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Chapter 9

Machine learning analysis of gene
expression data reveals novel diagnostic
and prognostic biomarkers and
identifies therapeutic targets for soft
tissue sarcomas

This chapter is based on the publication: van IJzendoorn DGP, Szuhai K, Briaire-de
Bruijn IH, Kostine M, Kuijjer ML, Bovée JVMG. Machine learning analysis of gene ex-
pression data reveals novel diagnostic and prognostic biomarkers and identifies therapeutic
targets for soft tissue sarcomas. PLOS Comput Biol. 2019;15: e1006826.
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9.1 Abstract

Based on morphology it is often challenging to distinguish between the many different soft
tissue sarcoma subtypes. Moreover, outcome of disease is highly variable even between
patients with the same disease. Machine learning on transcriptome sequencing data could
be a valuable new tool to understand differences between and within entities. Here we
used machine learning analysis to identify novel diagnostic and prognostic markers and
therapeutic targets for soft tissue sarcomas.

Gene expression data was used from the Cancer Genome Atlas, the Genotype-Tissue
Expression data and the French Sarcoma Group. We identified three groups of tumors
that overlap in their molecular profile as seen with unsupervised t-Distributed Stochastic
Neighbor Embedding clustering and a deep neural network. The three groups corre-
sponded to subtypes that are morphologically overlapping. Using a random forest algo-
rithm, we identified novel diagnostic markers for soft tissue sarcoma that distinguished
between synovial sarcoma and MPNST, and that we validated using qRT-PCR in an inde-
pendent series. Next, we identified prognostic genes that are strong predictors of disease
outcome when used in a k-nearest neighbor algorithm. The prognostic genes were further
validated in expression data from the French Sarcoma Group. One of these, HMMR,
was validated in an independent series of leiomyosarcomas using immunohistochemistry
on tissue micro array as a prognostic gene for disease-free interval. Furthermore, recon-
struction of regulatory networks combined with data from the Connectivity Map showed,
amongst others, that HDAC inhibitors could be a potential effective therapy for multiple
soft tissue sarcoma subtypes. A viability assay with two HDAC inhibitors confirmed that
both leiomyosarcoma and synovial sarcoma are sensitive to HDAC inhibition.

In this study we identified novel diagnostic markers, prognostic markers and thera-
peutic leads from multiple soft tissue sarcoma gene expression datasets. Thus, machine
learning algorithms are powerful new tools to improve our understanding of rare tumor
entities.

9.2 Introduction

Soft tissue sarcomas are rare malignancies arising in the tissues that connect, support and
surround other body structures, such as fat or muscle (1). Soft tissue sarcomas annually
affect approximately one per 50 million population, and represent <1% of all malignant
tumors (2). Soft tissue sarcomas can display different lines of differentiation, and as
such are classified based on the tissue that they resemble most. More than 50 different
subtypes have been described in the WHO classification. Even though these subtypes
differ in prognosis and treatment, there is considerable morphological overlap between
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the different subtypes, making differential diagnosis both difficult and important. For
instance, synovial sarcoma (SS) and malignant peripheral nerve sheath tumor (MPNST)
can be morphologically identical, while also their immunohistochemical profile can overlap,
making molecular testing for the presence of the SS specific SS18-SSX fusion essential
for the final diagnosis (which is laborious and time consuming). Over the last years
there have been many large genetic studies generating open accessible gene expression
datasets of sarcomas. One of the biggest soft tissue sarcoma sequencing projects to date
is the Cancer Genome Atlas (TCGA), which recently published a detailed analysis of
the driving mutations in these cancers (3). This data can be leveraged and analyzed
with machine learning methodologies to better understand soft tissue sarcoma biology.
Machine learning has been used previously to study gene expression patterns. Especially
unsupervised algorithms, such as Principal Component Analysis (PCA) and more recently
t-Distributed Stochastic Neighbor Embedding (t-SNE), have been successfully used in
gene expression studies to classify cancer patients (4). Moreover, for classification of
tumors, supervised algorithms such as random forest have been used previously. Gene
expression signatures were shown to be effective at classifying breast cancer (5). Later,
it was shown that microRNA expression patterns could be used to distinguish between
a number of different tumor subtypes, ranging from brain to colorectal cancer (6). More
recently, random forest analyses were used on DNA-methylation data to classify different
brain tumor subtypes. The advantage of the latter is that it can be performed on paraffin
embedded material (7, 8).

Previously the French Sarcoma Group used a machine learning approach on a large
cohort of soft tissue sarcomas to verify a set of 67 genes (CINSARC), identified using
differential expression analysis, that effectively predicted metastatic outcome in soft tissue
sarcomas (9). The identified CINSARC genes were more recently found to have prognostic
value for other tumor types as well, such as breast cancer (10). The CINSARC genes
are mostly associated with cell proliferation and therefore lack tumor subtype specificity.
Another approach to identify prognostic genes was used by the Pathology Atlas to identify
tumor subtype specific prognostic genes. However, soft tissue sarcomas were not analyzed
in this study (11).

In this study we used machine learning on open accessible expression data from soft
tissue sarcomas to elucidate differences between and within the different entities. First,
we investigated the overlap of gene expression patterns of soft tissue sarcomas with gene
expression patterns of human tissues without malignancies from the GTEx project (12)
using clustering with PCA and a deep neural network. Second, we identified novel di-
agnostic markers using a random forest approach. Third, we identified tumor subtype
specific prognostic genes and showed, using a k-nearest neighbor analysis, that the iden-
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tified prognostic genes are predictive of the metastasis-free interval. Last, we analyzed
differential expression in the context of a regulatory network to identify novel therapies.
We demonstrate that machine learning can be a powerful tool to identify novel diag-
nostic and prognostic biomarkers, as well as therapeutic targets, which will improve our
understanding of rare soft tissue sarcomas.

9.3 Materials and methods

9.3.1 Expression data

The Cancer Genome Atlas (TCGA) RNA-seq count data was downloaded (February 2018)
from the NIH GDC data portal (portal.gdc.cancer.gov/). All clinical data correspond-
ing to the soft tissue sarcoma samples in the TCGA was recently revised by the Cancer
Genome Atlas Research Network which resulted in 206 revised cases with clinical data
(from the original 261 cases in the TCGA) (3). Soft tissue leiomyosarcoma (STLMS)
was the most common sarcoma type with 53 samples and included cases of grade 1
(n=11), grade 2 (n=35) and grade 3 (n=7) according to the Fédération Nationale des
Centres de Lutte Contre le Cancer (FNCLCC) grading system. In addition, there were
27 uterine leiomyosarcoma (ULMS) cases. Furthermore, the TCGA included 50 dedif-
ferentiated liposarcomas (DDLPS), 44 undifferentiated pleomorphic sarcomas (UPS), 17
myxofibrosarcomas (MFS), 10 synovial sarcomas (SS, both monophasic and biphasic)
and 5 malignant peripheral nerve sheath tumors (MPNST). Second, the Genotype-Tissue
Expression (GTEx) data (v7) was downloaded (gtexportal.org) with corresponding an-
notations. The data consisted of transcriptome sequencing read counts for 9662 samples.
The GTEx data included expression data for 31 different tissue types (S1 table available
online). Third, DDLPS (n=62) and leiomyosarcoma (LMS) (n=84) expression array data
from the French Sarcoma Group was downloaded from GEO (ncbi.nlm.nih.gov/geo),
deposited under accession number GSE21050 (public in June 2010), using GEOquery
(v3.6) in R (13).

9.3.2 Normalization of expression data

Genes with low expression (transcriptome sequencing read counts: cpm < 2; expression
array: relative measured unit < 2) in all samples were removed. Thereafter, transcriptome
sequencing read count and expression array data were normalized using Limma (v3.6) R
package. For normalization, the weighted trimmed mean of M-values was used (14). Last,
the data was log2 transformed and analyzed further. When indicated, data was combined
and normalized. Where indicated samples were randomly subdivided into groups using

gtexportal.org
 https://doi.org/10.1371/journal.pcbi.1006826
 https://doi.org/10.1371/journal.pcbi.1006826
ncbi.nlm.nih.gov/geo
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the "sample" function in R.

9.3.3 Machine learning analysis

For the deep neural network TensorFlow (v1.6) was used in combination with the Keras
(v2.1.4) R package to design a neural network with one converging invisible layer. t-SNE
was performed using the Rtsne (v0.13) R package. For t-SNE analysis a perplexity of 60
and a theta of 0.5 were used. Random forest analysis was performed on the normalized
TCGA expression data. Data were analyzed according to Breiman’s random forest al-
gorithm, using the randomForest (v4.6) R package. Variable importance in the random
forest analysis was calculated based on the Gini index, which is a measurement of vari-
ance for a given variable. For k-Nearest Neighbor analysis the Caret (v6.0) R package was
used. To resample the data, the "repeatedcv" option was used and k=1-30 were tested.

9.3.4 Enrichment analysis

The EnrichR (v1.0) R package was used for Gene Ontology (GO) term enrichment anal-
ysis. GO terms were selected from the "GO biological processes 2015" database and had
adjusted p values lower than 1e-4.

9.3.5 Kaplan-Meier analysis

As readout disease-free interval (DFI) was used, which was previously described as a
strong measurement of outcome in soft tissue sarcomas (15). DFI is the time until relapse,
including distant metastasis and loco-regional recurrence. Prognostic genes were identified
using the maxstat (v0.7) R package. Maxstat determined the maximal rank statistic using
a LogRank analysis, to determine the optimal gene expression cut-off. P values were
calculated according to the Streitberg algorithm (16). Version 18 of the Human Protein
Atlas data was downloaded to cross-check prognostic genes identified in other tumor types
(proteinatlas.org/about/download). This dataset included genes and their association
with disease outcome in common cancer types.

9.3.6 Immunohistochemistry and analysis

Immunohistochemistry (IHC) was performed on one existing tissue microarrays (TMA)
and one newly constructed TMA. The TMA was constructed as previously described by
our group (17). Clinicopathological details are summarized in S2 Table available online.
All the specimens were coded and handled according to the ethical guidelines described
in the Code for Proper Secondary Use of Human Tissue in the Netherlands of the Dutch

proteinatlas.org/about/download
 https://doi.org/10.1371/journal.pcbi.1006826
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Federation of Medical Scientific Societies as reviewed and approved by the LUMC ethical
board (B17.036). In total, seventy leiomyosarcomas could be scored for HMMR protein
expression and had available clinicopathological information. The cases originated from
two cohorts: the first contained 32 cases that could be scored and has been previously de-
scribed by our group (17), the second consisted of 38 cases that could be scored. IHC was
performed simultaneously on all cases to enable comparison between the cohorts. The 70
cases consisted of 43 females and 27 males, with a mean age of 62 years at diagnosis. Five
patients had uterine LMS, the rest were soft tissue LMS. Soft tissue LMS were graded ac-
cording to the FNCLCC grading system, including 10 grade 1, 23 grade 2, 31 grade 3 and
for 1 grading was not available. HMMR was detected with a polyclonal rabbit antibody
(Sigma-Aldrich; HPA040025). The HMMR antibody was titrated on normal testis tissue,
the optimal antibody dilution was found to be 1:1000 in PBS/1%BSA/5%/non-fat dry
milk. Microwave antigen retrieval was performed using citrate (pH 6.0) and immunohis-
tochemistry was performed according to standard protocols (18). Scoring was performed
using ImageJ (v1.5) in which color deconvolution was used to separate haematoxylin and
3,3’-Diaminobenzidine (DAB) staining. Haematoxylin was used to identify the core and
intensity of the DAB was quantified and compared between cores. A cut-off score of 20
was used to define high and low expressing cores. The second cohort was also scored
manually by a pathologist (JVMGB) blinded towards clinicopathological data and results
of the automatic scoring, in which staining intensity was scored as weak (1), moderate
(2) or strong (3). For the analysis, the average of the three cores per tumor were used.

9.3.7 Quantitative reverse transcriptase Polymerase Chain Reac-

tion (qRT-PCR)

Frozen tissue from five SS and four MPNSTs was retrieved from our archive and anonymized.
All selected MPNSTs were either associated with a nerve, were NF1 related or had re-
ported loss of H3K27me3 at immunohistochemistry (19, 20). All selected synovial sarco-
mas were proven to be positive for the SS18-SSX translocation. RNA was isolated using
the Direct-zol RNA isolation kit (Zymo research). cDNA was made using iScript cDNA
Synthesis Kit (Bio-Rad). Real-time PCR was performed using Sybr Green (Bio-Rad) on
a CFX384 real-time PCR Detection System (Bio-Rad). Real-time PCR Ct values were
normalized to housekeeping gene HPRT1 expression. The used primers, noted as 5’ to
3’, are listed in table 9.1.



Chapter 9 173

NEURL1_Fw GCATCCTCGGCTCCACTATC
NEURL1_Rv CTGAGCAAGGGGTCAGACAG
SCD_Fw CTTGCGATATGCTGTGGTGC
SCD_Rv CCGGGGGCTAATGTTCTTGT
NPAS1_Fw CAGCTGCTACCAGTTTGTCCAC
NPAS1_Rv ACCCTTGTCCAGCAAGTCCAC
HPRT1_Fw TGACACTGGCAAAACAATGCA
HPRT1_Rv GGTCCTTTTCACCAGCAAGCT

Table 9.1: Used primers.

9.3.8 Cell growth and viability assay

Cells were cultured in RPMI 1640 medium (Gibco) supplemented with 10% FBS. Cells
were tested for mycoplasma and Short Tandem Repeats were characterized for authen-
tication. One SS cell-line was used (SYO-1) (21). Three LMS cell lines were included
(JA192, LMS04 and LMS05). Quisinostat (Selleckchem) and trichostatin A (Selleckchem)
were used for HDAC inhibition. Both compounds were dissolved in DMSO. Cells were
seeded in triplicates on a 96-well plate and compounds were added after 24 hours. Cell
viability was measured after 72 hours incubation with the compounds by adding Presto-
Blue Cell Viability Reagent (Life Technologies) according to the manufacturers protocol.
Fluorescence was measured reading the plate at 590 nm on a fluorometer (Victor3V,
1420 multi-label counter). Viability was determined in three independent experiments in
triplicate.

9.3.9 Connectivity Map analysis

For Connectivity Map (CMAP) analysis the regulatory network was first determined using
expression2kinase (maayanlab.net/X2K) based on the differentially expressed genes that
were identified. Potential targeted therapies were identified based on the proteins in the
regulatory network. The pipeline for identification of transcription factors and kinases is
described in literature (22).

9.3.10 Statistical software and figures

R statistical software (v3.4.4) was used for all statistical tests (13). Network plots were
generated with igraph (v1.2.1) R package and formatted with Cytoscape (v3.6.0) (23).
Chord diagrams were generated with GOplot (v1.0.2) (24). All further graphs were gen-
erated with R package ggplot2 (v2.2.1). Cox regression was performed with the "coxph"
function from the survival (v2.43) R package.

maayanlab.net/X2K
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abbreviation histology cases
DDLPS dedifferentiated liposarcoma 50
MFS myxofibrosarcoma 17
MPNST malignant peripheral nerve sheath tumor 5
SS synovial sarcoma 10
STLMS leiomyosarcoma - soft tissue 53
ULMS leiomyosarcoma - gynecologic 27
UPS undifferentiated pleomorphic sarcoma 44

Table 9.2: Soft tissue sarcoma subtypes in the TCGA.

9.4 Results

9.4.1 Results

9.4.2 Soft tissue sarcomas show different molecular profiles

Since soft tissue sarcomas are histologically classified according to their line of differen-
tiation, we compared gene expression data from 206 soft tissue sarcoma samples in The
Cancer Genome Atlas (TCGA) (table 9.2) with normal tissues from the Genotype-Tissue
Expression (GTEx) project. For this we used a deep neural network approach, enabling
us to find similarities between normal tissues and tumors identified through hidden layers
that would not be obvious in a direct comparison (such as a PCA analysis). First the
TCGA and GTEx data were combined and normalized together (supplementary figure
S1a available online). Principal components were calculated for all samples, the principal
components (9868 in total) for the GTEx data was used to train a neural network re-
sulting in a prediction accuracy of 98% (supplementary figure S1b available online). The
neural network was then applied to the principal components from the TCGA sarcoma
data.

As might be expected, ULMS was the only sarcoma subtype showing overlap with
the expression patterns of normal uterus tissue as well as normal cervical tissue (supple-
mentary figure S1c available online). Moreover, STLMS was the only subtype showing
similarity to blood vessel, which may be explained by the fact that a subset of STLMS
are presumed to arise from small to medium sized veins (25). However, both ULMS and
STLMS also showed overlap with skin and brain tissue which is more difficult to under-
stand at this point. Interestingly, we found large similarities between MPNST and SS,
showing expression patterns very similar to tissue derived from the nervous system (brain
and nerve). In addition SS showed some overlap with salivary gland which might be ex-
plained by the fact that 2 out of 10 SS were biphasic, of which the glandular epithelial
elements may have caused the found similarity with salivary gland (figure 9.1a). Sur-

 https://doi.org/10.1371/journal.pcbi.1006826
 https://doi.org/10.1371/journal.pcbi.1006826
 https://doi.org/10.1371/journal.pcbi.1006826
 https://doi.org/10.1371/journal.pcbi.1006826
 https://doi.org/10.1371/journal.pcbi.1006826
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prisingly, MFS, and to a lesser extent UPS, showed a large overlap with normal adipose
tissue. The overlap with adipose tissue in MFS and UPS is larger than found in DDLPS,
which could be due to the selective sampling of DDLPS including the dedifferentiated
component. For the other soft tissue sarcoma subtypes similarities were more dispersed
since no specific normal tissue showed a large overlap with the tumor gene expression
(supplementary figure S1c available online).

To study the gene expression patterns of soft tissue sarcomas the TCGA expression
data was normalized and differentially expressed genes (DEGs) were identified (Benjamini-
Hochberg adjusted p value < 0.05 and logFC > 0) for all soft tissue sarcoma subtypes
using Limma and Voom, comparing the subtypes to the other samples (supplementary
figure S1d available online). The number of DEGs per subtype ranged from 331 to 7784
(in STLMS and DDLPS respectively, 3156 DEGs on average) (supplementary figure S1e
available online). The DEGs were used to generate a heat map showing differences be-
tween soft tissue sarcoma subtypes. MFS and UPS showed the largest overlap in DEGs
(1201 genes) followed by STLMS and ULMS (210 genes) (figure 9.1b). Using EnrichR we
tested for functional enrichment of the DEGs to identify GO terms associated with each
of the subtypes. The DEGs from STLMS and MPNST showed a clear relation to differ-
entiation; GO terms for STLMS related to muscle development and for MPNST the GO
terms related to neuronal development. The top GO terms associated with ULMS were
not related to muscle differentiation, but with cell cycle processes. However, significant
GO terms associated with muscle differentiation were identified such as "muscle system
process" (adjusted p=6e-4) and "muscle contraction" (adjusted p=3e-3) matching with
the GO terms found in STLMS, which suggests that proliferation was more pronounced
than differentiation in the ULMS compared to the STLMS samples. We did not identify
GO terms related to differentiation for DDLPS, but, as can be seen in the heat map,
we found that many of the identified GO terms associated with DDLPS, UPS and MFS
overlapped. These included GO terms associated with the immune system which may
reflect the presence of an inflammatory infiltrate in these tumors (figure 9.1b).

9.4.3 A random forest approach can differentiate between the

soft tissue sarcoma subtypes

To investigate the similarities of the molecular profiles of the different soft tissue sarcoma
subtypes we performed a t-SNE analysis on the expression data (supplementary figure
S2a available online). The average of the first two components for the different subtypes
is shown in figure 9.2a. In the t-SNE analysis, three clusters of soft tissue sarcoma
subtypes were identified. MFS, UPS and DDLPS clustered together, in line with the
undifferentiated sometimes pleomorphic morphology of these tumors. ULMS and STLMS

 https://doi.org/10.1371/journal.pcbi.1006826
 https://doi.org/10.1371/journal.pcbi.1006826
 https://doi.org/10.1371/journal.pcbi.1006826
 https://doi.org/10.1371/journal.pcbi.1006826
 https://doi.org/10.1371/journal.pcbi.1006826
 https://doi.org/10.1371/journal.pcbi.1006826
 https://doi.org/10.1371/journal.pcbi.1006826
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Figure 9.1: Relation to normal tissue and molecular profiles of soft tissue sarcomas.
(a) A deep neural network was trained on GTEx expression data from normal tissue
to investigate differentiation in the soft tissue sarcoma subtypes. MPNST and SS both
showed the most specific differentiation and showed largest similarity with brain and
nerve gene expression profiles. (b) Heat map plot of the identified signature genes in
the different soft tissue sarcoma subtypes. The largest overlap in signature genes is seen
between UPS and MFS (1201). Enriched GO terms in each of the signature genes are
shown in the right panel. All GO terms have an adjusted P value lower then 1e-4.
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also cluster together. The third cluster consisted of MPNST and SS, for which distinction
based on morphology alone is often impossible.

As a deep neural network is not informative on the biological differences between these
subtypes, we therefore used a random forest machine learning approach to identify subtype
defining genes. The samples were divided into test and training groups at random. The
resulting random forest reached a subtype prediction accuracy of over 95% for all groups,
except in differentiating between MFS and UPS (where it reached an accuracy of 88%)
(figure 9.2b).

Differentially expressed genes (adjusted p<0.05) were used to generate the random
forest. Important genes were identified based on their variable importance index (figure
9.2c). Top genes in group 1 (STLMS and ULMS) included HOXA11 and its anti-sense
RNA (HOXA11-AS ) were identified. HOXA11 and HOXA11-AS have both been de-
scribed to be important regulators of uterine development and homeostasis (26). For
group 2 (MPNST and SS) genes related to neural differentiation such as NEURL1 and
NPAS1 were identified, which were found to be upregulated in synovial sarcomas, while
SCD, an enzyme involved in fatty acid biosynthesis, is more highly expressed in MPNST.
For the third group (DDLPS, UPS and MFS), we first compared DDLPS with the UPS
and MFS together. As previously described and already widely implemented in routine
diagnostics, expression of MDM2 and CDK4 (which is part of the 12q13-15 amplification
characteristic of DDLPS) were identified as diagnostic markers to identify DDLPS (27).
FRS2, TSPAN31 and CTDSP2 are located near the amplified MDM2 on chromosome 12
and therefore most likely also part of the same amplified region that characterizes DDLPS.
In figure 9.2d, we visualized gene expression levels of the genes with the highest variable
importance scores for each of the four comparisons. JADE2 showed the highest vari-
able importance score for the differentiation between UPS and MFS although expression
still somewhat overlapped, confirming the large molecular and morphological similarity
between the two entities (figure 9.2d).

To verify the diagnostic markers that were identified for group 2 (MPNST and SS)
using the random forest algorithm we used qRT-PCR on an independent cohort of nine
samples. Indeed, the expression patterns of NEURL1, SCD and NPAS1 were similar in
the independent cohort (figure 9.2e).

9.4.4 Soft tissue sarcoma subtypes have distinct prognostic genes

We identified prognostic genes for all annotated soft tissue sarcoma subtypes, except
MPNST (with only five samples available). First, the optimal gene expression cutoff was
calculated for all the 24168 genes that met the defined thresholds in the TCGA soft tissue
sarcoma expression data. Next, disease-free interval (DFI) (time to local recurrence or
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Figure 9.2: Caption on next page.
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Figure 9.2: Diagnostic markers to distinguish within three subgroups. (a) T-SNE analysis
of all soft tissue sarcoma subtypes in the TCGA. The first two components were used to
generate the diagram. Three groups could be identified based on the molecular profile:
group 1 (STLMS and ULMS); group 2 (SS and MPNST); group 3 (DDLPS, UPS and
MFS). (b) A machine learning random forest analysis was trained and tested on a test
dataset. Random forests were generated to differentiate between STLMS and ULMS,
SS and MPNST, DDLPS and MFS with UPS and last between MFS and UPS. Within
the three identified groups a prediction accuracy of over 95% was reached, except when
differentiating between UPS and MFS (88%). (c) From the random forest models, the
top five genes were selected based on their Gini index, score is shown relative to the best
diagnostic marker. (d) Gene expression (in FPKM) for the best subtype predictor within
the identified groups is shown in the boxplots on the left. On the right the top three
subtype predictors are shown for group 2 (MPNST and SS), which were verified using
qRT-PCR. The box shows the interquartile range from Q1 to Q3 and the mean. The
whiskers show the highest and lowest values. Suspected outliers (interquartile range *
1.5) are shown as separate dots. (e) qRT-PCR validation in independent cohort: Delta-
delta Ct (ddCt) values are shown for the top three diagnostic genes identified for group
2 (MPNST and SS). Expression pattern is similar to what was found in the TCGA data.
Expression was normalized with a housekeeping gene (HPRT1 ).

distant metastases) was tested using the Hothorn and Lausen statistical test; DFI was
used as the read-out.

In total 429 genes were found to be strong predictors (favorable or unfavorable) of DFI
(p < 0.001). Most genes were identified for SS (166 genes) while 74 and 34 genes were
identified for STLMS and ULMS respectively. Interestingly, there was very little overlap
between the prognostic genes for the different subtypes. Two overlapping prognostic genes
(KLF6 and MT1F ) were found for UPS and SS and one (NPM2 ) for ULMS and MFS.
No overlapping prognostic genes were found between STLMS and ULMS (figure 9.3a).
Furthermore, only one gene (CDCA3 identified in STLMS) was found to overlap between
the 67 described CINSARC genes and the soft tissue sarcoma subtype specific prognostic
genes identified in the current study. From the 429 identified prognostic genes 201 were
new, 228 had however been previously identified in other (non-sarcoma) tumor types in
the Protein Atlas database (supplementary figure S3a available online).

To cross-check the identified prognostic genes identified for LMS, DDLPS and UPS, we
used expression data from the French Sarcoma Group (9). The French Sarcoma Group
array data was first normalized (supplementary figure S3b available online). The data
contained information on the metastasis-free interval but not DFI as was used by us
for the TCGA data. The French Sarcoma Group data was split in two groups. Genes
that were significant prognostic genes for DFI in the TCGA and the metastasis-free in-
terval in the first French Sarcoma Group cohort (both with p < 0.05) were considered

 https://doi.org/10.1371/journal.pcbi.1006826
 https://doi.org/10.1371/journal.pcbi.1006826
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for further analysis (S4 table available online). From the identified genes, strong prog-
nostic genes were used in a k-nearest neighbor analysis. For LMS HMMR, MXD4 and
BRCA2 were identified, for DDLPS KLF6 was found to be a strong prognostic gene
while for UPS PCMTD2, TNXA, TMEM65, SNRNP48 were identified. The k-nearest
neighbor algorithm was trained on the first group and tested on the second group in the
French Sarcoma samples. The k-nearest neighbor algorithm was a significant predictor
for the metastasis-free interval for LMS, DDLPS and UPS in the second group (p=0.045,
p=0.02 and p=0.012 respectively) (figure 9.3b), outperforming the reported CINSARC
classification in the second cohort (LMS p=0.24, DDLPS p=0.14 and UPS p=0.038)
(supplementary figure S3c available online).

HMMR was identified as a significant (p<0.05) prognostic gene for DFI and the
metastasis-free interval in LMS. In an independent validation set of 70 LMS cases, we
verified using immunohistochemistry with automated scoring that high protein expression
of HMMR was associated with a shorter DFI (p=0.0061) (figure 9.3c&d). For the second
cohort, manual scoring was compared with automated scoring and results were similar.
Prognostic value of HMMR was further compared to the FNCLCC grading system. In
a multivariate Cox-regression it was found that the HMMR staining (p=0.0039) retained
significance and was a better predictor than FNCLCC histological grade (p=0.285).

9.4.5 Systems analysis of the soft tissue sarcoma subtype-specific

genes identify targeted therapies

To identify novel targeted therapies gene expression data was used to infer the regulatory
transcription factors and kinases in the different soft tissue sarcoma subtypes. First, the
signature genes for each soft tissue sarcoma subtype were used to infer the transcription
factors that were most likely to regulate those genes based on data from the ChIP-seq
Enrichment Analysis (ChEA) database (22). The most important kinases regulating these
transcription factors were inferred using the Kinase Enrichment Analysis (22). Based on
the identified transcription factors and kinases, tumor subtype specific drugs were identi-
fied based on the Connectivity Map (CMAP) drug data (with kinases and transcription
factors as input). Doxorubicin, which is commonly used as systemic treatment for STS,
was identified as a potentially effective therapy for most soft tissue sarcoma subtypes,
validating our analysis approach. Trichostatin A, a HDAC inhibitor, was predicted to be
potentially efficient in all soft tissue sarcoma subtypes, while another HDAC inhibitor,
Vorinostat, was identified for UPS and ULMS. Tanespimycin was identified for UPS,
ULMS and MPNST, which is an inhibitor of Hsp90 and currently used in clinical trials
for solid tumors (figure 9.4a and S5 table available online). While sensitivity to HDAC
inhibition is known for translocation driven tumors like synovial sarcoma (28), for LMS

 https://doi.org/10.1371/journal.pcbi.1006826
 https://doi.org/10.1371/journal.pcbi.1006826
 https://doi.org/10.1371/journal.pcbi.1006826
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Figure 9.3: Caption on next page.
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Figure 9.3: Novel prognostic biomarkers in soft tissue sarcomas. (a) All identified prog-
nostic genes and their overlap within the different soft tissue sarcoma subtypes is shown
with a network diagram. UPS and SS share two prognostic genes and ULMS and MFS
share 1. Furthermore, all identified genes were specific for each sarcoma subtype. Num-
ber of prognostic genes are shown in the red circles, tumor types in the gray circles and
number of overlapping prognostic genes in the blue circles. (b) The k-Nearest Neighbor
algorithm was also used with expression data for the strongest prognostic genes identi-
fied in both the French Sarcoma Group and TCGA expression data. The algorithm was
trained on the first and tested on the second cohort. Both were found to be significant
predictors of the metastasis-free interval. (c) HMMR protein expression was tested using
IHC on a LMS TMA. The left panel shows a representative sample with low expression,
on the right a sample with high HMMR expression. Scale bar indicates 50 µm. (d) High
HMMR protein expression as seen in an independent cohort of LMS from our archives is
associated with poor outcome.

this has not been extensively studied. We thus performed cell viability assays on three
LMS cell lines (JA192, LMS04 and LMS05), treated with two HDAC inhibitors (quisino-
stat and trichostatin A), with one SS cell line (SYO-1) as positive control (figure 9.4b).
For both compounds the half maximal inhibitory concentration (IC50) was determined.
For trichostatin A (TSA) an IC50 ranging from 39 to 474 nM was found (JA192: 474 nM;
LMS04: 229 nM; LMS05: 178 nM; SYO-1: 39 nM). Although all cell-lines were sensitive
to TSA, SYO-1 was more sensitive compared to the LMS cells. However, for quisinostat
a low IC50 was found for all cell-lines; between 15 and 41 nM (JA192: 41 nM, LMS04: 34
nM; LMS05: 39 nM; SYO-1: 15 nM). These results indicate that LMS and SS cell lines
are highly sensitive to HDAC inhibition by quisinostat.

9.5 Discussion

Accurate diagnosis and prediction of biological behavior is a challenge for soft tissue
sarcoma pathologists. These tumors are rare and often overlap in their morphology, while
subtype specific diagnostic and prognostic markers are scarce. As an increasing amount of
transcriptome sequencing data becomes available, even for rare cancers such as soft tissue
sarcomas, new methods need to be developed to identify novel diagnostic and prognostic
biomarkers for these tumors from existing data.

Here we used machine learning algorithms to identify similarities and differences be-
tween soft tissue sarcoma subtypes and normal human tissue from the GTEx data. Using
a deep neural network, we demonstrate that SS and MPNST mostly correspond to neural
related tissues. MPNST often arises from or within nerves; therefore, it is likely a tumor
originating from neural related tissue, while for synovial sarcoma the cell of origin and
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Figure 9.4: Caption on next page.
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Figure 9.4: CMAP analysis to identify novel therapies. (a) CMAP analysis identifies po-
tential drugs based on the expression profile. The chord diagram shows links between the
drugs and soft tissue sarcoma subtypes. Some compounds such as trichostatin A, dox-
orubicin and tanespimycin show connections with multiple soft tissue sarcoma subtypes,
which is illustrated by the box color for each drug (darker red indicates more connections).
(b) The dose response curves are shown for both trichostatin A (TSA) and quisinostat as
tested in one SS (SYO-1) and three LMS (JA192, LMS04 and LMS05) cell-lines.

line of differentiation have been unclear. Our observation of the neural related tissue as
a potential tissue of origin confirms previous suggestions (29). The deep neural network
also identified that cervix and uterine tissue showed the largest overlap with ULMS as is
expected. Other findings however illustrate the limitations in comparing gene expression
of normal tissue with tumor, such as the large overlap in gene expression between skin
and adrenal gland with ULMS or the large overlap found between SS and salivary gland
(that could be explained due to the biphasic SS samples displaying epithelial elements).
These findings in part could be explained by the fact that the sequencing is performed on
tissue containing many different cell types, including immune and stromal cells. Single
cell sequencing and projects such as the Human Cell Atlas (30) could in the future shed
more light on the tissue of origin for soft tissue sarcomas.

Using a random forest analysis, we identified subtype specific genes that can be used
as diagnostic markers within the three groups of soft tissue sarcoma subtypes that were
identified based on their molecular profile and morphology. For instance, NEURL1 was
one of the genes highly expressed in SS as compared to MPNST. NEURL1 is an important
determinant of neural tissue differentiation and functions as a tumor suppressor which is
inactivated during malignant progression of astrocytic tumors (31). In line with this, the
lower expression of NEURL1 could be explained by recurring losses of chromosome 10 in
48% of MPNST (32). SCD was found to be highly expressed in MPNST compared to
SS. SCD has been found to associate with a poor prognosis in breast and lung cancer.
Moreover, SCD can be directly inhibited with the small molecule MF-438 which sensitized
adenocarcinoma cells to cisplatin treatment (33, 34). It was previously found that when
SS was treated with a HDAC inhibitor, neural differentiation was induced (28). Further-
more, treatment with BMP4 or FGF2 restored expression of neural tissue related genes in
SS (29). Our study further confirms neural differentiation in SS, as shown using hidden
layers in a deep neural network. Future validation studies should indicate whether the
diagnostic biomarkers that we identified here can also be used immunohistochemically in
the differential diagnosis.

We identified subtype specific prognostic genes using Kaplan-Meier analysis on all
individual genes combined with a k-nearest neighbor algorithm to accurately predict the
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disease-free interval (DFI). DFI was previously shown to be one of the strongest outcome
measurements for soft tissue sarcomas (15). For all genes the cut off was determined first
and the DFI for high and low expression was calculated. This Kaplan-Meier approach
was previously used on 17 other cancer types, not including soft tissue sarcomas (11).
Although this method results in tumor subtype specific prognostic genes that can predict
outcome, a major challenge is to correct for multiple testing. Here we used an independent
cohort from the French Sarcoma Group to validate strong prognostic genes for LMS,
DDLPS and UPS. However, for this independent cohort only data on metastasis were
available, whereas the TCGA also contained data on loco-regional recurrence. Using
both data sets, overlapping prognostic genes were identified which could be considered
strong prognostic genes. For the other tumor subtypes, to our knowledge, there are no
available expression data sets with accurate follow up data to perform cross-validation.
Interestingly we found only one gene, CDCA3, overlapped between the prognostic genes
we identified in the TCGA soft tissue sarcoma data and the CINSARC prognosticator.
We likely did not identify a larger overlap because the CINSARC study aimed to identify a
general prognosticator for soft tissue sarcomas, which is not subtype specific. In addition,
the outcome used was different; we used DFI as an outcome measurement while in the
CINSARC study metastasis was used. Moreover, we identified subtype specific prognostic
genes using a Kaplan-Meier approach which does not only take outcome but also time to
events into account. Here we showed that subtype specific prognostic genes outperformed
general prognostic genes.

For one of the identified genes, HMMR, we confirmed that high protein expression
was associated with poor outcome of LMS. Further we confirmed that HMMR expres-
sion outperformed the FNCLCC histological grading to predict outcome. Recently it was
shown that LMS displays hallmarks of "BRCAness" through identification of mutation
signatures and alterations in genes related to homologous recombination (35). Here we
identified strong prognostic genes for LMS, two of which were related to homologous re-
pair (BRCA2 and HMMR). HMMR forms a complex with BRCA1 or BRCA2 together
with other proteins, and high expression of HMMR was associated with poor survival in
liver, pancreatic and lung cancer (11). Possibly, defects in the homologous repair pathway
could result in over-expression of HMMR in an attempt to compensate for other defec-
tive proteins. The involvement of genes related to "BRCAness" and to disease outcome
warrants further studies.

A regulatory network reconstruction combined with the CMAP drug data revealed not
only the commonly used drug doxorubicin, but also indicated that HDAC inhibitors could
be a potential treatment for many different soft tissue sarcoma subtypes. Recent studies
indeed suggest that HDAC inhibitors may be effective in treating soft tissue sarcomas. In
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liposarcoma it was shown that HDAC inhibitors increase apoptosis and anti-proliferation
effects (36). In SS HDAC inhibitors cause disruption of the SS18-SSX oncoprotein re-
sulting in apoptosis (28). Another study found HDAC inhibitors lead to apoptosis in SS
cell-lines (37). In other sarcoma subtypes HDAC inhibitors have not been studied exten-
sively. One uterine LMS cell line was tested and shown to be sensitive to the pan HDAC
inhibitor ITF2357 with a synergistic effect when combined with doxorubicin (38). In this
study we further investigated LMS sensitivity to HDAC inhibition using quisinostat and
trichostatin A. We included three LMS cell-lines, one ULMS (LMS04) and two STLMS
(LMS05 and JA192). As SS was previously found to be sensitive to HDAC inhibition we
also included one SS cell-line (SYO-1) as a positive control. SS showed a greater sensi-
tivity to TSA, however, quisinostat showed a very low IC50 (15-41 nM) in all cell lines.
Thus, quisinostat might be further explored as a potential therapy for both ULMS and
STLMS.

In conclusion, three groups of soft tissue sarcoma subtypes included in the TCGA
study were identified based on similarities in their expression profiles, corresponding to
their overlapping morphology. Using a random forest analysis, novel diagnostic markers
were identified that may distinguish between soft tissue sarcoma subtypes within these
three groups, including NEURL1 that was highly expressed in SS as compared to MPNST.
Next, using a Kaplan-Meier analysis, prognostic genes were identified. Of these, HMMR
protein expression was confirmed to be associated with poor outcome in an independent
cohort of LMS from our archives. A network reconstruction combined with CMAP data
revealed that HDAC inhibitors could be effective therapy in different soft tissue sarcoma
subtypes, which we confirmed in LMS and SS cell-lines. In conclusion, machine learning
algorithms uncovered diagnostic biomarkers, prognostic genes and identified potential
novel therapeutic targets for soft tissue sarcomas. This study thereby illustrates the
power of different machine learning algorithms to improve our understanding of rare
cancers using existing datasets.
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