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A Latent Block Distance-Association Model for Profile by Profile Cross-
Classified Categorical Data

J. Fernando Veraa and Mark de Rooijb

aDepartment of Statistics and O.R. Faculty of Sciences, University of Granada; bMethodology and Statistics Unit, Institute of
Psychology, Leiden University

ABSTRACT
Distance association models constitute a useful tool for the analysis and graphical represen-
tation of cross-classified data in which distances between points inversely describe the asso-
ciation between two categorical variables. When the number of cells is large and the data
counts result in sparse tables, the combination of clustering and representation reduces the
number of parameters to be estimated and facilitates interpretation. In this article, a latent
block distance-association model is proposed to apply block clustering to the outcomes of
two categorical variables while the cluster centers are represented in a low dimensional
space in terms of a distance-association model. This model is particularly useful for contin-
gency tables in which both the rows and the columns are characterized as profiles of sets
of response variables. The parameters are estimated under a Poisson sampling scheme
using a generalized EM algorithm. The performance of the model is tested in a Monte Carlo
experiment, and an empirical data set is analyzed to illustrate the model.
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Introduction

Data are often collected with multiple explanatory varia-
bles and multiple response variables. For the analysis of
such data, multivariate regression models may be fitted
providing an insight into the relationship between the
explanatory variables and the response variables. When
categorical response variables are considered, multivari-
ate logistic regression models are usually appropriate.
Examples include logistic regression models estimated
using a generalized estimating equation (Zeger, Liang,
& Albert, 1988) approach, or the multivariate logistic
distance model (Worku & De Rooij, 2018) that consid-
ers a dimensional structure of the response variables.

On the other hand, instead of this kind of variable-
oriented approach, a person-oriented approach to data
analysis might be preferred (Bergman & Magnusson,
1997), focusing on the personal profiles of the varia-
bles. When both the explanatory and the response
variables are categorical, we might be interested in
examining how the first set of profiles is related to the
second. Addressing this question often involves the
analysis of large contingency tables with explanatory
profiles in the rows and response profiles in the

columns. A disadvantage of these large contingency
tables is that they are sparse even with large samples,
i.e., many cells are not present in the data set.

As an example of such a situation, we consider
data in which the row profiles are based on gender
and on five personality variables, while the column
profiles are cross-classifications of five mental
disorders. This data set has been analyzed before,
taking a variable-oriented approach (Spinhoven, De
Rooij, Heiser, Penninx, & Smit, 2009). In this
article, we take a person-oriented approach, in
which the personality variables are Neuroticism,
Extraversion, Openness to experience, Agreeableness,
and Conscientiousness, each categorized as Low,
Medium or High. Therefore, there are 2� 35 ¼ 486
different row profiles. The columns contain the fol-
lowing mental disorders: Major Depressive Disorder,
Dysthymia, Generalized Anxiety Disorder, Social
Phobia, and Panic Disorder. The subjects are diag-
nosed as being with or without the disorder, which
produces 25 ¼ 32 different profiles of mental disor-
ders. The resulting contingency table, therefore, is
large (with dimensions 486 by 32). The sample is
composed of 2,938 subjects, scattered throughout the
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contingency table; thus of the 15,552 cells 13,956 are
empty, and only 1,596 are nonempty. Such sparse
contingency tables are problematic for many standard
analysis techniques. Loglinear analysis, for example,
completely fails for these data simply because of the
large number of zero cells.

One solution to this problem may be to use cluster-
ing techniques. Clustering in combination with mod-
eling the relationships between the categorical
response variables is a widely employed procedure in
data analysis. In general, most classical two-mode
clustering methods are designed to attain homoge-
neous row-by-column clusters, while other methods
are designed to find partitions based on the optimiza-
tion of within-block interactions for a single quantita-
tive dependent variable (Schepers, Bock, & Van
Mechelen, 2017). For contingency tables, various pro-
cedures have been proposed to combine categories
in terms of a particular homogeneity criterion
(Goodman, 1981; Govaert & Nadif, 2014; Kateri &
Iliopoulos, 2003), or seeking to maximize a measure
of dependence (Bock, 2003; Govaert, 1995). Latent
block clustering methods have been proposed using a
Poisson model, for example in information retrieval
(Li & Zha, 2006), or for sequencing data (Witten,
2011), among others. With the aim of reducing the
number of parameters and at the same time to facili-
tate the interpretation, clustering and representation
methods have been proposed in different areas for dif-
ferent data sets (see, e.g., Kim, Choi, & Hwang, 2017;
Vera, Mac�ıas, & Heiser, 2009a, Vera, Mac�ıas, &
Heiser, 2009b; Vera, Mac�ıas, & Heiser, 2013).

Association patterns among categorical variables
have traditionally been studied by log-linear and associ-
ation models (Agresti, 2013). However, the application
of log-linear models to large contingency tables usually
produces a large number of parameters. Models with
fewer parameters for the association have been pro-
posed for nonsparse data such as the RC(M) association
model (Goodman, 1985) or the distance association
(DA) model (De Rooij & Heiser, 2005). These models
are equivalent, except that the latter is based on distan-
ces and so is easier to interpret (De Rooij, 2007, 2008).
In DA models, row and column categories for cross-
classified data are represented in a Euclidean space of
low dimensionality such that the distances between
points inversely describe the association between the
categories of the two sets. The presence of zero entries
in a contingency table means that the estimated odds
ratios will be either zero, infinity, or undefined.
Therefore, when standard log-linear models are used
for sparse tables in which the number of cells is large

relative to the sample size, estimation problems are
often experienced (Vera, de Rooij, & Heiser, 2014).

As noted by the latter authors, for nonsparse tables
involving profiles, the DA model can be estimated but
the association plot may be difficult to interpret due
to the presence of a large number of points (profiles).
For sparse tables such as the one presented above, the
DA model fails due to the excessive number of zero
cells. For cross-classified data where the row catego-
ries correspond to the profiles, Vera et al. (2014) pro-
pose a latent class distance association model (LCDA)
that reduces the number of parameters, which makes
the model suitable for sparse tables. This model clus-
ters the row profiles into a small number of classes
and represents them with the column categories in an
association plot. When the column categories also
represent profiles of a set of variables, it is advisable,
additionally, to cluster the column profiles into a
small number of classes. In this case, the number of
parameters can be further reduced by simultaneously
collapsing the rows and columns of the table.

In the context of the mental disorder example
mentioned above, clustering the column profiles is
also of substantive interest. A major issue in mental
disorder studies is that of understanding comorbidity,
i.e., when an individual presents multiple mental dis-
orders. By clustering profiles, we can obtain classes in
which certain disorders occur concurrently, i.e., classes
that represent patterns of comorbidity.

In this article, we address the problem of block
clustering and the simultaneous representation of
association between row and column clusters in a
contingency table. A latent block distance association
model (LBDA) is formulated that simultaneously par-
titions the rows and the columns of a contingency
table, while the between-cluster associations are repre-
sented in a low dimensional space in terms of
Euclidean distances. In the LBDA model, odds are
defined in terms of the block-related main effects and
of the distances, while odds ratios are defined only in
terms of the distances. This model can be viewed as
an alternative to traditional models for representing
associations between two categorical variables, one
that reduces the number of parameters to be esti-
mated and facilitates interpretation.

The rest of this article is organized as follows. In
the next section, the LBDA model is formulated and
estimated by maximum likelihood using a generalized
expectation-maximization (GEM) algorithm. A model
selection procedure using the BIC statistic and a
guideline for model interpretation are then discussed
in Model selection section and Model interpretation
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section, respectively. Experimental results are shown
in Experimental results section. The performance of
the LBDA model is considered in a Monte Carlo
experiment, first using simulated nonsparse data sets
and then focusing on the influence of sampling zeros
in recovering the structure of clustered contingency
tables. The above-described personality profile data set
is then analyzed and, in the final section, the results
obtained are discussed.

Latent block distance association model

The model

Consider an I� J contingency table F ¼ ðfijÞ that col-
lects the counts of combinations of row and column
categories, which can represent profiles of variables.
Let us consider a partition PIðFÞ of the row categories
into T latent classes FRt with nt rows each, n1 þ � � � þ
nT ¼ I; and a partition PJðFÞ of the column catego-
ries into K latent classes FCk with nk columns each,
n1 þ � � � þ nK ¼ J: It is assumed that a category
belongs to one and only one subset of its correspond-
ing partition, and that we do not know in advance
which latent class a particular element belongs to.
Without loss of generality we can assume that both
rows and columns in F are arranged by permuting
them in accordance with the sequence in the index
sets of the latent classes.

In terms of the frequency table the situation is
equivalent to having a block shaped partition PðFÞ of
the rectangular matrix F into T�K blocks Ftk of
ntk ¼ ntnk frequencies fij, corresponding to the entries
simultaneously present in the row vectors fRi ¼
ðfi1; :::; fiJÞ0; with fRi 2 FRt ; and in the column vectors
fCj ¼ ðf1j; :::; fIjÞ0; with fCj 2 FCk : The unconditional
probability that any row vector fRi belongs to latent
class FRt is denoted by cRt ; with 0 � cRt � 1; and that
any column vector fCj belongs to latent class FCk is
denoted by cCk ; with 0 � cCk � 1: It is assumed that
the unconditional probability that any frequency fij
belongs to a latent block Ftk is given by ctk ¼ cRt c

C
k :

Thus

XT
t¼1

XK
k¼1

ctk ¼
XT
t¼1

cRt ¼
XK
k¼1

cCk ¼ 1: (1)

The aim of the latent block distance association
model is to represent, not the row and column cate-
gories (or profiles) themselves, but the corresponding
cluster centers by points in a Euclidean space of low
dimension. Thus, let us define the T�M matrix X
and the K�M matrix Y, whose row vectors xt; t ¼

1; :::;T and yk; k ¼ 1; :::;K are the coordinates of the
centers of the T clusters for the rows and the K clus-
ters for the columns respectively in dimension M.
Under the general multiplicative form in the distance
association model, the expected frequency ltk of any
fij 2 Ftk is assumed to be given by

ltk ¼ latbk exp �d2tk
� �

; (2)

where l is the overall scale parameter, at is the latent
row-class effect parameter, bk is the latent column-
class effect parameter and d2tk ¼ d2ðxt; ykÞ is the
squared Euclidean distance given by

d2 xt; ykð Þ ¼
XM
m¼1

xtm�ykmð Þ2:

Equation (2) represents a distance association
model in which associations between row and col-
umn clusters are inversely related to the squared dis-
tances between the corresponding points in the
estimated configuration. This model extends the
LCDA model of Vera et al. (2014), by further consid-
ering that it is not the column modalities itself, but
their simultaneously estimated cluster centers, that
are of interest.

The GEM algorithm

Following the usual mixture approach to the
estimation problem, the probability for the frequency
fij 2 Ftk in a standard Poisson sampling model is
expressed as

htk fijjxt; yk;l; at; bk
� � ¼ l

fij
tk

fij!
exp �ltkð Þ; (3)

where ltk is given by (2). Because in this context it is
not known in advance which latent class a frequency
belongs to, the probability density function (p.d.f.) of
the random variable fij becomes a finite mixture of
Poisson densities, i.e.,

g fijjX;Y; l; a; b;C
� � ¼XT

t¼1

XK
k¼1

ctkhtk fijjxt; yk; l; at; bk
� �

;

(4)

where a ¼ ða1; :::; aTÞ0; b ¼ ðb1; :::; bKÞ0 and C ¼ ðctkÞ
is the T�K matrix of unconditional probabilities.
Therefore, the log-likelihood function to be maxi-
mized subject to (1) can be written as

log L ¼
XI
i¼1

XJ
j¼1

log
XT
t¼1

XK
k¼1

ctkhtk fijjxt; yk; l; at; bk
� �

:

(5)
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For the formulation of the mixture problem in the
EM (Dempster, Laird, & Rubin, 1977) framework the
following mixture component indicator variables are
introduced,

zij;tk ¼ 1; if fij 2 Ftk;
0; otherwise:

�

As usual, let us define the vector zij ¼
ðzij;11; :::; zij;TKÞ0; and the IJ � TK matrix Z written by
their row vectors zij: It will be assumed that the zij
are observations of independently and identically dis-
tributed multinomial variables, with probabilities
given by the entries of the matrix C such that

XT
t¼1

XK
k¼1

zij;tk ¼ 1:

The p.d.f. of fij, given zij; can be written as,

W fijjzij;X;Y; l; a;b
� � ¼

YT
t¼1

YK
k¼1

htk fijjxt; yk; l; at; bk
� �zij;tk

(6)

and the unconditional p.d.f. of zij is expressed as,

p zijjC
� � ¼YT

t¼1

YK
k¼1

c
zij;tk
tk : (7)

Using ð6Þ and ð7Þ; the complete p.d.f. of fij and zij
can be written as

U fij; zijjX;Y; l; a; b;C
� � ¼ W fijjzij;X;Y; l; a; b

� �
p zijjC
� �

¼
YT
t¼1

YK
k¼1

ctkhtk fijjX;Y; l; at; bk
� �� �zij;tk ;

(8)

and the log-likelihood of the complete data F and Z
can be expressed as

log L X;Y; l; a; b;CjF;Zð Þ ¼
XI
i¼1

XJ
j¼1

XT
t¼1

XK
k¼1

zij;tk log ctk

þ
XI
i¼1

XJ
j¼1

XT
t¼1

XK
k¼1

zij;tk log htk

� fijjxt; yk; l; at; bk
� �

:

(9)

In general, the direct estimation of parameters for
mixture models is a difficult task, for which the usual
iterative Expectation-Maximization (EM) algorithm,
or a generalized version (GEM) of this is usually
employed (Dempster et al., 1977). This procedure esti-
mates the unobserved values of Z by means of their
expected value when the remaining parameters of the
model, H; are known from a previous iteration, using
the full conditional probability, pðZjĤ; FÞ (see, e.g.,

McLachlan and Peel (2000) for an extensive descrip-
tion). From these estimated values, the model parame-
ters are then re-estimated in a M-step. The algorithm
alternates between these two steps, while at each iter-
ation the complete log-likelihood never decreases, and
the process usually concludes when a certain conver-
gence criterion is achieved.

Various estimation procedures have been proposed
to apply the maximum likelihood approach to the latent
block model when full conditional probabilities are dif-
ficult to obtain (see, e.g., Govaert & Nadif, 2014). In
this respect, Neal and Hinton (1998) described a non-
standard perspective of the EM algorithm for which at
the E-step, the unknown value of Z can be viewed as
representing a distribution of values, while the M-step
performs maximum likelihood estimation for the joint
data using these values. The same authors also observed
an association between parameter estimation via the
EM algorithm and a lower bound of the complete log-
likelihood obtained when any probability distribution is
considered for the unobserved values Z. Hence, when
the full conditional distribution pðZjĤ; FÞ cannot be
computed, a variational approach of the EM algorithm
(Jordan, Ghahramani, Jaakkola, & Saul, 1999) may be
employed. Subsequently, Govaert and Nadif (2005)
introduced a general variational EM algorithm for the
maximum likelihood estimation of latent block models
to solve the problem when difficulties arise from the
dependence structure of the variables.

In this model, a GEM algorithm is employed for
the parameter estimation. The algorithm was imple-
mented in MatLab1 and the best solution from 100
random starts was chosen as the final solution. The
convergence criterion used is that the difference in
subsequent log-likelihood values is less than 10�8 (see
Appendix C for an algorithm overview). It can be
shown (see Appendix A) that the proposed GEM
algorithm and the variational EM approach of
Govaert and Nadif (2014) results in an equivalent esti-
mation procedure in this LBDA model.

E-step
Let H ¼ fX; Y, l, a; b;Cg be the vector of parameters
of the model. In the first iteration initial values for
the parameters of the model Ĥ

ð0Þ
are set. In general,

in the sth-iteration, the conditional expectation of the
log-likelihood (log L) given F, and previous estimated
parameters values Ĥ

ðs�1Þ
; can be determined from the

linearity of log L on zij;tk as,

1The program and data are available upon request
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Q HjĤ s�1ð Þ
� �

¼
XI
i¼1

XJ
j¼1

XT
t¼1

XK
k¼1

E zij;tkjF; Ĥ s�1ð Þh i
log ctk

þ
XI
i¼1

XJ
j¼1

XT
t¼1

XK
k¼1

E zij;tkjF; Ĥ s�1ð Þh i
�log htk fijjxt; yk; l; at; bk

� �
;

(10)

where E½zij;tkjF;Hðs�1Þ� denotes the expectation of zij;tk
in the s-th iteration.

As PðFÞ is a block-shaped partition of F, we intro-
duce row and column indicator variables such that,
zij;tk ¼ zRitz

C
jk; where zRit ¼ 1 if fRi 2 FRt ; and zCjk ¼ 1 if

fCj 2 FCk ; and zero otherwise. Therefore it follows that,

XT
t¼1

zRit ¼
XJ
j¼1

zCjk ¼ 1;
XI
i¼1

XT
t¼1

zRit ¼ I; and
XJ
j¼1

XK
k¼1

zCjk ¼ J:

Let us define the I�T indicator matrix ZR in terms
of its row vectors zRi ¼ ðzRi1; :::zRiTÞ0 for the PIðFÞ parti-
tion, and the J�K indicator matrix ZC in terms of its
row vectors zCj ¼ ðzCj1; :::zCjKÞ0 for the PJðFÞ partition.

Then, Z ¼ ZR � ZC; where � denotes the usual
Kronecker product of two matrices.

Because the unobserved zij;tk are Bernoulli distrib-

uted variables, E½zij;tkjF;Hðs�1Þ� ¼ P½zij;tk ¼ 1jF; Ĥðs�1Þ�:
Since zij;tk ¼ zRitz

C
jk; and assuming (conditional)

independence, E½zij;tkjF;Hðs�1Þ� ¼ E½zRit jF;Hðs�1Þ�
E½zCjkjF;Hðs�1Þ�; where E½zRitjF;Hðs�1Þ� ¼ pRitðHðs�1ÞÞ is

the posterior probability that f Ri belongs to FRt ; and

E½zCjkjF;Hðs�1Þ� ¼ pCjkðHðs�1ÞÞ is the posterior probabil-

ity that f Cj belongs to FCk : Therefore,

ẑ sð Þ
ij;tk ¼ p̂R

it H s�1ð Þ� �
p̂C
jk H s�1ð Þ� �

; (11)

and the unobserved values of Z are calculated by these
products of posterior probabilities that are estimated
using the Bayes theorem (see Appendix A).

M-step
This step requires the optimization of (10) with respect
to parameters X, Y, l, a; b and C; under previously esti-
mated values ẑðsÞij;tk: First, the estimation of the uncondi-
tional probabilities under (1), is obtained by maximizing

logL�¼ logL�sR
XT
t¼1

cRt �1

 !
�sC

XK
k¼1

cCk �1

 !
; (12)

where sR and sC are Lagrange multipliers. It can easily
be shown that the expressions for the estimators of cRt
and of cCk in the s-th iteration are given by

ĉR
sð Þ

t ¼1
I

XI
i¼1

ẑ sð Þ
it and ĉC

sð Þ
k ¼1

J

XJ
j¼1

ẑ sð Þ
jk ; (13)

and therefore, ĉðsÞtk ¼ ĉR
ðsÞ

t ĉC
ðsÞ

k :

The remaining parameters of the model are
estimated by maximizing ð10Þ under previously
estimated values of Ẑ

ðsÞ
; which is equivalent to

maximizing

q X;Y; l; a; bjẐ sð Þ
� �

¼
XI
i¼1

XJ
j¼1

XT
t¼1

XK
k¼1

ẑ sð Þ
ij;tk log htk

� fijjxt; yk; l; at; bk
� �

:

(14)

Details of the parameter estimation at this step
using the Newton-Raphson procedure are shown in
Appendix B.

Model selection

In the estimation procedure the number of clusters
for the rows T and for the columns K is assumed to
be known, as well as the number of dimensions M for
the configuration. Since these values are unknown in
many practical situations, a model selection procedure
is needed, and the BIC (Schwarz, 1978) criterion is an
appropriate alternative in this framework (see
McLachlan & Peel, 2000). The sample size adjustment
suggested by Rissanen (1978) for the BIC will be used
here, for which the number of cells IJ is adjusted by
ðIJ þ 2Þ=24 (Vera et al., 2014).

The adjusted criterion is defined by BIC� ¼
�2 log Lþ l log h; where h ¼ ðIJ þ 2Þ=24; and l is the
number of parameters to be estimated. Without geo-
metrical constraints ltk is the average frequency in a
corresponding block representing TK parameters,
which together with the prior probability parameters
makes l ¼ TK þ ðT�1Þ þ ðK�1Þ: When geometrical
constraints are imposed, there are ð1þ T þ KÞ param-
eters for the marginal-class effects, ðT þ KÞM for both
configurations and ðT�1Þ þ ðK�1Þ for the prior
probabilities. Nevertheless, after identification (see
Appendix C) the number for the marginal-class effects
is reduced to 1þ ðT�1Þ þ ðK�1Þ: Moreover, the sin-
gular value decomposition introduces MðM þ 2Þ con-
straints. Therefore, in this situation the number of
parameters to be estimated is l ¼ 1þ 2ðT�1Þ þ
2ðK�1Þ þMðTþK�M�2Þ ¼ ðM þ 2ÞðT þ K�MÞ�3:
Since the number of parameters when geometrical
constraints are imposed should not be greater than
when they are not considered, ðT þ KÞM�MðM þ
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2Þ � ðT�1ÞðK�1Þ; and the maximum number of
dimensions M � minðT;KÞ�1:

The usual procedure to determine the number of
clusters is to calculate, without considering geomet-
rical constraints, the value of the BIC� statistic, for a
range of predetermined values of T and K; therefore,
the optimal combination is the one related to the low-
est BIC� value. The dimensionality is then determined
by again minimizing the BIC� statistic for different
values of M, with fixed values of T and K.

Model interpretation

Once the most appropriate model has been selected,
row and column profile classes can be interpreted in
terms of the original variables. To this end we use
the size of the classes, in terms of the number of
profiles and of the number of elements. After obtain-
ing the parameters, the ZR are estimated such that
zRit ¼ 1; t ¼ argmaxtðp̂R

itÞ; and zero otherwise, and
equivalently for the ZC (see Appendix D). By this
approach, we know exactly which profiles are
assigned to each class (and so its attributes are iden-
tified), and how many participants are related to
each profile (and therefore how many participants
present the variable attributes that constitute this
profile). Hence, for each class, we have the total
number of participants in each modality of each vari-
able that shape the profiles in the class, as well as the
number of profiles and the number of participants in
the class. Then for every class we determine the con-
ditional probability of a category of the original vari-
ables given the class membership.

To interpret the associations we use an association
plot in which the row and column classes are repre-
sented. The odds of a column class k against a column
class k0 for a given row class t, are given by

log
ltk
ltk0

� �
¼ log bkð Þ� log bk0ð Þ�d2tk þ d2tk0 : (15)

The odds are a function of the main effect
parameters and the distances. In the latter respect,
the odds are in favor of the closest category.
Concerning the main effects the odds are in favor of
the category with the largest b value. For a detailed
discussion of the interplay between the b’s and dis-
tances see Takane (1998) and De Rooij (2009). The
odds ratio is another useful tool, which can be
defined in terms of squared distances (see De Rooij
& Heiser, 2005)

ltk � lt0k0
ltk0 � lt0k

¼ exp �d2tk � d2t0k0 þ d2tk0 þ d2t0k

� �
: (16)

Experimental results

Monte carlo experiments

Simulation study I
To test the performance of the model, twenty twelve-
point matrices were simulated in two dimensions rep-
resenting the cluster centers for the LBDA model.
From each set of twelve points, T¼ 7 row and K¼ 5
column cluster centers were selected, such that the
intermixedness index score (Busing, Groenen, &
Heiser, 2005) was below 0.05. The distances dtk
between the row and column cluster centers were
then calculated. Three conditions were distinguished,
in which each cluster had an average of 20, 40 or 60
elements, by means of nt and nk rounded random
draws of the normal distribution with mean values of
20, 40 and 60, and standard deviations of 5, 10 and
15, respectively. Thus, data matrices with average sizes
ranging from 140 by 100 to 420 by 300 were created,
in which each table presented seven row clusters and
five column clusters.

With these elements, the expected frequencies for
sixty contingency tables were obtained on the basis of
the multiplicative model (Equation (2)) taking ltk ¼
100 exp ð�d2tkÞ; with dtk as the distances between the
cluster centers and equating the remaining main effect
parameters to unity in order to make the distances
monotonically related to the joint probabilities and
thus suitable for comparison (see Vera et al., 2014,
Takane, 1998). For each table, identified parameter
values for the model were obtained from these
expected frequencies, following the procedure
described in Appendix C. These parameter values
then constituted the reference values for comparison.
The observed frequencies were obtained by reference
to the Poisson distribution. Each contingency table
thus generated was analyzed, without imposing geo-
metrical constraints, to determine the number of clus-
ters (four to ten clusters for the rows and two to eight
clusters for the columns); for all matrices the lower
BIC� value was in agreement with the correct number
of clusters.

Each of the contingency tables generated was then
analyzed subject to geometrical constraints for T¼ 7
and K¼ 5 clusters in two, three and four dimensions,
and the lower BIC� value was always obtained in two
dimensions. The estimated parameter values in two
dimensions were compared with the true ones in
terms of the row and column classifications recovered,
and of the configuration arising from Procrustes ana-
lysis (Cliff, 1966). In all datasets, the original partition
was correctly recovered. The normalized Procrustes
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sum of squared errors produced average (near zero)
values of 0.0000645, 0.0000188, and 0.0000084, for
cluster sizes of 20, 40 and 60, respectively, thus
reflecting a good match between the estimated and
the true configurations for all the data sets simulated,
as shown in Figure 1.

From the simulation process, after identification,
the overall scale parameter l showed averaged values
of 85.23, 82.34, and 84.09 for cluster sizes of 20, 40
and 60, respectively. The largest differences between
true and estimated values for l in terms of absolute
residuals were 0.5124, 0.6378, and 0.2575, respectively,
for these cluster sizes. In terms of the marginal effects,
after identification, the original values in the 20 simu-
lated tables and for the three cluster sizes gave the fol-
lowing results: for at in the intervals ð0:5215; 2:2449Þ;
ð0:4227; 1:8333Þ and ð0:5046; 2:0201Þ; and for bk in
the intervals ð0:5233; 2:0540Þ; ð0:4214; 2:3968Þ and
ð0:4924; 2:2352Þ; respectively. The largest differences
between the true and estimated values, in terms of
absolute residuals, were 0.0133, 0.0106 and 0.0058 for
the row effects and 0.0115, 0.0121, and 0.0093 for the
column effects, in all the datasets, for the respective
cluster sizes. Thus, in all datasets, the estimated par-
ameter values were close to their true values, and
closer still for the larger cluster sizes.

Simulation study II
In this simulation experiment we investigate the influ-
ence of random zero entries on the stability of the

cluster structure in terms of the LBDA model. It is
important to note the difference between structural-
zero entries, which would be expected in a profile-by-
profile cross-classification table, and sampling-zero
entries, which are zero entries with expected values
that are not required to be zero (see, e.g., Baker,
Clarke, & Lane, 1985). In general, equating to zero a
number of entries in a block clustered table may ori-
ginate a new partition in a different cluster structure.
This is a well-known problem for sparse tables, and
does not affect the DA model alone.

Taking the previous comment into account, eighty
clustered contingency tables were obtained following
the above-described procedure, for T¼ 5 and K¼ 3
clusters, each with a cluster size of 100. Density values
of 0.60, 0.70, 0.80 and 0.90, respectively, were consid-
ered in each set of twenty simulated tables, by equat-
ing to zero a percentage of randomly selected cells
given by ð1�densityÞ � 100: These sparse contingency
tables were analyzed with the LBDA model, labeling
the elements in each estimated cluster as in the ori-
ginal nonsparse table. The labels of the elements in
each cluster were then tabulated, and corresponding
row and column clusters were labeled with the most
frequently observed label. Tables in which the number
of clusters was lower than in the original ones (i.e.,
different clusters with equal label value) were not con-
sidered for the Procrustes analysis.

For the twenty data sets analyzed in each density,
Table 1 shows the percentage of recovered partitions
in the same number of clusters (%ENC) as in the ori-
ginal nonsparse datasets, as well as the percentage of
classifications that, as well as presenting the same
number of clusters, also matched in terms of cluster
memberships (%WRC). The mean Procrustes error
(p) and related standard deviation (SD) for compar-
able configurations after identification are also shown.
Few block-shaped partitions were recovered in the
same number of clusters for fairly sparse tables, since
the estimated row and/or column partitions produced
a different number of clusters than for the corre-
sponding nonsparse data set. Nevertheless, the
Procrustes values were low in all comparable

Figure 1. Normalized Procrustes sum of squared errors
between simulated and recovered configurations, for the 20
contingency tables in the three cluster size conditions.

Table 1. Results for artificially sparse tables.
Density %ENC %WRC �p SD

60 45 25 0.00017 0.00020
70 50 25 0.00018 0.00031
80 70 60 0.03512 0.11332
90 85 80 0.04712 0.13035

For each density value the percentage of recovery classifications in the
same number of clusters as in the original nonsparse datasets (%ENC),
and the percentage of well recovered classifications (%WRC) are shown.
In terms of comparable configurations, the average Procrustes error (p)
and standard deviation (SD) values are shown.
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partitions, which indicates that in spite of the pres-
ence of zeros the model represents associations quite
well, and therefore preserves the odds ratio in data-
sets. Thus, for comparable configurations, the LBDA
model is shown to perform well.

Empirical data

LCDA model
The empirical data presented in the introduction are
now revisited. First, the personality data set was ana-
lyzed with the LCDA model of Vera et al. (2014) in a
two-step procedure for a Poisson sampling scheme. In
the first step, the LCDA model was run to cluster the
rows and represent associations between row clusters
and columns categories. The model with T¼ 6 clusters
in two dimensions was related to the lower BIC�

value. The 6� 32 configuration shown in Figure 2 is
difficult to interpret because most of the response cat-
egories are close together in the origin. Moreover, the
resulting contingency table in this model remains
sparse (density of 0.7657). In the second step, the
LCDA model was applied to cluster the columns of
the complete data set, and the lower BIC� value was
again obtained for K¼ 6 clusters (now in the col-
umns) and in two dimensions. The resulting 434� 6
configuration was largely uninterpretable.

LBDA model
The models with 2 to 20 classes for the rows, i.e., the
profiles based on gender and personality, and 2 to 5

classes for the columns, i.e., the mental disorder pro-
files, were investigated. First, the number of classes
was determined without geometric constraints, and
then the dimensionality was determined.

Table 2 shows the BIC� values obtained, where
the model with T¼ 5 and K¼ 3 is related to the
lower value. The BIC� values for M¼ 1, 2 were
13,543.96 and 13,561.35, respectively, which corrob-
orates the one dimensional solution. These values
are smaller than those corresponding to the solu-
tions derived by the LCDA model, as might be
expected. Specifically, the BIC� value of 14,410.09
was obtained for the T¼ 6, K¼ 32 model, where ZC

is the identity matrix on dimension J, and a corre-
sponding value of 27,937.09 was obtained for the
T¼ 434, K¼ 6 model, where ZR is the identity
matrix on dimension I.

Therefore we choose the model with five row
classes and three column classes in one dimension.
Table 3 shows the number of profiles and number of
participants in each class. Thus, the first row class
contains 267 different profiles, with a total of 893

Figure 2. Association plot for the six row-clusters and 32
columns in the LCDA model.

Table 2. BIC� values for the personality dataset and each
combination of row and column classes (2 to 20 classes for
the rows and 2 to 5 classes for the columns).

2 3 4 5

2 13,877.55 13,799.75 13,797.91 13,814.78
3 13,671.20 13,640.84 13,635.88 13,657.20
4 13,632.01 13,578.70 13,582.57 13,615.06
5 13,613.06 13,561.00 13,580.14 13,616.61
6 13,599.14 13,568.14 13,600.42 13,644.54
7 13,611.65 13,590.34 13,629.20 13,678.40
8 13,629.23 13,611.84 13,657.99 13,714.71
9 13,644.01 13,636.13 13,688.38 13,751.49
10 13,664.14 13,659.00 13,719.76 13,788.48
11 13,680.01 13,683.69 13,750.09 13,826.05
12 13,699.20 13,708.58 13,781.96 13,864.09
13 13,715.17 13,732.96 13,813.02 13,901.33
14 13,735.13 13,757.89 13,845.31 13,939.43
15 13,754.46 13,782.92 13,876.86 13,977.53
16 13,772.79 13,808.33 13,907.95 14,015.67
17 13,791.72 13,833.20 13,940.28 14,053.75
18 13,810.41 13,859.37 13,971.50 14,091.72
19 13,828.28 13,884.54 14,003.78 14,129.98
20 13,848.24 13,910.00 14,035.22 14,168.18

Table 3. Some characteristics of the five row-classes and the
three column-classes.
Row classes Column classes

Class rt nt Class rk nk
R1 267 893 C1 1 1266
R2 81 544 C2 7 1058
R3 16 318 C3 24 614
R4 67 961
R5 3 222

rt and rk give the number of membership profiles in class Rt or Ck, nt and
nk give the number of participants in the class.
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participants, while the first column class represents a
single profile with 1,266 participants.

For the rows (Figure 3), class R1 consists of 267
profiles and 893 subjects. Gender is distributed evenly
(51% female) and the personality variables are distrib-
uted likewise. Class R2 consists of 81 profiles and 544
subjects. This class has a slight female majority (59%),
scores low or medium on neuroticism, medium or

high on extraversion and conscientiousness and evenly
on agreeableness and openness. Class R3 consists of
16 profiles and 318 subjects. Gender (61% female)
scores low on neuroticism, high on extraversion and
conscientiousness, and medium or high on agreeable-
ness. Class R4 consists of 67 profiles and 961 subjects.
The class is mainly female (79%) scores high on neur-
oticism and low on extraversion and conscientious-
ness. Class R5 consists of three profiles and 222
subjects. This class consists exclusively of female sub-
jects (100%), scores low on neuroticism and high on
extraversion, agreeableness, and conscientiousness.

There is a striking similarity between these latent
classes and those obtained by Spinhoven, De Rooij,
Heiser, Smit, and Penninx (2012). Class R4 corre-
sponds to what Spinhoven et al. called the High
Overcontrollers, class R1 to the Low Overcontrollers,
class R3 to the Medium Resilients, and class R5 to the
High Resilients.

For the columns (Figure 4), the first class (C1) con-
sists of one profile with 1,266 subjects. This is the
profile with no disorders, i.e., the healthy profile. The
second class category (C2) category has seven profiles
and 1,058 subjects. It has zero probability for dys-
thymia and generalized anxiety disorder, and evenly
probability of presenting or not a major depressive
disorder, social phobia, and panic disorder. The third
category (C3) consists of 24 profiles with 614 subjects.
This class has a high probability of presenting each
disorder, i.e., this is the comorbid class.

The log of the b for column class C1 is log ðb1Þ ¼
2:93; for column class C2 it is log ðb2Þ ¼ �0:51; and
for column class C3 it is log ðb3Þ ¼ �2:42: The first
class is very dominant in terms of the main effect,
while the third class has a very low value. This
strongly influences the odds (see Equation (15)); thus
for every row class the odds are in favor of column
class C1, and never in favor of class C3.

Figure 5 gives the one-dimensional configuration,
showing that the subjects in row classes R4 and R1
are the most vulnerable to comborbid disorders (col-
umn class C3), whereas the subjects in row class R5
are probably healthy. In more detail, the odds ratios
(see Equation (16)) are only based on the distances,
which can be read from Figure 5. The odds of
patients with a row profile in class R4 being diag-
nosed with a profile of column class C3 rather than
one in column class C2 are 1.5 greater than those for
row class R1, 4.4 times greater than those for row
class R2, 6.0 times greater than those for row class
R3, and 8.7 times greater than those for row
class R5.

Figure 3. Representation of the probability of gender (1:
female, 2: male), and of answering 1: low, 2: medium, and 3:
high in personality variables, for each of the five row-classes,
given the class membership.

Figure 4. Probabilities of presenting (1) or not presenting (2)
each personality disorder, given the class membership.
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Similarly, the odds of patients with a row profile in
class R5 being diagnosed with the healthy profile (C1)
instead of the profile in column class C2 are 23.2
times greater than those for row class R4, 11.8 times
greater than those for row class R1, 2.6 times greater
than those for row class R2, and 1.7 times greater
than those for row class R3. Hence, the odds ratio can
be understood in terms of the distances, and the row
classes in the neighborhood of column classes have a
relatively high odds ratio for that class compared to
any other class.

Conclusion

In this article we propose a latent-block distance asso-
ciation model (LBDA) to analyze the relationships
between categorical variables. The model allows us to
block cluster the outcomes of two categorical variables
while simultaneously representing the row and col-
umn classes in a low-dimensional Euclidean space.
The estimated distances between cluster centers
inversely describe the association between the parti-
tioned variables.

It is assumed that the data are independent counts
related to two categorical response variables, or in
general, two different sets of response variables. In
this latter general framework, any combination of the
categories of the variables in a set is called a profile,
and the data consist of a profile-by-profile contin-
gency table. In this situation, contingency tables are

usually large, and often present many zero entries, i.e.,
the contingency table is sparse. When there are zero
entries in a contingency table, the estimated odds
ratios are either zero, infinity, or undefined, and
standard methods for categorical data analysis with
sparse tables may encounter estimation problems.

In this study, the GEM algorithm is employed for
parameter estimation, using a Poisson sampling
scheme. This model can be viewed as an extension of
the LCDA model (Vera et al., 2014), which facilitates
the representation of associations for tables with large
numbers of column modalities, possibly with many
zero entries. We propose the Bayesian information
criterion as a useful means of determining the number
of latent classes for the rows and for the columns, as
well as the dimensionality of the representation.

The well-known problem of the local optimum in
the likelihood equation, as well as a slow rate of con-
vergence and the dependence on appropriate initial
values of the GEM algorithm (McLachlan & Peel,
2000; Shireman, Steinley, & Brusco, 2016) are also
experienced with our algorithm. Therefore, the per-
formance of other co-clustering estimation proce-
dures within the DA framework, together with other
sampling schemes, constitute interesting areas for
future research. Another topic that remains to be
studied is that of another, closely-related model, in
which the association parameters are clustered (either
for the rows or columns separately or together as in
the present article) but the main effect parameters
are not.
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Appendix A

Estimation of posterior probabilities

Assume Ĥ ¼ fX̂; Ŷ; l̂; â; b̂; Ĉg is known (e.g., from
the previous iteration step). At the E-step, the expected
value of the log-likelihood (10) is given in terms
of E½zij;tkjF; Ĥ� ¼ P½zij;tk ¼ 1jF; Ĥ�:

Assuming independence between the row and column
indicator variables of F, since zij;tk ¼ zRitz

C
jk; we have that

E½zij;tkjF; Ĥ� ¼ E½zRit jF; Ĥ�E½zCjkjF; Ĥ�; that is, P½zRit ¼ 1; zCjk ¼
1jF; Ĥ� ¼ P½zRit ¼ 1jF; Ĥ�P½zCjk ¼ 1jF; Ĥ�: In this model the

conditional probabilities P½zRit ¼ 1jzcjk ¼ 1;F; Ĥ� ¼ P½zRit ¼
1jF; Ĥ�; and P½zCjk ¼ 1jzRit ¼ 1; F; Ĥ� ¼ P½zCjk ¼ 1jF; Ĥ�; tak-

ing into account the independence of zRit and zCjk for each

pair (i, j) (see, e.g., Agresti, 2013, Section 2.3.4).

Then, denote by fik ¼
PJ

j¼1 z
C
jkfij:, i ¼ 1; :::; I; k ¼ 1:::;K;

where Ẑ
C
is a known classification of the columns of F. If

fij 2 Ftk; the probability that fRi 2 FRt can be expressed as

hRt fRi jxt;Y; l; at; b
� �

¼
YK
k¼1

YJ
j¼1

l
fij
tk

fij!
exp �ltkð Þ

 !zCjk

¼
YK
k¼1

lfiktk exp �
XJ
j¼1

zCjkltk

0
@

1
A

YJ
j¼1

fij!
� �zCjk

¼
YK
k¼1

XJ
j¼1

zCjkltk

0
@

1
A

fik

exp �
XJ
j¼1

zCjkltk

0
@

1
A

XJ
j¼1

zKjk

0
@

1
A

fikYJ
j¼1

fij!
� �zKjk

¼
YK
k¼1

_lfik
tk exp � _ltkð Þ

XJ
j¼1

zCjk

0
@

1
A

fikYJ
j¼1

fij!
� �zCjk

;

(A.1)

which except for a constant term, is a product of Poisson
distributions of parameter _ltk ¼

PJ
j¼1 z

C
jkltk: Then, since it

is unknown in advance to which block a row belongs, the
p.d.f of the random variable fRi is a mixture distribution
given by

gR fRi jX;Y; l; a;b;C
� � ¼XT

t¼1

cth
R
t fRi jxt;Y;l; at; b
� �

; (A.2)

and therefore, the posterior probabilities are expressed as

pRit X̂; Ŷ; l̂; â; b̂; Ĉ
� �

¼
ĉth

R
t fRi jx̂t; Ŷ; l̂; ât; b̂
� �

gR fRi jX̂; Ŷ; l̂; â; b̂; Ĉ
� � : (A.3)

Equivalently, given Ẑ
R
; if f ij 2 Ftk; the posterior prob-

ability that fCj belongs to FCk is expressed as

pCjk X̂; Ŷ; l̂; â; b̂; Ĉ
� �

¼
ĉkh

C
k fCj jX̂; ŷk; l̂; â; b̂k

� �
gC fCk jX̂; Ŷ; l̂; â; b̂; Ĉ
� � ; (A.4)

where denoting by ftj ¼
PR

i¼1 zitfij; and €ltk ¼
PI

i¼1 z
R
itltk;

the p.d.f. of the variable fCj is given by

gC fCj jX;Y; l; a; b;C
� �

¼
XK
k¼1

ckh
C
k fCj jX; yk; l; a; bk
� �

; (A.5)

with

hCk fCj jX; yk; l; a; bk
� �

¼
YT
t¼1

YI
i¼1

l
fij
tk

fij!
exp ltkð Þ

 !zRit

¼
YT
t¼1

€l
ftj
tk exp �€ltkð Þ

PI
i¼1

zRit

 !ftj QI
i¼1

fij!
� �zRit

:
(A.6)

Therefore, at the E-step, E½zij;tkjF; Ĥ� ¼ pRitðĤÞpCjkðĤÞ:
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Variational EM approach

The same estimators are found if the variational EM
approximation is employed. As shown by Govaert and
Nadif (2014), the variational EM criterion replaces the
maximization of the log-likelihood by that of the fuzzy
criterion,

G ~P
R
; ~P

C
;H

� �
¼

XI
i¼1

XT
t¼1

~pR
it log ctð Þ þ

XJ
j¼1

XK
k¼1

~pC
jk log ckð Þ

þ
XI
i¼1

XJ
j¼1

XT
t¼1

XK
k¼1

~pR
it~p

C
jk log htk fijjxt; yk; l; at;bk

� �� �
þH ~P

R
� �

þH ~P
C

� �
;

(A.7)

where Hð ~PRÞ ¼ �PI
i¼1

PT
t¼1 ~p

R
it log ð~pR

itÞ and Hð ~PCÞ ¼
�PJ

j¼1

PK
k¼1 ~p

C
jk log ð~pC

jkÞ are the entropy of distributions

~P
R
and ~P

C
respectively. The maximization of this function

is given in an alternating estimation procedure as in the
GEM algorithm. In one step, G is maximized in terms of
~P
R
and ~P

C
; for fixed values of H; and in a second step, G

is maximized in terms of H for fixed values of ~P
R
and ~P

C
;

in a M-step that is equivalent to that of the traditional
GEM algorithm. These fuzzy classification matrices are esti-
mated by means of the following alternating estimation pro-

cedure, in which ~P
R
is estimated for fixed values of ~P

C
;

and vice versa. To estimate ~P
R
; given ~̂P

C
; the only item

that must be maximized is
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(A.8)

where ĥtk ¼ ðx̂t; ŷk; l̂; ât; b̂kÞ; ait ¼
PJ

j¼1

PK
k¼1 ~̂p

C
jk

log ðhtkðfijjĥtkÞÞ þ log ðĉtÞ; and si are the Lagrange multi-

pliers related to the constraints
PT

t¼1 ~p
R
it ¼ 1; 8i: It can be

easily shown that
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� �� �
þ log ĉtð Þ
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 !

¼
ĉt
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� �

gR fRi jX̂; Ŷ; l̂; â; b̂; Ĉ
� � ¼ p̂R

it Hð Þ: (A.9)

A similar result can be obtained for ~̂p
C
jk:

Appendix B

Parameter estimation at the M-step using the
Newton–Raphson procedure

Denoting by ~f tk ¼
PI

i¼1

PJ
j¼1 ẑ ij;tkfij; the entries of the

T�K matrix ~FTK ¼ ZR 0
FZC; we define
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k¼1

~f tk;
~f t: ¼
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XT
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and k ¼ logl; kRt ¼ log at; and kCk ¼ logbk:
We wish to maximize
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(B.1)

Taking into account that

XT
t¼1

XK
k¼1

~f tkd
2
tk xt; ykð Þ ¼

XT
t¼1

~f t:x
0
txt þ

XK
k¼1

~f :ky
0
kyk

�2
XT
t¼1

XK
k¼1

~f tkx
0
tyk;

(B.2)

then, (B.1) can be written as,

q X;Y;l; a; bjẐ sð Þ
� �

¼ ~f ::kþ
XT
t¼1

~f t:k
R
t þ

XK
k¼1

~f :jk
C
k

�trX0DRX�trY0DCYþ 2trX0~FTKY

�
XT
t¼1

XK
k¼1

Mtk

(B.3)

where DR ¼ diagð~f 1:; :::;~f T:Þ and DC ¼ diagð~f :1; :::;~f :KÞ are
diagonal matrices, and

Mtk ¼ IJĉtkltk ¼ IJĉtk exp kþ kRt þ kCk � x0txt � y0kyk þ 2x0tyk
� �

:

The above function is similar to that of the DA model
(De Rooij & Heiser, 2005), except for the last term of (B.3),
which is a weighted sum that depends on previously esti-
mated values for the T�K unconditional probabilities.
Compared to the LCDA model (Vera et al., 2014), this term
now depends on the classification of the rows and of the
columns of F. Therefore, in the s-th iteration at the M-step,
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a weighted generalization of the procedure followed in Vera
et al. (2014) is employed for parameter estimation.

Using the Newton-Raphson method the parameter values
are estimated in an iterative procedure. The updates in the
(sþ 1)th iteration are as follows:

k sþ1ð Þ ¼ k sð Þ þ
~f ::�M:: k

sð Þð Þ
M:: k

sð Þð Þ (B.4)

kTt
sþ1ð Þ ¼ kTt

sð Þ þ
~f t:�Mt: kTt

sð Þ
� �

Mt: kTt
sð Þ

� � (B.5)

kCk
sþ1ð Þ ¼ kCk

sð Þ þ
~f :k�M:k kCk

sð Þ
� �

M:k kCk
sð Þ

� � (B.6)

x sþ1ð Þ
tm ¼ x sð Þ

tm þ
2
PK
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� �
x sð Þ
tm�y sð Þ
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2
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� 4

PK
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Mtk x sð Þ
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� �2
(B.7)

y sþ1ð Þ
km ¼ y sð Þ

km þ
2
PT
t¼1

~f tk �Mtk

� �
y sð Þ
km�x sð Þ

tm

� �

2
PT
t¼1

Mtj � ~f tc

� �
� 4

PT
t¼1

Mtk y sð Þ
km�x sð Þ
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� �2 :
(B.8)

where Mt: ¼
PK

k¼1 Mtk;M:k ¼
PT

t¼1 Mtk; and M:: ¼PT
t¼1

PK
k¼1 Mtk:

Initial estimates for the iterative procedure can be given
using Becker’s (1990) procedure as described in
Appendix C.

Appendix C

Initial estimates and identification

Besides the classification of the rows, Ẑ
R
and of the col-

umns Ẑ
C
; maximum likelihood estimators for Ĥ ¼ ðX̂; Ŷ;

l̂; â; b̂; ĉÞ are obtained at the end of the GEM procedure
for given values of T, K and M. Parameter estimates in dis-
tance association models suffer from indeterminacies. To
obtain an identified solution the parameters are expressed
as a function of singular values and singular vectors, since
the singular value decomposition is unique and is character-
ized by MðM þ 2Þ constraints.

Denoting by l̂TK ¼ ðl̂tkÞ the matrix of estimated
expected frequencies (2), let us denote by GTK ¼ ðgtkÞ; the
matrix of entries gtk ¼ log ðl̂tkÞ: Then, we take ��g as the glo-
bal mean of the entries of GTK ; and �g t and �gk as the mar-
ginal means for the t-th row and for the k-th column of
GTK respectively. Then define ~k ¼ ��g ; ~k

R
t ¼ �g t���g ; ~k

C
c ¼

�gk���g ; and D the matrix of entries dtk ¼ gtk�~k�~k
R
t �~k

C
k :

From the singular value decomposition of D ¼ UCK0; it fol-
lows that X

ffiffiffi
2

p ¼ UC1=2 and Y
ffiffiffi
2

p ¼ C1=2K0; and denoting
by dx;t ¼

P
m x2tm; and dy;k ¼

P
m y2km; identified parameters

are obtained;

_k
R
t ¼ ~k

R
t þ dx;t� log Ictð Þ (C.1)

_k
C
k ¼ ~k

C
k þ dy;k� log Jckð Þ (C.2)

k ¼ ~k þ 1
T

XT
t¼1

_k
R
t þ

1
K

XK
k¼1

_k
C
k (C.3)

kRt ¼ _k
R
t �

1
T

XR
t¼1

_k
R
t (C.4)

kCk ¼ _k
C
k�

1
K

XK
k¼1

_k
C
k : (C.5)

The mean of the values of ~k
R
t ; t ¼ 1; :::;T and of ~k

C
k ; k ¼

1; :::;K is equal to zero, and gtk ¼ kþ ðkRt þ log ðIcRt ÞÞ þ
ðkCt þ log ðJcCk Þ�d2tkðxt; ykÞ: Then, after the identification
step the model is characterized by 2þMðM þ 2Þ further
constraints. This procedure can also be used to determine
the initial solution at the M-step in the GEM algorithm
using GTK ¼ log ð~FTKÞ; where ~FTK ¼ ZR 0

FZC are the values
associated with the given classifications at the E-step.

Appendix D

Algorithm flow

From a computational standpoint and to speed up the con-
vergence of the GEM procedure, a multicycle GEM algo-
rithm is employed for parameter estimation. First, an E-step
related to the classification of the rows, given the previous
classification for the column is calculated, followed by a
partial update of the M-step. Then a similar procedure for
the columns is followed using previously updated parameter
values, the M-step is performed for the estimated classifica-
tions, and the final log-likelihood is evaluated. Because of
the well-known problem of local minima of the EM algo-
rithm, the latter is usually applied for a number of random
starts or from a known optimal initial solution. Here, only
nonempty initial classifications of the I row elements into T
groups and of the J column elements into K groups are
considered. In summary, the steps in the estimation pro-
cess are:

1. An initial classification Ẑ
ð0Þ

is given and initial param-
eter values Hð0Þ are calculated maximizing (B.3). Then
the parameters are corrected in terms of identification.

2. At the sth step and from previously estimated values of

Ẑ
ðs�1Þ

and Ĥ
ðs�1Þ

; a multicycle estimation procedure is

employed. First, the expected value Ẑ
RðsÞ

¼
E½zRit jF;Hðs�1Þ� is calculated. Then, (B.3)) is maximized

with respect to H for the values of Ẑ
RðsÞ

and Ẑ
Cðs�1Þ

to
obtain a partial update of H at the sth iteration,

denoted by Ĥ
ðs0Þ

: Now, Ẑ
CðsÞ

¼E½zCjkjF;Hðs0Þ� is obtained

for the given value of Ẑ
RðsÞ

; and the final value for Ĥ
ðsÞ

is obtained using Ẑ
RðsÞ

and Ẑ
CðsÞ

by again maximizing
(B.3). Then, the parameters are corrected in terms of
the identification purpose.

3. The above alternating step is repeated in an iterative
cycle until the convergence is achieved, usually when
two consecutive values of the log-likelihood (B.3) do
not change more than a small, previously determined,
value usually 10�8:
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For identified values for Ĥ; the final posterior probabil-
ities p̂R

i ¼ ðp̂R
i1; :::; p̂

R
iTÞ0 that fRi 2 FRt ; i ¼ 1; :::; I; t ¼ 1; :::;T;

and p̂C
j ¼ ðp̂C

j1; :::; p̂
C
jKÞ0 that fCj 2 FCk ; j ¼ 1; :::; J; k ¼ 1; :::;K;

are obtained by (A.3) and (A.4), respectively. Then, at
the end of the iterative procedure the optimal block-
shaped partition is given by the well-known Bayes
(optimal) rule defined by ẑ it;jk ¼ 1 if t ¼ argmaxðp̂R

i Þ and

k ¼ argmaxðp̂C
j Þ; and zero otherwise. When the max-

imum of posterior probabilities are related to more
than one latent class the corresponding row and/or col-
umn category can be assigned arbitrarily to one of the
classes for which the corresponding posterior probabil-
ities are equal to the maximum value (McLachlan &
Peel, 2000).
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