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Chapter 1

General introduction
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Vascular tumors are a group of tumors whose common denominator is that they display
endothelial differentiation. It is tempting to speculate that all vascular tumors originate
somewhere during the differentiation of mesenchymal stem cells to endothelial cells, and
throughout this thesis I propose evidence for this hypothesis. The spectrum of vascular
tumors includes frankly benign tumors such as hemangiomas, intermediate entities such
as epithelioid hemangioma of bone (which is benign in soft tissue) and pseudomyogenic
hemangioendothelioma, and malignant entities including epithelioid hemangioendothe-
lioma and angiosarcoma, as discussed in detail in chapter 2. All vascular tumors except
the hemangiomas are very rare, which hampers research; adequate models to study these
tumors are lacking and patient material is generally sparse. In this thesis we focused on
two of the vascular tumors: epithelioid hemangioma, for which we identified and studied
a driving translocation that leads to a truncation of a gene, and pseudomyogenic heman-
gioendothelioma for which we studied targeted therapy and generated new models using
human umbilical vein endothelial cells (HUVECs) as well as human induced pluripotent
stem cells (hiPSCs). In the first section of this chapter, I will introduce concepts relating
to translocations and tumorigenesis as seen in the vascular tumors. Then, epithelioid he-
mangioma and pseudomyogenic hemangioendothelioma are introduced. The next section
focusses on in vitro cell line models and the potential of using lentivirus transductions and
CRISPR/Cas9 to alter cells and create biologically relevant models. A common denom-
inator throughout this thesis has been the use of computational biology methods which
were used to generate hypotheses that could be tested in the lab, discover new transloca-
tions and gain a better understanding of tumorigenesis. Computational biology concepts
are introduced in the last section of this chapter where next-generation sequencing, fusion
detection, gene regulatory networks and machine learning are discussed.

1.1 Translocations and tumorigenesis

There are a number of different genetic alterations that may produce vascular tumors and
tumors in general. The first type of genetic alterations are tumors with numerical and
structural chromosomal abnormalities. An example of vascular tumors with numerous
chromosomal abnormalities, even though they are known to have some recurrent alter-
ations, are angiosarcomas (1). The second group consists of tumors with specific driver
mutations or translocations. Although mutations and gross chromosomal abnormalities
are extremely common events in many tumor types, the vascular tumors studied in this
thesis are driven by specific gene translocations.

Translocations can occur through a number of different mechanisms. Usually there
is a double stranded DNA break at two locations. Because of errors in the DNA double
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strand repair mechanisms two strands of DNA, that are originally not attached, become
attached to each other (figure 1.1). This can result in a chromosomal translocation,
deletion or inversion and two gene parts can fuse together (figure 1.2). Translocations and
their resulting chimera genes are capable of driving tumorigenesis through three different
mechanisms (2). Firstly, in some cases, such as pseudomyogenic hemangioendothelioma,
a promoter of one gene becomes attached to the fusion partner and drives expression.
Secondly, a possibility is the generation of a chimeric gene, where both fusion partners
contribute domains leading to a protein with a new or altered function. This occurs
in epithelioid hemangioendothelioma where WWTR1 fuses with CAMTA1 and leads
to transport of WWTR1 to the nucleus resulting in activation of the Hippo signaling
pathway (3). Lastly, a fusion can lead to loss of a part of the protein, usually resulting in
a loss of function. However, in chapter five we describe that this event can also lead to a
gain of function.

Figure 1.1: Different mechanisms leading to gene translocations. (a) Two double stranded
breaks on separate chromosomes can lead to a balanced translocation. (b) Two deletions
on one chromosome can lead to the loss of a piece of DNA. (c) Two deletions on one
chromosome can also cause the inversion of a fragment of DNA.

1.2 Vascular tumors

Throughout this thesis I have studied epithelioid hemangioma and pseudomyogenic he-
mangioendothelioma, and their translocations that we hypothesize drive the tumorigen-
esis. Chapter 2 provides a detailed overview of the vascular tumors. Understanding the
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Figure 1.2: Generally, the three effects a translocation can have on the resulting fusion
gene are illustrated. On the left a chromosome is depicted, while on the right resulting
mRNA is shown. For the mRNA the UTR (slim bars) and coding regions (wide bars) are
shown.

Entity Classification Prognosis Immunohistochemistry
Epithelioid
hemangioma of
bone

Intermediate 100% survival,
2% metasta-
sis, 9% local
recurrence

CD31+, CD34+, ERG+

Pseudomyogenic
hemangioen-
dothelioma

Intermediate Limited follow-
up

ERG+, FLI1+, Keratin+,
CD34-, Desmin-, Retention of
INI1, FOSB+

Table 1.1: Summary of the two vascular tumors of bone that were studied most extensively
throughout this thesis.

tumorigenesis for the vascular tumors will help develop new targeted therapies or lead to
more insights into the pathophysiology.

1.2.1 Epithelioid hemangioma of bone

Epithelioid hemangioma of bone is a very rare intermediate and locally aggressive vascular
tumor that can occur at nearly all ages, ranging from 10 to 75 years with a mean of 35,
as found in a series of 50 cases (4). Histologically epithelioid hemangioma is recognized
by its lobular architecture and well-formed vessels that are lined by the tumor cells.
Immunohistochemically the endothelial differentiation of the tumor cells is clear, showing
positivity for CD34, CD31 and ERG. The histology and immunohistochemistry therefore
give evidence that epithelioid hemangioma displays endothelial differentiation, which was
assumed throughout this thesis (table 1.1).
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1.2.2 Pseudomyogenic hemangioendothelioma

The naming of pseudomyogenic hemangioendothelioma has been controversial over time.
First described as epithelioid sarcoma-like hemangioendothelioma by Billings and col-
leagues in 2003 (5), Hornick and colleagues described 50 cases of an entity they called
pseudomyogenic hemangioendothelioma in 2011 (6). The lack of a concise name led to
discussions about who first described this entity, it was found that epithelioid sarcoma-like
hemangioendothelioma and pseudomyogenic hemangioendothelioma are indeed the same
tumor. In this thesis we used the name pseudomyogenic hemangioendothelioma, in line
with the "WHO Classification of Tumours of Soft Tissue and Bone" (7). Mean age of
occurrence for pseudomyogenic hemangioendothelioma is 31, but ranges from 14 to 80.
Most patients present with multifocal disease (7). Histologically the tumor cells show an
epithelioid sarcoma-like or rhabdomyoblast-like appearance, with abundant eosinophilic
cytoplasm. The cells are positive for keratin AE/AE3 in addition to the vascular marker
ERG. CD34 is negative and CD31 is expressed in half of the cases (7). Characteris-
tic for this entity is a balanced translocation between chromosomes 7 and 19, that was
first described in 2011 by Trombetta and colleagues (8). This translocation was later
found to lead to a fusion between SERPINE1 and FOSB genes by Walther and col-
leagues in 2014 (9). Recently another recurrent fusion was identified in pseudomyogenic
hemangioendothelioma, between ACTB and SERPINE1 (10, 11). It was found that
immunohistochemistry for FOSB could be used as a diagnostic marker for pseudomyo-
genic hemangioendothelioma showing that the fusion leads to an upregulation of FOSB
expression (12, 13) (table 1.1).

1.3 Tumor models

To understand neoplasms at a fundamental level, model systems are needed where the
variables can be studied in a controlled way. As there are no cell lines available for
epithelioid hemangioma and pseudomyogenic hemangioendothelioma a number of different
models were used to study these tumors. Here I will introduce the most important aspects
relating to in vitro cell line models used throughout this thesis.

1.3.1 Cell lines and Lentivirus Vectors

Tumor derived cell lines have been the workhorse in molecular cell biology for many years
and are an excellent model which can give insight into the pathways driving neoplastic
cells. Ultimately, an understanding of the biology behind tumors can lead to better
targeted therapies. Cell lines have been used successfully since the 1960s to study biology
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and cancer. With one of the most well-known examples being the HeLa cells. This cell
line was derived from the cervical cancer cells of Henrietta Lacks. To date the HeLa cell
line is reportedly used in over sixty-five thousand publications (14).

Although it has been extensively tried to culture the intermediate vascular tumors,
these efforts have been without success, so far. To our knowledge no cell lines have been
established for epithelioid hemangioma and pseudomyogenic hemangioendothelioma. To
create a cell line model for the vascular tumors we have used endothelial cells and their
precursors (iPS). In chapters four and five of this thesis we have used human umbilical
vein endothelial cells (HUVECs) to model epithelioid hemangioma and pseudomyogenic
hemangioendothelioma. HUVECs are isolated from the endothelium of veins from the
umbilical cord. A large disadvantage of using HUVECs is that they can only be kept in
culture for a limited number of passages and doublings (15).

To study tumor biology, we have introduced expression plasmids using a Lentivirus
delivery system. Using this delivery system genes or short hairpin RNAs can be efficiently
introduced in the genome for expression or repression of genes to mimic the genetic alter-
ations found in human vascular tumors (and thereby create a model system) (16). The
downside of using a lentivirus delivery system is that usually genes are introduced without
their own promoter and multiple copies of the same gene can become integrated into the
genome, therefore gene expression is generally much higher than what would be found in
actual tumors.

1.3.2 CRISPR/Cas9 and human induced Pluripotent Stem Cells

The CRISPR/Cas9 gene editing system consists of two components; a Cas9 protein that
is guided by a guide RNA to a piece of DNA of interest where it will introduce a double
stranded break. Introduction of these breaks will activate either non-homologous end
joining or the homologous recombination pathway. Non-homologous end joining is prone
to errors as no template is utilized. Often point mutations, deletion or insertions are left
at the site that is targeted by the Cas9 protein (17). When homologous recombination is
utilized by the cell, a template is used to repair the break. This template can be provided
to insert a custom sequence within the break. Because chromosomal translocations are a
result of double stranded breaks and non-homologous end joining, CRISPR/Cas9 can be
used to introduce chromosomal translocations with reasonable efficiency (figure 1.3) (18).
Introducing chromosomal translocations to model gene fusions has large advantages over
using an expression system because expression and regulation of the fusion gene remains
under control of the original promoter and therefore represents expression and regulation
as found in tumor cells.

CRISPR/Cas9 has been used to model fusion driven tumors previously. In mesenchy-
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Figure 1.3: Induction of translocations using CRISPR/Cas9. Two break points are intro-
duced and both the NHEJ and HR can lead to the formation of a translocation.

mal stem cells CRISPR/Cas9 was used to introduce the EWSR1-WT1 fusion, to model
desmoplastic small round cell tumors (19). The EWSR1-FLI1 fusion was introduced in
human mesenchymal stem cells to model Ewing sarcoma (20). However, because Ewing
sarcoma does not show evident differentiation towards a normal cell type it is not possible
to study the effects of the fusion gene on cells with matching differentiation to Ewing sar-
coma cells, which influences the observed effects of the fusion gene. In chapter six of this
thesis the SERPINE1-FOSB fusion is introduced in hiPSCs to overcome the limitations of
using HUVECs combined with a lentivirus delivery system as a model to study pseudomyo-
genic hemangioendothelioma. Because pseudomyogenic hemangioendothelioma shows en-
dothelial differentiation the functional effects of the SERPINE1-FOSB fusion were studied
in human induced pluripotent stem cells differentiated to endothelial cells.

As indicated before, one of the limitations of using HUVECs is their limited life-
span. To overcome this issue human induced pluripotent stem cells (hiPSCs) have been
used. HiPSCs are derived from normal human somatic cells such as fibroblasts that can
be reprogrammed to pluripotency. This is done through expression transcription factors
such as; Oct4, Sox2, Klf4 and Myc (21). First described in 2008, hiPSCs have been used
extensively in recent years, showing large potential as disease models (22, 23). The largest
advantage for using hiPSCs is that they can be expanded indefinitely and differentiated to
almost any tissue type. To study the effect of the translocation on cells in the endothelial
lineage, the hiPSCs are differentiated to the mesoderm lineage, after which CD31 positive
endothelial cells are extracted using magnetic beads (24). The endothelial cells derived
from hiPSCs express endothelial-specific markers such as VE-Cadherin, von Willebrand
factor and LYVE1. Furthermore, they are capable of tube formation when cultured on
pericytes or matrigel (25, 26).
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1.3.3 Computational biology

Developments in next-generation sequencing have led to affordable sequencing. Moreover,
there is a trend to distribute sequencing data in large open available databases. Analyzing
this data is done through computational biology. Here the most important next-generation
sequencing and computational biology techniques that were used throughout this thesis
are introduced.

1.3.4 Next-generation sequencing

Next-generation sequencing (NGS) is a term used to describe massive parallel DNA se-
quencing techniques succeeding Sanger sequencing. NGS enables rapid and parallel se-
quencing of many DNA molecules, enabling generation of large datasets (27). NGS is used
to sequence DNA, or RNA through generation of cDNA. Therefore, NGS can be used for
many purposes including nucleotide-, structural and copy number variant detection but
also quantification of gene expression through quantification of the RNA.

There are a number of different platforms used for NGS, in this thesis data was used
that is generated by the Illumina platform, a second-generation sequencing technique.
Second generation sequencing machines work through sequencing by synthesis, where
DNA is amplified and each nucleotide added to the strand generates a signal. In the
Illumina platform, nucleotides are added and pyrophosphate is released, used to generate a
fluorescent signal that is detected and used to determine the original base in the DNA (28).
Although the read length is generally short in the Illumina platform (around 90 bases)
it is possible to generate paired-end reads. Paired-end sequencing entails sequencing of
both ends of the generated DNA fragments (which is usually around 500 bases long), the
two reads from the same DNA fragment are called mate pairs (figure 1.4). Especially
for structural variant detection (such as fusion genes) it is essential to generate paired-
end reads because this will enable detection of paired-end reads spanning the structural
variants (figure 1.4).

1.3.5 Fusion gene detection on transcriptome sequencing data

Most tools to detect fusion genes rely on the detection of spanning read pairs and split
reads. Spanning read pairs are read pairs where the two reads align on different locations,
with a larger distance between the reads then could be expected based on the fragment size
(the size of the generated cDNA fragments). Split reads are reads which partially align on
two non-adjacent locations (figure 1.4). False positives are extremely common in fusion
gene detection and can occur due to a number of different problems. Firstly, errors in
transcription often result in mRNA molecules that are a products of read-through, where
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Figure 1.4: Fusion genes can be detected on mRNA (through sequencing of cDNA).
Detection of spanning or split reads is generally used to discover fusion gene.

mRNA is not spliced correctly and different genes are attached to each other. Read-
throughs can be called as fusion genes. Secondly, there are many sequence homologues
in the human genome. These can include paralogs and pseudogenes which can result
in calling of false-positive gene fusions. Lastly, SNPs or sequencing errors can result in
misalignment of reads and cause calling or missing of fusion-genes.

Through detection of translocations on transcriptome sequencing data, many translo-
cations located in intragenic regions of the genome are eliminated that would be detected
on whole-genome sequencing data. Another advantage of translocation detection on tran-
scriptome sequencing data is that translocations that are not expressed, are not detected.
Usually translocations that are not expressed do not have clinical consequence (29). A
notable exception to this are the translocations affecting tumor suppressors where loss of a
gene, due to a translocation, could drive tumorigenesis. Fusion detection tools use a num-
ber of different strategies to filter the remaining false-positive reads; including databases
with known false positives and filtering fusions involving intra-genic regions. When suffi-
cient computational resources are available, multiple algorithms can be run and consensus
fusions are identified in multiple algorithms (30).

1.3.6 Gene regulatory networks

The idea of regulatory networks was first proposed by Butte and colleagues in 1999.
They calculated the correlation coefficients for a database with simultaneous laboratory
experiments (31). Later they calculated correlation coefficients for expression data and
reconstructed part of the regulatory network in Saccharomyces cerevisiae (32). Gene
regulatory networks are identified based on the correlation coefficient. Genes that are co-
expressed show a higher correlation coefficient than would be expected based on chance.
A limitation of this first approach is that it does not take protein-protein interactions and
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regulation of transcription factors into account that may not necessarily be visible on gene
expression level. This approach also does not consider whether genes are transcription
factors and are therefore capable of regulating other genes. Among other approaches (33),
Glass and colleagues attempted to solve this problem with an algorithm they named
Passing Attributes between Networks for Data Assimilation (PANDA) (34). PANDA
solves many shortcomings of the regulatory network analysis by integrating multiple data
types. Therefore, PANDA can distinguish between direct and indirect interactions in a
network analysis.

1.3.7 Machine learning

Machine learning uses algorithms to see patterns and learn concepts without being ex-
plicitly programmed to do so. Machine learning algorithms can be subdivided into two
categories, unsupervised and supervised algorithms. Unsupervised algorithms are useful
on data where a pattern needs to be identified without prior knowledge on the outcome.
An example of an unsupervised algorithm is the t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) that reduces dimensions and can be used to identify data clusters such
as different cell subtypes within a sample (35). To automatically detect clusters in data,
algorithms such as K-means or Density-based spatial clustering of applications with noise
(DBSCAN) can be used. These algorithms detect clusters, possibly in data where the
dimensions have been reduced using t-SNE or Principal Component Analysis (PCA).

The other category of machine learning algorithms are the supervised algorithms.
These algorithms are trained on labeled data and are trained to formulate a hypothesis
that captures the relationship between the data and the label. Examples of supervised
algorithms are k-nearest neighbor, random forest and support vector machines which can
be used for classification problems. Especially the random forest algorithm shows a lot
of potential for analysis of expression data as the algorithm can output the weight of
each variable, thereby making it possible to find the strongest variables in the decision
process (36). One of the most well-known supervised learning algorithm is the neural
network. Neural networks use multiple layers of abstraction to form a hypothesis and have
led to impressive developments in areas such as speech and image recognition. Although
neural networks can be very powerful algorithms they require large datasets of training
data to formulate an accurate hypothesis (37).

In genetics unsupervised machine learning algorithms have been used extensively, with
Principal Component Analysis and t-SNE used very frequently. There is also large po-
tential for using supervised algorithms. Examples where supervised machine learning has
been used include predicting outcome in lung and liver cancer (38–40).
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1.4 Aim and outline of the thesis

The aim of this thesis is to study rare tumors, with a focus on the vascular tumors. For
these tumors adequate models and knowledge on tumorigenesis are lacking. I aimed to
develop new models to study these tumors, discover new genetic alterations and examine
their effect on the tumorigenesis through using computational biology.

The research in this thesis is subdivided into three parts. The first part (chapters
2-4) focusses on diagnosis and treatment of vascular tumors. In chapter 2 our current
knowledge on the histopathology, epidemiology and tumorigenesis of the vascular tumors
is reviewed. In chapter 3 we report the discovery of a new fusion gene in epithelioid
hemangioma of bone involving FOS and different translocation partners. This translo-
cation is present in approximately 60% of epithelioid hemangioma cases. In chapter 4
a potential treatment for pseudomyogenic hemangioendothelioma is described. A patient
with extensive and inoperable pseudomyogenic hemangioendothelioma was treated with
telatinib and showed a remarkable response for which we investigated the mechanism of
action.

The second part (chapters 5-6) of this thesis covers model systems that were developed
and used to study vascular tumors. Initially we used HUVECs overexpressing truncated
FOS to study epithelioid hemangioma. In chapter 5 the effect of the truncation of FOS
on the resulting protein and its function was explored. It was found that the tail of the FOS
protein is required for rapid ubiquitin independent degradation. As this part of the protein
is lost in the gene fusion that is found in epithelioid hemangioma, it is likely that FOS
remains active longer and thereby drives tumorigenesis. In chapter 6 we developed a new
model to study pseudomyogenic hemangioendothelioma. We introduced the SERPINE1-
FOSB fusion in hiPSCs using CRISPR/Cas9. Thereafter we differentiated the hiPSCs
towards CD31 positive endothelial cells. We showed that this model, in part, recapitulates
pseudomyogenic hemangioendothelioma and can be used to study tumorigenesis using in
vitro and in vivo assays.

The third part (chapters 7-9) focusses on computational biology. In chapter 7 we
developed a python package to perform gene regulatory network reconstruction. This tool
performed much faster than the existing C++ implementation and can therefore help
to perform network reconstruction on much larger datasets. We used a cell line based
model and network reconstruction methods in chapter 8 to study epithelioid hemangioma
and showed a potential link to the HIPPO signaling pathway. This would explain the
similarities in morphology with other vascular tumors as genes involved in the HIPPO
signaling pathway are involved in recurrent translocations in other vascular tumors such
as epithelioid hemangioendothelioma. Chapter 9 shows the potential of using machine
learning to identify prognostic and diagnostic markers using machine learning algorithms.
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For this study we used gene expression data from the Cancer Genome Atlas for soft tissue
sarcomas.

This thesis gives insight into the tumorigenesis of the vascular tumors. Many of the
findings and models we report can be generalized and therefore could be used to gain
insight into other tumors as well.
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