlation between inputs. If
σX 1X 2 ¼ σX 2X 1 ¼ 0, X1 and X2 are not correlated. If these
elements are positive, there is a positive correlation, and if
they are negative, the correlation is negative.

All three cases, zero, positive and negative elements, are
likely to show up in LCA. For instance:

& fuel into a car and emission out of the same car will be
positively correlated;

& solar electricity into and fossil electricity into a house will
be negatively correlated;

& electricity into a house and fuel into a car will be
uncorrelated.
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The specification of a covariance matrix is likely to be
difficult in practice, given that even the diagonal elements,
the univariate variances, are often difficult to find.
And even if we would know the covariance matrix,
most, if not all, software for LCA does not offer the
possibility to enter this information and use it in subse-
quent calculations.

3.4 Correlations between an input and output
variable

Correlations between inputs and outputs are trivially present.
Because the model f is deterministic, there will be a correlation
between X1 and Y1, in one way or another. In rare cases,
probability theory can calculate the probability distribution
of an output when the probability distribution of an input is
specified. An example is X1~N(0, 1) and y1 ¼ f x1ð Þ ¼ x21, for
which it follows that Y1~χ

2(1), the chi-square distribution
with 1 degree of freedom. In the majority of cases, such cal-
culations are not possible. Even for a simple case like X1~N(0,
1) and y1 ¼ f x1ð Þ ¼ 1

x1
, the distribution of Y1 is not known in

mathematical form.
Special techniques for so-called uncertainty propaga-

tion are available to approximate the distribution of Y1
in such cases (Groen et al. 2014). Important examples
of these techniques are Monte Carlo simulation and
Gaussian error propagation, the latter relying on a
Taylor-series approximation.

Monte Carlo simulations are based on sampling the prob-
ability space spanned by the input variables X1, …, Xn, using
random number generators that comply with the specified

probability distribution (e.g. N μX 1
;σ2

X 1

� �
), and calculating

the output variables Y1,…, Ym for each set of sampled values.
Thus, a quasi-empirical distribution of the various Y variables
is obtained. Monte Carlo simulations are typically done with a
large sample size, for instance 1,000 or 10,000. This makes
the process computationally expensive.

Gaussian error propagation is based on the linear
approximation of the functions f1, …, fm around the
working point. A typical choice for this working point
is the mean value of X1, …, Xn, namely μX 1

;…;μXn
.

An approximate expression for the variance of Y1, …,
Ym is then obtained through

σ2
Y i
≈ ∑

n

j¼1

∂ f i
∂x j

����
μX1

;…;μXn

 !2

σ2
X j

These techniques, and in particular Monte Carlo, are in-
creasingly available in LCA software.

3.5 Correlations between a pair of output variables

Whenever two model outputs, say Y1 and Y2, depend on a
common input, say X1, there can be a correlation between
the two outputs. Just consider the case of

y1 ¼ 2x1 þ 6
y2 ¼ 4x1−4

�

This example provides a case of full linear correlation: y2 =
2y1 − 16. The correlation may also be smaller, for instance,
when non-linear functions are involved. It is only when two
outputs do not rely on the same inputs that there is zero cor-
relation. An example is

y1 ¼ ffiffiffiffiffi
x1

p þ lnx2
y2 ¼ 4x23−sinx4

�

LCA-related examples within one product are the emis-
sions of CO and NOx, depending on a variable which controls
the air supply of combustion process, or the impact scores on
smog and acidification, depending on the characterisation fac-
tor for heavy metals. An LCA-related example in the case of a
product comparison is the carbon footprint of products A, B
and C, all depending on an uncertain emission factor of the
same power plant.

When we propagate uncertainties in the input data in a
probabilistic way, for example using Monte Carlo simulation,
the resulting output distributions will contain a correlation
structure. However, it requires a careful uncertainty propaga-
tion, in every iteration of the simulation:

& sampling all input variables (so x1 for X1, x2 for X2, etc.)
once;

& calculating the output variables, for all product alterna-
tives and/or impact categories (so y1 for Y1, y2 for Y2, etc.).

Failing to do so will lead to the problem outlined in Fig. 1.
The issue highlighted here has been described in the LCA

literature as “dependent sampling”. From our analysis, it fol-
lows that we must do this dependent sampling not only across
product alternatives, but also across the LCA indicators for
one product, be it at the inventory level or impact assessment.
It is often unclear if in published case studies and in programs
for LCA this issue has been taken into account. In case of
stand-alone or pre-calculated LCA studies, post hoc compar-
isons will probably lead to overly weak conclusions (Heijungs
et al. 2017).

For non-sampling methods, like the Gauss/Taylor-based
analytical uncertainty propagation, the issue is more compli-
cated. The point is that this method for uncertainty propaga-
tion gives an expression for the variance of the output vari-

ables (so here: σ2
Y 1

and σ2
Y 2

), but no expression for a
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covariance between them (like σY 1;Y 2 ). Given the advantages
of the analytical expressions over the time-intensive
Monte Carlo method, here appears to be an important
methodological gap that needs to be filled. Fortunately,
there still seems to be progress in computation perfor-
mance: Brightway2 claims to be able to do “more than
100 Monte Carlo iterations/second”.

As a final remark, observe that correlations between output
variables may be the result of correlations between input var-
iables, but not necessarily so. They can also occur when there
is just one uncertain input, or when the inputs are uncorrelated.
Further, while the danger of misrepresenting uncertainty of
results is clear in case of correlated inputs, it is less clear if
this is also the case for correlated outputs.

4 Conclusions

As we have now studied the three elementary cases, it is time
to sum up and move on. Figure 2 summarizes the elements of
addressing uncertainty in LCA.

The first element of the framework is Data collection.
Correlations between input variables can be described
by probability functions. Only the base case of the mul-
tivariate normal distribution is well known. It requires a
covariance matrix with variances on the diagonal and
covariances on the off-diagonal elements. Already for
the non-correlated case, variances are often crudely rep-
resented due to limited access to data, limited resources
for a proper sampling design and data collection, and
incomplete data handling and reporting. The pedigree-
based approach has taken an intractable role here for
providing surrogate variances. It is also questionable if
such tricks will work for the much more challenging
covariances. For example, if we have an LCA with
5,000 input variables (this is not exceptionally large:
ecoinvent v3 exceeds this number), we need to specify
5,000 variances and no less than 12 million covariances.
We also mention the problem that the conventional
probability distribution for uncertain LCA data is not
the normal but the log-normal probability distribution.
Specifying correlations for non-normal multivariate dis-
tributions is a much more complicated affair, with many
open questions.

The second element of the framework is Propagation.
Correlations between input variables on the one hand and
output variables on the other hand can be taken into account
with a few precautions, depending on the uncertainty propa-
gation method. A sampling-based method such as the Monte
Carlo simulation must take care to sample one full set of input
variables and then calculate every model output, so for each
indicator and for each product. Otherwise, the inflated error

bars from Fig. 1 will ruin the analysis. Generating random
numbers from a normal distribution including correlations is
straightforward. Generating random numbers from a non-
normal multivariate distribution is again much more compli-
cated. A more economical method for propagating uncer-
tainties, such as the analytical expressions on the basis of
Gaussian uncertainty propagation, needs to include the covari-
ance structure of the input variables. This can in theory be
done by adding more terms to the Taylor expansion:

σ2
Y i
≈∑

n

j

∂ f i
∂x j

����
μX1

;…;μXn

 !2

σ2
X j

þ 2 ∑
j≠k

∂ f i
∂x j

����
μX1

;…;μXn

∂ f i
∂xk

����
μX1

;…;μXn

 !
σX jX k

Data collection

Propagation

Interpretation

Communication

uncertainty data

Propagated results

Conclusions

Communicated results

Fig. 2 Proposed framework for propagating and interpreting
uncertainties in LCAs (adapted from Henriksson et al. 2015a)
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A downside is again the unavailability of the covariance
data, besides other downsides, for instance the limited validity
of the expression, only for “small” uncertainties.

The third element of the framework is Interpretation. It
concerns the process of interpreting, visualizing and deciding
on the basis of correlated model output results. Correlations
between output variables are almost automatic in a Monte
Carlo set-up, provided the previously mentioned precautions
have been taken. For the analytical expressions, a major re-
search gap has been identified: how to account for correlated
results when using such methods. A practical basis for deci-
sion support and series of convenient presentations has been
synthesized by Mendoza Beltrán et al. (2018). It is based on
tables with pairwise comparative assertions, such as “product
A beats product B” or “product A is significantly better than
product B”. Such schemes may seem complicated to use in a
comparison of more than two products, and this certainly is so
when there are not only several products but also several
criteria. Nevertheless, we think there is presently no way that
better combines insight and transparency.

The final element of the framework is Communication. We
will have to communicate our results carefully as they are
uncertain. Thus, instead of concluding that A is better than
B, we should state something like “with 95% certainty, A is
better than B”. The best way to do so will of course depend on
the audience. Product information for the general public re-
quires another strategy than for highly specialized process
engineers. For instance, for public communication purposes,
a translation of probabilistic outcomes into digested informa-
tion is needed.

Although we have the elements in place now, there are still
huge challenges. Additional work is needed to operationalize
and streamline them so that in the end they will become avail-
able through the existing LCA software packages to the entire
community of LCA practitioners. And last but not least, we
will have to collect the required data. But we need to go this
way, raise the bar for LCA case studies, and not produce LCA
results without uncertainties anymore.
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