

Hot Nanoparticles Jollans, T.G.W.

Citation

Jollans, T. G. W. (2020, January 30). *Hot Nanoparticles. Casimir PhD Series*. Retrieved from https://hdl.handle.net/1887/83484

Version:	Publisher's Version
License:	<u>Licence agreement concerning inclusion of doctoral thesis in the</u> <u>Institutional Repository of the University of Leiden</u>
Downloaded from:	<u>https://hdl.handle.net/1887/83484</u>

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <u>http://hdl.handle.net/1887/83484</u> holds various files of this Leiden University dissertation.

Author: Jollans, T.G.W. Title: Hot Nanoparticles Issue Date: 2020-01-30

Hot Nanoparticles

Thomas Jollans

HOT NANOPARTICLES

Proefschrift

ter verkrijging van de graad van Doctor aan de Universiteit Leiden op gezag van Rector Magnificus prof. mr. C.J.J.M. Stolker, volgens besluit van het College voor Promoties te verdedigen op donderdag 30 januari 2020 klokke 10.00 uur

door

Thomas Georg William Jollans

geboren te Starnberg (Duitsland) in 1990

Prof. dr. M.A.G.J. Orrit	Universiteit Leiden
Dr. M. Caldarola	Technische Universiteit Delft
Dr. G. Baffou	Université d'Aix–Marseille
Prof. dr. E.R. Eliel	Universiteit Leiden
Prof. dr. M.P. van Exter	Universiteit Leiden
Dr. D.J. Kraft	Universiteit Leiden
Prof. dr. L. Kuipers	Technische Universiteit Delft
	Prof. dr. M.A.G.J. Orrit Dr. M. Caldarola Dr. G. Baffou Prof. dr. E.R. Eliel Prof. dr. M.P. van Exter Dr. D.J. Kraft Prof. dr. L. Kuipers

Casimir PhD Series, Leiden–Delft, 2020-01

ISBN 978-90-8593-428-8

An electronic version of this thesis is available at https://openaccess.leidenuniv.nl/

Typeset by the author using LuaLATEX, KOMA-Script and Libertinus fonts. Cover art based on an untitled picture of sparks from a fire by fsHH (Pixabay).

Schematics of optical setups use components from *ComponentLibrary* by Alexander Franzen, which is licensed under a CC BY-NC 3.0 License. Most other figures were created using Matplotlib, the 2D graphics package for Python.

The work described in this thesis was carried out at the Leiden Institute of Physics (LION), Leiden University. It was supported by the NanoFront consortium, a program of the Netherlands Organization for Scientific Research (NWO) that is funded by the Dutch Ministry of Education, Culture and Science (OCW). Für Oma

Contents

Intr	oduction	1
1.1	Gold nanoparticles	1
	1.1.1 Optical properties of gold nanoparticles	2
	1.1.2 Single gold nanoparticles	5
1.2	Hot nanoparticles	5
	1.2.1 Photothermal microscopy	6
	1.2.2 Plasmonic vapour nanobubbles	8
1.3	Outline of this thesis	9
Exp	losive, oscillatory and Leidenfrost boiling at the nanoscale	11
2.1	Introduction	12
2.2	Method	14
2.3	Results	16
	2.3.1 Nanoscale boiling régimes	16
	2.3.2 Stable vapour nanobubble oscillations	18
2.4	Conclusion	25
2.A	Approximations: optics	26
2.B	Approximations: Rayleigh–Plesset model	26
Pho	nothermal detection of (quasi-)chirality	31
3.1	Background	32
3.2	Chirality in optics experiments	33
	3.2.1 Quasi-chirality	34
3.3	Photothermal detection of circular dichroism	36
	3.3.1 Premise	36
	3.3.2 Possible pitfalls	37
3.4	Establishing a circularly polarized field	38
	3.4.1 Principle	38
	 Intr 1.1 1.2 1.3 Exp 2.1 2.2 2.3 2.4 2.A 2.B Pho 3.1 3.2 3.3 	1.1 Gold nanoparticles

Contents

3.5 Preliminary results		iinary results	41	
		3.5.1	Sample, setup, and expectations	41
		3.5.2	Cloverleaf	42
		3.5.3	Removing unwanted asymmetries, part 1	43
	3.6	The fo	cus of an asymmetric beam	44
		3.6.1	General theory	44
		3.6.2	Calculations of asymmetric beams	45
		3.6.3	Wide-field	49
	3.7	Remov	ving unwanted asymmetries, part 2	50
4	Pico	osecono	d-to-nanosecond heat transfer around a AuNP	53
	4.1	Introd	uction	54
	4.2	Metho	od	55
		4.2.1	Premise	55
		4.2.2	Gold nanoparticle excited by a laser pulse	56
		4.2.3	Experimental details	57
		4.2.4	Measurement protocol	59
	4.3	Result	······································	59
		4.3.1	Preliminary measurements on borosilicate glass	59
		4.3.2	Fused silica substrate	62
		4.3.3	Other liquids	65
	4.4	Discus	ssion	66
	4.5	Conclu	usion	66
5	Tim	e-resol	ved measurement of electronic temperatures in a	
	sing	gle gold	l nanoparticle	69
	5.1	Introd	uction	70
		5.1.1	Background	70
		5.1.2	Anti-Stokes emission as a measure of temperature	72
	5.2	Metho	od	74
		5.2.1	Premise	74
		5.2.2	Experimental details	74
	5.3	Result	S	77
		5.3.1	Dependence of the electronic temperature on intensity	77
		5.3.2	Hot electron dynamics	80
	5.4	Discus	ssion and conclusion	85

Samenvatting	89
Acknowledgements	93
Biography	95
List of Publications	97
Bibliography	99