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Chapter 7

PyPanda: a Python package for gene
regulatory network reconstruction

This chapter is based on the publication: van IJzendoorn DGP, Glass K, Quackenbush
J, Kuijjer ML. PyPanda: a Python package for gene regulatory network reconstruction.
Bioinformatics. 2016;32: 3363-3365.
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7.1 Abstract

PANDA (Passing Attributes between Networks for Data Assimilation) is a gene regula-
tory network inference method that uses message-passing to integrate multiple sources of
’omics data. PANDA was originally coded in C ++. In this application note we describe
PyPanda, the Python version of PANDA. PyPanda runs considerably faster than the C
++ version and includes additional features for network analysis.

7.2 Introduction

Accurately inferring gene regulatory networks is one of the most important challenges in
the analysis of gene expression data. Although many methods have been proposed (1–4),
computation time has been a significant limiting factor in their widespread use. PANDA
(Passing Attributes between Networks for Data Assimilation) is a gene regulatory net-
work inference method that uses message passing between multiple ’omics data types to
infer the network of interactions most consistent with the underlying data (5). PANDA
has been applied to understand transcriptional programs in a variety of systems (6–8).
Here we introduce PyPanda, a Python implementation of the PANDA algorithm, follow-
ing the approach taken in Glass et al (7). and optimized for matrix operations using
NumPy (9). This approach enables the use of fast matrix multiplications using the BLAS
and LAPACK functions, thereby significantly decreasing run-time for network prediction
compared with the original implementation of PANDA, which was coded in C ++ and
used for-loops (7). We observe further speed increase over the C ++-code because Py-
Panda automatically uses multiple processor-cores through the NumPy library. We have
also expanded PyPanda to include common downstream analyses of PANDA networks, in-
cluding the calculation of network in- and out-degrees and the estimation of single-sample
networks using the recently developed LIONESS algorithm (10).

7.3 Approach

7.3.1 Comparing PANDA C ++-code to Python-code

We compared the C ++-code and Python-code versions of PANDA using several metrics.
First, we assessed the two implementations by comparing the number of lines of code.
Using the cloc utility we counted the number of lines of C ++-code and Python-code.
The C ++-code counted 1132 lines of code. The Python-code counted 258 lines of code,
significantly shorter (4.4 times) than the C ++-code. The Python-code also includes
features such as the LIONESS equation and in- and out-degree calculation. Without these
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features the Python-code is only 155 lines of code. Because the Python implementation
is much more concise than the C ++-code it is easier to interpret and modify.

We compared the C ++-code and Python-code versions of PANDA using several
metrics. First, we assessed the two implementations by comparing the number of lines of
code. Using the cloc utility we counted the number of lines of C ++-code and Python-
code. The C ++-code counted 1132 lines of code. The Python-code counted 258 lines of
code, significantly shorter (4.4 times) than the C ++-code. The Python-code also includes
features such as the LIONESS equation and in- and out-degree calculation. Without these
features the Python-code is only 155 lines of code. Because the Python implementation
is much more concise than the C ++-code it is easier to interpret and modify.

The speed of the network prediction was tested using simulated networks of Ne = Na
dimensions, where Ne is the number of effector nodes and Na is the number of affected
nodes. For each of several different network sizes (Ne = Na = 125 to Ne = Na = 2000
nodes, in steps of 125) we generated ten random ‘motif data’ networks according to the
method described in Glass et al (7). We then ran the Python and C ++ versions of
PANDA using these simulated motif data together with identity matrices for the protein-
protein interaction and co-expression information. For runs on the same initial ‘motif
data’ networks, we verified that the C ++-code and Python-code returned exactly the
same output network, as expected due to the deterministic nature of PANDA.

The C ++-code only uses one CPU core. In comparing the C ++-code with the
Python-code using a single core, we found a 2.07-fold speed-up relative to the C ++-code
for the smallest network (Ne = Na = 125) tested. The speed increase of the Python-
code over the C ++-code became larger as the network size increased. For example, the
Python-code performed 12.31 times faster for the largest network (Ne = Na = 2000) (figure
7.1a). Recorded run times across the ten random networks had a standard deviation of
0.04s and 2.59s for the smallest (Ne = Na = 125) and largest (Ne = Na = 2000) networks,
respectively using the C ++ code. Using the Python code these were reduced to 0.03s
and 0.099s.

Given the abundance of multicore computing resources currently available, we also
tested the speed increase when running the Python-code on multiple cores compared
with running the Python-code on a single core. We found that for the smallest network
the speed was 1.45 times faster when using 6 cores compared with using only a single
core; for the largest network the speed increase was 3.7-fold (figure 7.1b).

This increase in speed enables reconstruction of networks with larger numbers of reg-
ulators and target genes. For example, using the Python-code significantly decreases the
time required to infer a human gene regulatory network (Ne = 1000, Na = 20 000), from
∼18 h with the C ++-code to only about 2 h with the Python-code. This speed-up is
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especially important as transcription factor motif databases are frequently updated to
include more motifs. Further, the decreased running time helps to enable the estimation
of network significance by making the use of bootstrapping/jackknifing methods much
more feasible.

Figure 7.1: Speed comparison for network reconstruction on networks of different sizes
using (a) the C ++-code and the Python-code, (b) the Python-code running on a single
CPU compared with multicore (6 CPU cores).

7.3.2 Additional features

In addition to reconstructing one regulatory network based on a data set consisting of mul-
tiple samples, PyPanda can also reconstruct single-sample networks using the LIONESS
algorithm (10). In PyPanda, the LIONESS method uses PANDA to infer an ’aggregate’
network representing a set of N input samples, infers a network for N – 1 samples, and
then applies a linear equation to estimate the network for the sample that had been re-
moved. The process is then repeated for each sample in the original set, producing N
single-sample networks. PyPanda can also use LIONESS to reconstruct single-sample
networks based on Pearson correlation.

PyPanda also includes functions to calculate in-degrees (the sum of edge weights tar-
geting a specific gene) and out-degrees (the sum of edge weights pointing out from a
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regulator to its target genes). These summary metrics can be used for downstream net-
work analysis (6).

7.4 Conclusion

PANDA is a proven method for gene regulatory network inference but, like most so-
phisticated network inference methods, its runtime has limited its utility. The Python
implementation of PANDA uses matrix operations and incorporates the NumPy libraries,
resulting in a significant simplification of the code and a dramatic increase in comput-
ing speed, even on a single processor. When applied to a test data set and run on
multiple processing cores, this increase in speed was even greater, decreasing processing
times by a factor of 46 relative to the original C ++-code. This creates opportunities
to greatly expand the use of PANDA and to implement additional measures of network
significance based on bootstrapping/jackknifing. PyPanda also includes the LIONESS
method, which allows inference of single-sample networks, as well as a number of other
useful network metric measures. The open source PyPanda package is freely available at
http://github.com/davidvi/pypanda.
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