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ABSTRACT
Hypervelocity stars (HVSs) travel from the Galactic Centre to the dark matter halo of
the Milky Way, where they are observed with velocities in excess of the Galactic escape
speed. Their trajectories make them a unique probe of the still poorly constrained
dark matter component of the Galaxy. In this paper, we present a new method to
constrain the Galactic potential with HVSs. The likelihood is constructed by efficiently
calculating the local HVS density at any point of the Galaxy by back-propagating the
phase space position and quantifying the ejection probability along the orbit. This
method is particularly suited to the data from the ESA mission Gaia. Therefore, to
showcase our method, we applied it to a simulated Gaia sample of ∼ 200 stars in
Galactic potentials with three different dark matter components, parametrized by a
spheroidal NFW profile. We find that individual HVSs exhibit a degeneracy in the
scale mass-scale radius plane (Ms − rs) and are able to measure only the combination
α = Ms/r2

s , likewise a degeneracy is also present between α and the spheroidal axis-ratio
q. When the whole sample is considered, both parameters are nailed down with sub-
percentage precision (about 1% and 0.1% for α and q respectively) and no systematic
bias is observed. This remarkable power to constrain deviations from a symmetric halo
is a consequence of the Galactocentric origin of HVSs. To compare our results with
other probes, we break the degeneracy in the scale parameters and impose a mass-
concentration relation. The result is a competitive precision on the virial mass M200
of about 10%.
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1 INTRODUCTION

In the concordance ΛCDM model of cosmology, galaxies are
embedded inside larger structures known as haloes. These
are made of a dissipationless fluid called dark matter, visi-
ble only through its gravitational effects. Over cosmic time,
haloes grow in mass and size through hierarchical cluster-
ing, starting from the initial perturbations of a slightly in-
homogeneous matter density field. Despite its central role
in structure formation, the nature of dark matter and its
microscopic physics are still unknown (see, e.g., Garrett &
Duda 2011).

There is a number of theoretical predictions associated
to the shape and mass of dark matter structures. Pure cold
dark matter simulations suggest that collapsed haloes ac-
quire a triaxial ellipsoid shape, but more recently it has
been found that the inclusion of baryonic matter results in
rounder shapes (e.g., Debattista et al. 2008). Similarly, self

? E-mail: contigiani@strw.leidenuniv.nl

interacting dark matter is also expected to induce spherical
haloes in the innermost regions (Peter et al. 2013). Further-
more, measurements of the Milky Way’s halo, together with
observations of surrounding dwarf galaxies, can be used as
a test for the concordance model (Moore et al. 1999; Klypin
et al. 1999). For example, a total mass of the Milky Way
lower than 1012 M� can align the observed number of satel-
lite galaxies with what is predicted in simulations (Wang
et al. 2011).

Gravitational lensing is the most common technique
used to measure the dark matter distributions of statistical
samples of distant galaxies and galaxy groups (e.g., Hoekstra
et al. 2013; Mandelbaum 2014). In the case of the Milky Way,
our privileged position mandates the use of a different set
of techniques and dynamical tracers are employed to mea-
sure the structure of its dark matter halo. Objects traveling
through the halo act as test particles subjected to its grav-
itational potential and their trajectories in phase space can
be traced to constrain a parametric model for the density
profile. This procedure usually requires assumptions about
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the initial conditions or the steady-state configuration of the
system.

In the Galactic bulge and disc, where baryons dom-
inate the matter density, established techniques based on
the kinematics of field stars or HI emission are used (Portail
et al. 2017; Reid & Dame 2016). Unfortunately, the scarcity
of these tracers outside the Galactic disc limits their con-
straining power where the dark matter halo dominates (e.g.,
Huang et al. 2016). Since its discovery (Newberg et al. 2002),
the Sagittarius stellar stream has proved to be a valuable dy-
namical tracer (e.g., Law et al. 2009; Deg & Widrow 2013;
Gibbons et al. 2014). The Sagittarius dwarf galaxy is one
of the closest satellites to the Milky Way and it is in the
process of being tidally disrupted. The strong tidal forces
give rise to a long stream of tidal debris which orbits the
Milky Way. Other tidal streams have been discovered over
the years: some of them connected to globular clusters (e.g.
Palomar 5, Odenkirchen et al. 2001) and some others rep-
resent the last remnants of now defunct dwarf galaxies (e.g.
Virgo, Duffau et al. 2014).

Despite the existence of these multiple tracers, there is
no consensus in the literature on the mass of the Milky Way
halo (Wang et al. 2015): measurements differ up to a factor
5 and relative precisions range from below 10% to roughly
100%. The situation is no different when, instead of its mass,
the halo shape is considered. While the Milky Way’s dark
matter halo is often measured to be a spheroid with two of
its axes being equal and aligned with the disc galaxy within
(e.g., Bovy et al. 2015; Pearson et al. 2015), conflicting mea-
surements are present in the literature and triaxial shapes
have also been suggested (e.g. Law & Majewski 2010). The
halo shape could also be a function of radius, spheroidal
in the centre and triaxial in the outer region (Vera-Ciro &
Helmi 2013). In the case of a pure spheroid, the ratio be-
tween the third axis and one of the others is usually referred
to as c/a or, like in this paper, just q. A ratio q = 1 corre-
sponds to a sphere, while the conditions q > 1 and q < 1
correspond respectively to a prolate or an oblate spheroid.
Reports range from a spherical halo (e.g., Bovy et al. 2016b)
to oblate (e.g., Loebman et al. 2014) or prolate (e.g., Bow-
den et al. 2016; Posti & Helmi 2018). It is clear that when
previous endeavours to measure the Galactic halo are put
together, the tensions between different probes imply the
existence of systematic biases.

In future years, hypervelocity stars (HVSs) are expected
to be introduced to this landscape as a powerful probe. For
the purposes of this work we will refer to HVSs as high veloc-
ity objects (Galactocentric velocity > 450 km/s) travelling
from the Galactic Centre (GC) along quasi-radial orbits. In
2005 the first HVS was discovered (Brown et al. 2005): a B-
type main sequence star with radial velocity in the Galactic
rest frame of about 700 km/s. Subsequent observations have
measured its distance from the GC, found to be of the or-
der of 100 kpc (Brown et al. 2014). Given its high velocity,
the object was measured to be unbound form the Galaxy.
Over the years, objects with similar stellar properties have
been found and to date the largest and most studied sample
is composed of the 21 HVS candidates reported by Brown
et al. (2014), a survey targeting B-type stars in the outer
halo. In the near future, the high-quality sample of HVSs
predicted to be observed by the satellite mission Gaia (Gaia
Collaboration 2016; Gaia Collaboration et al. 2018) by the

early 2020s is expected to contain several hundred objects
(Marchetti et al. 2018) and will offer a new diffuse dynamical
tracer for the Galactic potential.

The goal of this paper is to introduce a new method to
exploit this tracer. Gnedin et al. (2005) already showed that
a few HVSs can be a powerful tool to constrain the shape
and orientation of the Galactic halo and a precision of about
10% can be reached if accurate proper motion and Galacto-
centric distances are known. Later, Yu & Madau (2007) have
shown how the triaxiality of an ellipsoidal halo can be esti-
mated directly from observed HVS positions and velocities
under a specific halo model. Other similar attempts include
Perets et al. (2009), who explored how asymmetries in the
radial velocity distribution of halo stars due to HVSs depend
on the Milky Way mass, and Fragione & Loeb (2017), which
is an application of such method. In other cases, inferences
about the Galactic gravitational potential behind the decel-
eration of HVSs assume a certain class of ejection velocity
distributions (e.g., Sesana et al. 2007; Rossi et al. 2017).

We expand on previous works by developing a new
versatile technique that can be adapted with minimal as-
sumptions to a variety of models for the ejection mechanism
and Galactic potential. This is of the uttermost importance
to produce unbiased joint constraints in combination with
other probes (see Rossi et al. 2017, where two of us have
shown the power of this approach). Our method is based on
a reconstruction of the HVS orbital history and it has the
advantage of not requiring simulations of the entire popula-
tion for every potential/ejection model studied.1

To validate our method we will focus here on HVSs
ejected through one realization of the Hills mechanism (Hills
1988; Yu & Tremaine 2003; Sari et al. 2010). According to
this mechanism, the three-body interaction between a bi-
nary system and a massive black hole (MBH) results in one
star orbiting closely around the black hole and the other one
being ejected at high velocity. The aforementioned observa-
tions of high-velocity stars in the Galactic halo are consistent
with the existence of such mechanism and at present, it is
still considered the leading explanation (Brown 2015; Brown
et al. 2018). Note also that HVSs are expected to be an ob-
servational consequence of the massive black hole located in
the GC (Ghez et al. 2003).

In Sec. 2 we construct mock populations of this sample,
based on previous work (Rossi et al. 2014, 2017; Marchetti
et al. 2018). Our mock catalogues are based on the expected
astrometry and photometry of the final Gaia data release.
Afterwards, we lay the foundations of our technique and we
arrive in Section 3 at an integral formula for the phase space
distribution of these objects, which allows us to write down
a likelihood function for an observed sample of HVSs. In the
same section, we also discuss the advantages and limitations
of the method. In Sec. 4 we then test our approach and try
to recover the dark matter halo inside which the simulated
sample was propagated. In the same section, we also ad-
dress issues related to the practical implementation of our
technique for a Gaia -like sample.

1 In the interest of reproducibility we make our code publicly

available at https://www.github.com/contigiani/hvs.
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On measuring the Galactic halo with HVSs 3

2 SIMULATED HVS CATALOGUES

The first step to verify how and if HVSs can constrain the
dark matter halo of the Milky Way is to produce an obser-
vational mock catalogue of HVSs. To produce such sample
we need to specify three important ingredients: 1) the ejec-
tion distribution that determines how the velocities, posi-
tions and masses of our stars are distributed at the moment
of ejection from the GC; 2) a survival function that dictates
the fraction of HVSs alive after a time t post-ejection, and
3) a gravitational potential under the influence of which the
stars trace their orbits. In the next three subsections we
present an implementation of these quantities and we con-
clude, in the last subsection, with the details of our numer-
ical simulation.

2.1 Ejection rate distribution

We aim to parametrize the distribution of velocities, posi-
tions and masses at ejection for HVSs generated through the
Hills mechanism (Hills 1988) by writing down an explicit ex-
pression for an ejection rate distribution R(w ), which has the
units of a configuration space density per unit time. We call
w our configuration space coordinate, w = (x, v,m), where
(x, v ) is the usual phase space coordinate (position, velocity)
and m is the stellar mass. We follow the set up first described
in Rossi et al. (2017) and then implemented by Marchetti
et al. (2018).

In a reference system centred on the massive black hole
(or equivalently, the GC) we can write:

R(w = (x, v,m)) = ΓRH (|v |,m) δ (|x |) δ (x · v ) , (1)

where we have introduced the ejection rate per unit time Γ
and the δ terms are Dirac deltas. In this work we will not
assume any value for Γ and we will normalize all of the other
functions appearing in this expression to unity.

The main prediction of the Hills mechanism quantifies
the asymptotic velocity of the ejected objects at an infi-
nite distance from the massive black hole. In practice, this
distance can be modelled as the radius of the gravitational
sphere of influence of the black hole r̄, defined as the radius
of the sphere centred on the black hole and containing twice
its mass. For distances larger than its radius the potential
of the black hole becomes a negligible fraction of the total
Galactic potential. We pick the value r̄ = 3 pc (Genzel et al.
2010) and impose this to be the ejection radius through the
Dirac delta function δ (|x |).

The term RH (|v |,m) quantifies the relative probabilities
of different initial velocities and masses of HVSs. It can be
computed using Monte Carlo (MC) simulations as done in
Rossi et al. (2014, 2017); Marchetti et al. (2018). In the first
paper it is also shown that the resulting distributions can
be easily fitted with analytic functions. By fitting the Hills
mechanism MC catalogue in Marchetti et al. (2018) to the
functional form suggested by Rossi et al. (2014) we obtain{
RH (|v |,m) ∝ m−1.7 |v |−1 if |v | ≤ v0(m),
RH (|v |,m) ∝ m−1.7 |v |−6.3 if |v | > v0(m);

(2)

v0(m) = 1530 (M�/m)0.65 km/s. (3)

Notice that the velocity distribution for a fixed value of
m has a high velocity tail starting from the value v0(m).

The last term in eq. 1 is a Dirac delta function imposing
zero angular momentum. This condition must be satisfied at
any ejection distance |x | > r̄ since every HVS is a product
of a close encounter of the progenitor binary with the back
hole at a much closer distance. Assuming this distance to be
tidal disruption radius rbt , for a massive black hole of mass
Mbh = 106 M� and a binary with semi-major axis a ∼ 1 R�
and total mass m∗ ∼ 1 M� we get rbt = a(Mbh/m∗)1/3 � 3
pc.

2.2 Survival function

If there is no preferred time of ejection, the flight time t f of
an HVS of mass m is sampled according to

t f = tL(m)(1 − ε1)ε2, (4)

where ε1, ε2 are random variables uniformly distributed be-
tween 0 and 1, and tL(m) is the stellar lifetime (Marchetti
et al. 2018). In our implementation this is taken to be equal
to the main sequence lifetime, modelled according to Hurley
et al. (2000).

The probability density function of the variable t f is
found to be equal to

f (t f |m) = −
1

tL(m)
log

(
t f

tL(m)

)
. (5)

Note that the average value of t f /tL is then expected to
be 0.25, i.e. on average HVS fly for a quarter of their life-
time. The function g(t f ,m) is then the corresponding survival
function:

g(t f ,m) = 1 −
∫ t f

0
f (t |m) dt = 1 −

t f
tL(m)

+
t f

tL(m)
log

(
t f

tL(m)

)
,

(6)

for t f < tL(m).

2.3 Galactic potential

We model the Milky Way gravitational potential as the sum
of four components: central black hole, bulge, disc and dark
matter halo. Depending on the symmetry, we use Cartesian
(x, y, z), spherical (r, θ, φ) or cylindrical coordinates (R, ϕ, z).
In all three cases we position the GC at the origin and the
z axis perpendicular to the Galactic disc.

The first component is a simple Keplerian potential and
it is meant to describe the massive black hole at the centre
of the Galaxy with a mass of Mbh = 4× 106 M� (Eisenhauer
et al. 2005; Ghez et al. 2008),

ΦBH(r, θ, φ) = −
GMbh

r
. (7)

The second and third components are an Hernquist
spheroid (Hernquist 1990) and a Miyamoto-Nagai disc
(Miyamoto & Nagai 1975) respectively. This form and model
parameters are chosen because they are commonly used to
parametrize the baryonic components of the Galactic po-
tential in similar studies (e.g., Johnston et al. 1995; Price-
Whelan et al. 2014; Rossi et al. 2017).

MNRAS 000, 1–13 (2018)
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Table 1. Choice of the NFW scale parameters Ms, rs and axis-
ratio q for the three fiducial haloes used in this work to model

the dark matter distribution of the Galaxy.

Model Ms rs q

A 0.76 × 1012 M� 24.8 kpc 1

B 0.76 × 1012 M� 24.8 kpc 3/2

C 1 × 1012 M� 20.0 kpc 1

ΦBulge(r, θ, φ) = −
GMb

ab + r
, (8)

ΦDisc(R, ϕ, z) = −
GMd√

R2 +
(
ad +

√
z2 + b2

d

)2
. (9)

We use the values ab = 0.7 kpc, Mb = 3.4 × 1010 M�,
ad = 6.5 kpc, bd = 260 pc, Md = 1011 M� from Price-Whelan
et al. (2014).

The last component of the potential is a spheroidal
NFW density profile (Navarro et al. 1997) and it models
the dark matter halo of the Milky Way,

ρNFW(x, y, z) =
Ms

4πr3
h

1
(ξ/rs)(1 + ξ/rs)2

, ξ2 = x2 + y2 +
z2

q2 .

(10)

Notice that for the sake of simplicity, in our
parametrization q corresponds to the dimensionless axis ra-
tio of our spheroid. The potential associated to this matter
density is found by solving Poisson’s equation,

∇2
ΦNFW = 4πGρNFW. (11)

In this study we will focus on three different fiducial
Galactic haloes (see Table 1). For model A the chosen values
for Ms, rs are the best fit parameters to the rotation curve
of the Milky Way for a spherical halo (Rossi et al. 2017). In
model B we consider an oblate spheroid as variation of this
model, and in model C we consider a spherical halo with a
significantly different scale radius and mass.

2.4 Mock catalogues

We follow a procedure similar to the one detailed in
Marchetti et al. (2018) to generate mock HVS Galactic pop-
ulations ejected through the Hills mechanism and simulate
the effect of the Gaia selection function. In the same pa-
per, we estimated the current Galactic population of HVSs
produced through the Hills mechanism to include 105 mem-
bers. An ejection sample of this size is therefore gener-
ated by sampling the distribution R(w ) in eq. 1 using a
Markov chain Monte Carlo method implemented through
the python library emcee (Foreman-Mackey et al. (2013),
based on Goodman & Weare (2010)). The sample is then
propagated numerically by the software galpy (Bovy et al.
2015), through the three fiducial models of the Galactic po-
tential presented in Sec. 2.3, using a time step δt = 0.01
Myr. The integration time, i.e. the flight time, for each star
is dictated by the formulas presented in section 2.2. At the
end, the photometric properties of the stars are simulated

using the stellar models provided by Hurley et al. (2000),
the BaSeL SED Library 3.1 (Westera et al. 2002) and a
map of the dust reddening in the Milky Way presented in
Bovy et al. (2016a) (a combination of Drimmel et al. 2003;
Marshall et al. 2006; Green et al. 2015). The magnitude in
the Gaia band GRVS is then computed using the polynomial
fitting functions provided by Jordi et al. (2010).

From this catalogue we define a golden sample by im-
posing two conditions. First, only stars brighter than the
16th magnitude in the GRVS band are selected. This cut
filters objects for which Gaia is expected to measure the
line of sight velocity (Cacciari et al. 2016; Katz et al. 2018).
The second condition that we impose is related to the ve-
locity of the objects appearing in the sample: we impose a
total velocity at present time in the Galactic reference frame
higher than 450 km/s. This threshold filters objects which
will be clearly recognizable as high velocity – i.e. faster than
three times the one dimensional Galactic velocity disper-
sion (Battaglia et al. 2005; Brown et al. 2010; King III et al.
2015). At the end of this selection process our golden samples
contain 195, 192, 211 objects for halos A, B, C respectively.2

Additional information about the catalogue is available in
Marchetti et al. (2018).

3 DISTRIBUTION FUNCTION

We study the distribution of HVSs in the configuration space
labelled by w = (x, v,m), where (x, v ) is the usual phase
space coordinate (position, velocity) and m is the stellar
mass. We then introduce the density function of HVSs in
this space at a time t:

f (w ; t) = dN(t)
d3v d3x dm

. (12)

In this expression, dN(t) represents the number of HVSs
in the volume d3v d3x dm. We now aim to write down this
distribution as a combination of two other functions: the
ejection rate distribution R(w ), which parametrizes the den-
sity of HVSs ejected at a given position of the configuration
space per unit time, and the survival function g(t,m), which
quantifies the fraction of stars of mass m which survives for
at least a time t after ejection. In Sec. 2.4 we have provided
two example of how these functions might be defined. No-
tice that we assume a stationary process for the creation of
HVSs, meaning that R(w ) is not a function of time.

These definitions allow us to write down the total num-
ber of HVSs present in the Galaxy at a time t after the
formation of the Milky Way or, equivalently, when the first
HVS was ejected:

N(t) =
∫

d7w

∫ t

0
dt ′ R(w ) g(t − t ′,m), (13)

In this expression we integrate R(w ) over the entire con-
figuration space and over every possible ejection time t ′. In

2 Since we have modelled our analytical R(w ) after the MC

method we used in Marchetti et al. (2018), it is not surprising
that the size of our golden samples agrees with the one found in

the aforementioned paper.

MNRAS 000, 1–13 (2018)
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the last integral, the weight function g(t − t ′,m) accounts for
the fact that not all stars ejected at a time t ′ will still be
alive after a time t − t ′.

From the expression for N(t) we can derive the density
function by applying a Dirac delta function in configuration
space:

f (w ; t) =
∫

d7w′
∫ t

0
dt ′ R(w ′) × g(t − t ′,m) δ

(
W (w ′, t ′; t) −w

)
.

(14)

In this expression we introduced the solution of the
equations of motion in configuration space, W (w ′, t ′; t),
which maps the initial condition w ′ at a time t ′ to the
phase space position W at a time t > t ′. The delta func-
tion imposes that objects in the position w at a time t must
have been generated inside the appropriate orbit W (w ′, t ′; t)
at the appropriate time. Note that if we assume that the
stellar mass is not a function of time, Liouville’s theorem
ensures that the map (w ′, t ′) ↔ (W , t) is bijective and con-
serves the volume d7w. Because of this, applying the Dirac
delta in the integral over d7w′ does not introduce a Jaco-
bian term despite the argument of the Dirac delta not being
a trivial function of w ′. Furthermore, because Hamilton’s
equations for a single HVS are time invariant, we can write
W (w′, t ′; t) ≡W (w′; t − t ′). In conclusion, we derive the fol-
lowing:

f (w ; t) =
∫ t

0
dt ′ R(w ′(w ; t − t ′)) g(t − t ′,m). (15)

In this expression we have introduced the trajectory
w ′(w ; t − t ′) which is a solution of the argument of the delta
function in eq. (14) and it can be found by integrating nu-
merically back in time the equations of motion from the
starting point w .

Notice that this final result is completely general: it does
not discriminate between bound or unbound objects and can
be applied to a variety of ejection mechanisms and lifetime
models.

In this analysis we are interested in exploring how the
distribution in eq. (15) is affected by the Galactic potential.
The dependence on the dynamics is not made clear from the
expression itself, but it is hidden in the backwards trajec-
tory w ′(w ; t − t ′) . If we model the Galactic potential using
a set of parameters θ, we can write down the parametric
configuration space distribution as:

f (w ; t |θ) =
∫ t

0
dt ′ R(w ′(w ; t − t ′ |θ)) g(t − t ′,m). (16)

We can then assign for every value of this parameter
vector a likelihood to the observation of NHVS HVSs in the
configuration space points {w1, . . . ,wNHVS } at a time t:

L(θ) =
NHVS∑

i

f (w i ; t |θ). (17)

While the likelihood function formally depends on the
observations, in order to simplify the notation our expression
does not make this dependence of L on w i explicit.

Our implementation is strictly a forward-fitting algo-
rithm, meaning that it does not produce model-independent

results, but it can be used to constrain any parametric
model. The first obvious advantage of this technique is that
it allows us to parametrize (hence fit) any aspect of the HVS
population. For example, we could easily use an observed
sample to constrain a parametric version of R(w ). In this
case, we would write the dependence on model parameters
explicitly into its expression. Notice however that, in order
to compare different ejection mechanisms, the rates Γ should
be fixed or at least be left as free parameters. Second, we
stress that the technique described here can be implemented
for unbound and bound trajectories alike. The periodicity
is not an issue thanks to the explicit time dependence of
g(t f ,m). The presence of this function in the integral also
means that the time integration should be performed only
between now and a time tL(m) in the past, since g(t f ,m) is
zero by design after this point. Third, because the stars are
tested individually and not as a sample, a single one is able
to rule out any Galactic potential not consistent with Galac-
tocentric origin or any ejection model unable to reproduce
the range of allowed initial velocities.

In practice, the evaluation of L(θ) is performed by in-
tegrating numerically back in time the HVS orbits from the
observed positions w i under the influence of the potential
specified by θ. For consistency, our set-up matches the one
employed for the creation of the mock catalogue. Given the
orbit w (t−t ′) as a function of the backwards time coordinate
t ′ we can then evaluate the integral in eq. 15 in the configu-
ration space volume where R(w ) is non-zero. Because of the
presence of the Dirac deltas this volume is formally a 4−d
space embedded in the 7-d configuration space. To perform
the integral and account for numerical errors we swap the
Dirac deltas with Gaussian kernels calibrated against the nu-
merical precision of the orbit back-propagation code. This
introduces two smoothing parameters which correspond to
σr = 10 pc and σL = 10 pc×(km/s).

4 LIKELIHOOD FUNCTION

To test our method, we study the likelihood L(θ) for the
golden sample of HVSs simulated in Sec. 2 as input data
and the halo potential parameters as variable θ. In Sec. 4.1
we explore the parameter space θ = (Ms, rs), while keeping q
fixed at the fiducial value; and in Sec. 4.2 we assume θ = (q)
and freeze Ms, rs. We then discuss in Sec. 4.3 the implications
for the full parameter space θ = (Ms, rs, q). We use the
subscript 0 (e.g. q0) to indicate the fiducial value of our halo
parameters.

Our analysis also helps us identifying which stars are
particularly suited to measure the Galactic halo. In Sec. 4.4
we characterize this sample and discuss the impact of ob-
servational errors on the orbital reconstruction method we
apply to it.

4.1 Likelihood in Ms − rs plane

For the three haloes A, B, C we evaluate the likelihood, eq.
(17), in the space rs, Ms using a coarse grid of size 27 × 27.
Based on the results, we define three classes of HVSs in
our golden sample: strong, average and poor constrainers.
This classification is based on the number of points on our
grid with non-zero likelihood. Fig. 1 and Fig. 2 depict the

MNRAS 000, 1–13 (2018)
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Figure 1. Number HVSs with non-zero likelihood for potentials
defined in the plane Ms−rswith a constant shape parameter q set

at its fiducial value. Here we consider only the average constrain-

ers (see Sec. 4.1). The peak corresponds to the fiducial model A,
under which these stars were propagated. The clear degeneracy

line corresponds to a constant value of α = Ms/r2
s .
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Figure 2. Number of HVSs with non-zero likelihood for every

potential explored in the plane Ms − rs . Same as Fig. 1, but here

we consider only the poor constrainers (see Sec. 4.1). No peak
is visible for the fiducial model A, under which these stars were

propagated.

significantly different trend of the latter two classes for halo
A. The strong constrainers (not shown) are stars for which
no particular trend in the likelihood was identified and have
non-zero likelihood only in the fiducial model.

For every star we call n the number of non-zero likeli-
hood points associated to it: strong constrainers have n = 1
and average constrainers have 1 ≤ n ≤ 300. The value 300 is
picked from visual inspection of the individual likelihoods.

From Fig. 1 we infer that HVSs are sensitive exclusively
to the parameter

α =
Ms

r2
s

(18)

in the Ms − rs plane. Following the established notation, we
call α0 the fiducial value of this parameter. Notice that, for
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Figure 3. Relation between n (number of potentials with non-
zero likelihood in the plane Ms − rs) for stars propagated in halo

A and the 1σ error on α = Ms/r2
s . The top histogram shows the

distribution of n for the stars in our golden sample. The relation
saturates for n . 30, when grid effects start to hinder the estimate

of σα . Therefore, the relation σα(n) is calibrated using only points

outside the shaded area.

a spherical NFW potential, this degeneracy is natural and
every α corresponds to a value of the local force at small
radii:

F ∝ M(< r)
r2 =

1
r2

∫ r

0
4πy2ρNFW(y) dy ≈

Ms

2r2
s

, (19)

where we expanded the integral around r/rs = 0. A simple
physical interpretation of this degeneracy is that the inner-
most region of the halo is responsible for the majority of the
deceleration experienced by these HVSs.

For any single star we can interpolate the likelihood in
our coarse grid and obtain an estimate of the 1σ error on α

associated to it, which we call σα. Fig. 3 shows how n and σα
are related to each other. The scaling σα ∝

√
n is indicative

of the fact that a constant α represents a 1d curve in the
2d Ms − rs plane. After confirming the absence of bias in
the measurement of α for the individual stars, we estimate
the 1σ error of the stacked likelihood by assuming normality
and using the geometric mean of the individual variances:

σ̂α,q0 =

(∑
i

1
σ2
α(ni)

)−1/2

∝
(∑

i

1
ni

)−1/2

(20)

where the proportionality constant for σα(n) is fitted inde-
pendently for our three halo models and, for halo A, it is
presented in Fig. 3. The variable ni represents the n corre-
sponding to the i−th star. The proportionality constant in
σα(n) is found to be equal to (1.7, 1.2, 3.3) × 107 M� kpc−2

for halo A, B, C respectively.
Table 2 reports the number of sources in each class for

our three fiducial haloes and the effective precision in α ex-
pected from the strong and average constrainers using this
method. Notice that the value of the combined errobar σ̂α,q0
is dominated by low-n stars, meaning that we are extremely
susceptible not only to the inferred σα(n) but also to changes
in the distribution of the variable n. To mitigate this effect,
the σ̂α/α0 mentioned in the table does not use an extrapo-
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Figure 4. Number of stars with non-zero likelihood under a po-
tential with varying q and fixed Ms, rs . We consider for this figure

average, poor and strong constrainers for the shape parameter q

(see Sec. 4.2). The peak corresponds to the fiducial model A, un-
der which these stars were propagated.

lated σα(n) to values n < 30, but assumes the constant value
σ(n = 30).

In Sec. 4.4 we discuss how various orbital properties
strongly correlate with the likelihood classification and how
this information can be used to guide future detections of
HVSs.

4.2 Likelihood in q

Similarly to what we did for the parameter α, we evalu-
ate the likelihood in eq. (17) by varying the parameter q,
while fixing the values of Ms and rs to their fiducial val-
ues (Table 1). We develop again a classification based on
the number of non-zero likelihood points, which is shown in
Fig. 4. Notice that while the poor constrainers might prefer
the fiducial model, we confirm that their individual likeli-
hoods are either extremely broad or significantly biased –
sometimes excluding the fiducial value at the 3σ level.

We stress that the labels we attach to the HVSs (either
poor, average or strong constrainer) are independent state-
ments for the two parameters α and q. We find, however,
significant overlap between them: for halo A, among the 142
strong constrainers for q, 126 are in the average category for
α and 15 are in the strong one. In fact, the performance of
every star for q is always equal or better than for α. This
implies that HVSs are more sensitive to one parameter than
the other in our scheme. This is expected; while the param-
eters Ms and rs set the deceleration, a incorrect parameter
q can disrupt the ejection point of quasi-radial orbits by
introducing additional torque.

For each star, we can relate the number n of non-zero
likelihood points for the parameter q to the expected confi-
dence interval σq . Fig. 5 shows how the two are related and
provides the distribution of the values of n for the strong and
average constrainers for our halo A model (the same trend
is observed in all models). As discussed in Sec. 4.1 for the
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Figure 5. Relation between n (number of potentials with non-
zero likelihood for the parameter q) for stars propagated in halo A

and the 1σ error on q. The top histogram shows the distribution

of n for the stars in our golden sample. The relation σq (n) is
calibrated using only a fraction of the sample, presented by the

plotted points.

parameter α, this scatter plot also fixes the proportionality
constant for the stacked uncertainty:

σ̂q,α0 =

(∑
i

1
σ2
q(ni)

)−1/2

∝
(∑

i

1
n2
i

)−1/2

. (21)

Notice that this time σq(n) ∝ n, since our mesh for this
section is constructed on the space of the parameter q di-
rectly. As before, because we are extremely susceptible to
our reconstruction of σq(n), we do not extrapolate σq(n) be-
low the value n < 3, but we assume a constant value. Notice
how bias notwithstanding, some of the poor constrainers can
still be used to calibrate σq(n). The proportionality constant

in σq(n) is found to be equal to (1.8, 2.3, 2.3) × 10−3 for halo
A, B, C respectively.

Our results are summarized in Table 2, where we present
the estimated precision σ̂q for the combination of our aver-
age and strong constrainers.

4.3 Correlation between α and q

In Fig. 6 we show how many stars allow a certain halo model
parametrized by α and q. To generate this figure, we have
explored the whole parameter space θ = (Ms, rs, q) only for
15 stars in the average category for both α and q, as de-
fined in the previous two subsections. We consider only this
subset because these stars have a broad likelihood in both
projections and are particularly suited to show the presence
of correlation.

A correlation is clearly visible for every star, but while
in the plane Ms −rs they all constrain the same combination
α, the same is not true in the plane q − α. As an example of
this, in Fig. 6 we also show the degeneracy stripe for 2 stars.
Because of this, we expect both direction and size of the
combined constraints to depend on the particular selection
bias of our sample.

To give an estimate of the impact of this correlation on

MNRAS 000, 1–13 (2018)
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Table 2. Number of HVSs with different constraining power for the fiducial haloes considered in this work and predictions for the
combined relative errors σ̂α/α0 and σ̂c/αq on the NFW effective parameters α = Ms/r2

s, q. The lower bound on the error σq is found

in Sec. 4.2 (4.1) by fixing Ms, rs (q) to the fiducial values and exploring only the direction q (plane Ms − rs). The upper bound is found

in Sec. 4.3 after estimating the correlation coefficient between the two parameters.

Model α q

# poor # average # strong σ̂α/α0 # poor # average # strong σ̂q/q0

A 39 141 15 0.63% - 0.95% 18 35 142 < 0.1%
B 6 130 56 0.47% - 0.71% 23 38 131 < 0.11%
C 33 143 35 0.64% - 0.96% 9 32 170 < 0.1%
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Figure 6. Number of HVSs propagated in halo A for which a

given halo, parametrized by the effective scale parameter α =

Ms/r2
s and shape parameter q, is allowed. The peak at (1, 1)marks

the fiducial values for halo A. The figure was created using stars

for which a visible spread in the likelihood is present in our grid

and the result proves that there is correlation between the two
parameters. The contours are created by linearly interpolating

the values found on a grid. To illustrate the origin of this degen-

eracy, the dashed and solid lines delimit regions allowed by two
particular stars.

our reconstructed errors we assume the combined likelihood
to be a bivariate normal distribution. Notice that in the
previous two sections we verified that the two one-directional
log-likelihoods logL(α, q0) and logL(α0, q) are both normal.
However, the 1σ error bars σ̂α,q0 and σ̂q,α0 we found in
Sec. 4.1, 4.2 do not correspond to the standard deviations of
the full logL(α, q) in the presence of correlation. A bivariate
log-likelihood up to constant terms can be written as:

logL(α, q) = (22)

− 1
2(1 − ρ2)

[
(c − c0)2

σ̂2
c

+
(α − α0)2

σ̂2
α

− 2ρ(α − α0)(c − c0)
σ̂ασ̂c

]
.

(23)

Where σ̂α, σ̂q are the standard deviation for the two pa-
rameters and −1 < ρ < 1 is the correlation coefficient. From

this expression it is clear that the standard deviations found
in Sec. 4.1, 4.2 are an underestimate of the real error bars
in the full α, q parameter space and should be multiplied
by a factor (1 − ρ2)−1/2 ≥ 1. An estimate of the correlation
coefficient ρ can be found by fitting the function in Fig. 6
by assuming that the number of stars with non-zero likeli-
hood trace the underlying likelihood contours. By doing this,
we obtain ρ = −0.74, which corresponds to a factor 1.5 for
the uncertainties. This multiplication provides us with up-
per limits for the 1σ errors, as reported in Table 2. Notice
that we consider this to be an overestimate of the real uncer-
tainties because the individual contours are in reality non-
normal, non-linear and have slightly orthogonal constraints
among each others.

The quoted precisions for α, q in our summary table are
remarkable. This is a by-product of the extremely stringent
condition that all HVS orbits should be radial and cross
the ejection region near the GC, which represents a lim-
ited volume of the Galactic phase-space. In our numerical
implementation, this volume is determined by the hyper-
parameters σr and σL , which set the maximum distance
from the GC, r, and the maximum angular momentum, L,
allowed inside the ejection region. In our testing, relaxing the
condition on the angular momentum worsens the constraints
in α, q considerably, meaning that the zero-angular momen-
tum condition is the dominant factor that allows HVSs to
constrain the NFW profile.

4.4 Observational prospects

Fig. 7 show the orbital characteristics of the strong, poor
and average constrainers for the parameters α, q.

From the scatter plots, it is clear that there is a correla-
tion between how constraining stars are and how much time
they have spent being affected by the gravitational poten-
tial (see flight time panel). The most powerful stars in our
golden sample are therefore tightly bound and have spent
hundreds or thousands of Myr orbiting around the Galaxy.
Unfortunately part of these stars spend most of their time in
a region where the Galactic Disc dominates the gravitational
potential and while we have assumed perfect knowledge of
this component, in reality this will hinder the halo recon-
struction. In addition, the identification of these HVSs is
difficult because of their low Galactocentric velocities.

On the other hand, we identify a useful sample made
from average constrainers for α and strong constrainers for
q, located at Galactocentric distances above 2 kpc. Because
around half of this sample is moving along unbound trajec-
tories, the identification of these HVSs is feasible.

The distributions in Galactocentric velocity and posi-
tion presented here set clear targets for observations aimed

MNRAS 000, 1–13 (2018)



On measuring the Galactic halo with HVSs 9

100

101

102

103

n

strong
average
poor

1036 × 102

Velocity at ejection (km/s)

100

101

Nu
m

be
r

0.03

0.10
0.30

/
0

100

101

n

strong
average
poor

1036 × 102 2 × 103

Velocity at ejection (km/s)

100

101

Nu
m

be
r

0.005
0.010

0.030

q/q
0

100

101

102

103

n

strong
average
poor

1036 × 102 2 × 103

Galactocentric velocity (km/s)

100

101

Nu
m

be
r

0.03

0.10
0.30

/
0

100

101

n

strong
average
poor

1036 × 102 2 × 103

Galactocentric velocity (km/s)

100

101

Nu
m

be
r

0.005
0.010

0.030

q/q
0

100

101

102

103

n

strong
average
poor

10 1 100 101

Galactocentric distance (kpc)

100

101

Nu
m

be
r

0.03

0.10
0.30

/
0

100

101

n

strong
average
poor

10 1 100 101

Galactocentric distance (kpc)

100

101

Nu
m

be
r

0.005
0.010

0.030

q/q
0

100

101

102

103

n

strong
average
poor

100 101 102 103

Flight time (Myr)

100

101

Nu
m

be
r

0.03

0.10
0.30

/
0

100

101

n

strong
average
poor

100 101 102 103

Flight time (Myr)

100

101

Nu
m

be
r

0.005
0.010

0.030

q/q
0

Figure 7. The number of HVSs (Number, histograms in lower panels) and number of non-zero likelihood points per star (n, upper panels)

as a function of various kinematic properties. Markers and lines in green, orange and cyan correspond respectively to poor, average and

strong constrainers as defined in Sec. 4.1 and 4.2. The results shown are for model A for the Milky Way’s dark matter halo, but identical
trends are found in model B and C. Overall, these plots show the presence or absence of correlation between the kinematic properties of

HVSs and their ability to constrain the parameter α (left column) or q (right column), parametrized by the expected individual relative

errors σα/α0 and σq/q0. In the ejection velocity plots, the two vertical dashed lines mark, from left to right, the minimum velocity
necessary to reach a Galactocentric distance equal to the scale radius rs and 250 kpc respectively.
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at measuring the Galactic halo with HVSs. Notice in par-
ticular that in order to produce an average constraint for α,
a HVS needs an ejection velocity sufficiently high to reach
Galactocentric distances equal to the scale radius rs, but it
is not required to be there when observed. This is not sur-
prising, since α is the effective parameter measured in the
Ms − rs plane. Note also that while not shown, the results
for halo B and C follow the same trends.

Another important factor to consider regarding future
observations is the presence of uncertainties in the astrom-
etry of our stellar sample. In Appendix A we show that for
true HVSs, Gaia-like observations should not affect our halo
reconstruction, but might still cause complications in the
identification of HVSs. In particular, we expect a certain
amount of contamination due to stars which, by chance, fol-
low HVS-compatible orbits.

While quantifying the impact of this contamination and
correcting for its effect in the inferred halo parameters is not
the goal of this paper, we can still quantify its expected mag-
nitude using simple arguments. Robin et al. (2012) estimated
the number of halo stars in the final Gaia catalogue to be
equal to 107. Of these, around 104 will have velocities higher
than our golden sample threshold of 450 km/s. Assuming
an isotropic velocity distribution and the fiducial star with
Gaia error bars (see Appendix A), the fraction of stars with
a proper motion vector consistent with the radial direction
is then ∼ 10−3. According to this estimate, the number of
halo stars polluting our sample should be ∼ 10, close to the
∼ 100 real HVSs that we expect in our average constrainer
class. Notice however that this bound is particularly conser-
vative, since we have neglected additional information – like
metallicity – which correlate greatly with being a HVS.

5 DISCUSSION AND CONCLUSIONS

Hypervelocity stars are remarkable objects. According to the
leading model, they are ejected from the GC with high ve-
locity (around 103 km/s) and travel along orbits spanning at
least tens of kiloparsecs. This allows them to probe the grav-
itational potential of the Milky Way where the dark matter
halo is dominant.

In this work we have developed a technique to extract
information about the Galactic potential and the ejection
mechanism from the observed HVS distribution in mass,
velocity and position. Our method predicts the density of
HVSs for a given stellar mass and phase-space position by
back-propagating the observed location to the ejection point.
The orbit is therefore required to cross the GC within a
stellar lifetime to result in a non-zero distribution function.
This is the basis of our likelihood pipeline, used to pro-
duce model constraints. To test our method we have applied
it to mock HVS populations, designed to mimic what the
European Space Agency’s mission Gaia will observe in the
next few years. In our simulations, HVSs are propagated
in three fiducial axisymmetric potentials and then used to
reconstruct the dark matter components, modelled using a
spheroidal NFW potential defined by a scale radius, scale
mass and axis ratio (rs, Ms, q).

The results of our analysis are very promising, we find
that ∼ 200 HVSs are able to provide an unbiased measure-
ment of the NFW potential parameters with sub-percent

uncertainties, thanks mainly to the strict constraints we im-
pose on the ejection location and angular momentum at that
instant. While promising, it should be kept in mind that our
results were obtained in an idealized scenario. We assumed
perfect knowledge of the baryonic potential and the para-
metric form of dark matter halo, not accounting for mod-
elling errors.

We test the robustness of our results for both spherical
and oblate geometries, and for two different values of the
fiducial scale parameters. In all cases we also observe a nat-
ural degeneracy, whereby only the combination α = Ms/r2

s
can be constrained. We also identify two special classes of
stars, named ”poor”and ”strong”constrainers. The first class
contains 15−30% of our sample and the stars in it are not be
able to produce likelihood contours because, of the model ex-
plored, only the fiducial one produces a non-zero likelihood.
The second class, similarly sized, contains stars which are
unable to tell the majority of the potentials in our grid from
each other. If we neglect the poor constrainers, we identify a
useful sample of ∼ 150 stars which can individually measure
α with a precision of ∼ 20% and q with a precision of ∼ 5%.

In Fig. 8 we summarize the final results of this paper by
showing how many stars in our sample we expect to allow a
given halo potential. It should be noted that the correlation
visible in the rightmost panel of this figure is not a charac-
teristic of individual HVSs, but arises because single HVSs
constrain different combinations of q and α. To account for
this in our estimates, in Sec. 4.3 we have estimated the co-
variance between the two variables in the stacked likelihood.
Our final estimate of the 1σ relative uncertainties is < 1%
for α and < 0.1% for q (see Table 2).

We also show that the constraining power of HVSs cor-
relates with some observational quantities. In particular, we
identify two essential properties characterizing a useful sam-
ple of HVSs: their orbits should be able to reach the NFW
scale radius and their flight-time should be as long as pos-
sible. This roughly translates into distances from the GC
between 2 and 20 kpc and Galactocentric velocities . 900
km/s. We then discuss how our method can be applied to
real data and examine the impact of observational chal-
lenges. We find that if the origin of a HVS is assumed to
be the GC, Gaia-like uncertainties have no impact on the
reconstructed radial orbit. Furthermore, the number of con-
taminants moving along quasi-radial orbits by chance should
be negligible.

At last, while a detailed comparison between our fore-
cast and actual measurements of the Milky Way halo using
other probes is not straightforward, we find it useful to re-
port the result for our primary model (halo A) in a standard
format. Notice that even if we assume a spherical halo, the
degeneracy in the Ms−rs plane does not allow us to constrain
the virial mass M200 or the virial radius R200.3 This degener-
acy can be broken if we assume that the Milky Way concen-
tration parameter c = R200/rs is related to the virial mass
through a mass-concentration relation, as seen in ΛCDM nu-
merical simulations (see, e.g. Navarro et al. 1997). Without

3 We define M200 as the mass inside a sphere surrounding the

halo where the average density is 200 times the critical density of
the Universe at present times. The radius of this sphere is known
as virial radius, R200.
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Figure 8. Summary of the simulated constraints obtained in this paper using 197 HVSs propagated in a Galaxy with dark matter halo
A. Assuming a spheroidal NFW potential, HVSs are able to measure the axis ratio q and the effective scale parameter α = Ms/r2

s . The

plots on the left show number of stars allowing a certain value for one of the parameters (q or α) when freezing the second one to its

fiducial expectation (q0 for one and α0 for the other). By looking at the likelihood evaluated along to the two directions marked by the
dashed lines in the α − q plane, and taking into account covariance, we are able to estimate the marginalized 3σ error bars visible on

the top-most and right-most side of the contour plot (see Sec. 4.1 and 4.2). An estimate for the correlation between q and α is found in

Sec. 4.3. The plotted ellipses represent the 5 and 10 sigma contours for the inferred bivariate distribution. The figure shows the robustness
of our result to changes in the fiducial values for α and q (halo A, B, C, see Table 1) and it illustrates how the width of the peaks in the

histograms translates, through the combination of multiple stars, in tight constraints for the halo parameters.

assuming a spherical halo, we use the relation from Dutton &
Macciò (2014) and the latest Planck 2015 cosmology Planck
Collaboration (2016) to translate our precision in α into a
virial mass of M200 = (1.5± 0.2) × 1012 M�, corresponding to
∼ 10% precision. Notice that, although our reconstruction of
α is not affected by bias, the recovered virial mass is 2.3σ
away from the true M200 = 1.04 × 1012 M� of the fiducial
halo A. As observed before in Wang et al. (2015), this is a
perfect example of how assumptions, like imposing a mass-
concentration relation, can affect the results obtained with
dynamical tracers. A direct comparison of our forecast with
the constraints of other probes provided by the same paper
(their figure 1) also suggests that our technique is able to
achieve competitive results.

Our conclusions paint an optimistic picture for the in-
troduction of HVSs as a new dynamical tracer of the Galac-
tic potential, especially when combined with the prospects of
HVS detections in the final release of Gaia (Marchetti et al.
2018). The wealth of data that will become available in the
next few years will allow measurements of the dark matter
distribution in the Milky Way of unprecedented precision.
However, in order to produce accurate results and combine
the information provided by multiple tracers, particular care
should be taken and modelling biases be carefully consid-
ered.
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APPENDIX A: OBSERVATIONAL ERRORS

In our main analysis we have neglected the impact of ob-
servational uncertainties in the reconstructed halo parame-
ters. In this appendix we argue why, apart from complicating
the identification of HVSs, observational uncertainties in the
observed phase space position will not impact the halo con-
straints. This is found to be a natural consequence of the
limited phase space volume of the ejection region.

Because the standard of astrometric observations for the
next decade will be set by the mission Gaia, we will focus on
a typical Gaia HVS in the following discussion. The objects
in our catalogue are at a distance of the order of 10 kpc from
the Sun and moving at around 103 km/s (corresponding to
proper motion ∼ 10 mas/yr). For them we consider errors of
10% in parallax, 1 km/s in radial velocity, and 10 µas/yr in
proper motion (Marchetti et al. 2018).

Let us reconsider the generic configuration space orbit
w (w ′; t) for HVSs, where w ′ represents the initial conditions
at ejection (t = 0). The position of a HVS today can be writ-
ten as w (w0, t0) and measurements can provide an estimate
of this position with an observational error. Within these
error bars it is possible to quantify the region of phase space
that is consistent with being a HVS (i.e. the set of positions
inside the error bars that can be obtained from w (w ′; t) for
at least one (w ′; t)). This region includes, trivially, any small
perturbations of the initial conditions and flight time since,
in the limits w ′ → w0 and t → t0, the original position
must be recovered. However, because of the heavily asym-
metric uncertainties in phase space, the exact combinations
allowed are a function of the star’s location in the Galaxy
and any torque it was subjected to during its travel.

To investigate how an observational error ∆w affects the
reconstruction of (w0, t0) and the inferred likelihood of the
observed star, we perturb the initial conditions and flight
time of the average constrainers in our golden sample to
check how big of a change (∆v0,∆t0) is needed for each star
to still fall within the proper motion error bars. Notice that
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we focus on initial velocity and time because the likelihood
in eq. (15) is sensitive to these parameters. With our test, we
verify that a change of the order of 5 km/s and 0.1 Myr in the
initial conditions is enough to obtain a proper motion vector
inconsistent with the one obtained from the real v0, t0. These
deviations should be compared to the typical scale functions
of the individual likelihood function. The typical time-scale
of the survival function g(t,m) is the lifetime tL(m), which
respects ∆t0 � tL(m) for our ranges of stellar mass m, while
the typical time-scale for the velocity is dictated by RH and
is equal to 1000 km/s � ∆v0. This confirms that the freedom
of initial conditions allowed by the observational errors ∆w
does not affect the inferred parameters of the gravitational
potential, because all orbits within the bounds provide an
identical constraint.

This test is promising, but there is still the possibility
that sets of initial parameters disjoint from the real w0, t0
might result in an orbit crossing the configuration space vol-
ume delimited by the error bar ∆w . Said otherwise, it is
possible that very different initial conditions might result in
orbits which eventually become close enough to be confused
with each other. We argue that the chances of this happening
are slim because HVS trajectories, originated from a small
region of phase space, are rare in the Galaxy. Notice, in par-
ticular, that the chances of this happening are manifestly
zero for unbound stars, which travel along mostly radial or-
bits. In conclusion: for our purposes we expect only one HVS
orbit to be within the Gaia-like error bars.

Unfortunately, exactly because HVSs’ orbits are rare,
one of the main complications of HVS searches is confirm-
ing if an observed position w ± ∆w is consistent with being
a HVS (see, e.g., Brown et al. 2015; Marchetti et al. 2017).
Note that previous attempts have neglected the almost zero
angular momentum condition which allows HVSs to con-
strain the halo parameters with high precision. As noted in
Hattori et al. (2018), this requirement is particularly restric-
tive: when transforming from Equatorial to Galactocentric
coordinates, this condition can also be used to constrain the
Sun’s motion relative to the GC.

To identify the allowed phase space regions consistent
with true HVS orbits a fine sampling within the error bars
∆w is required. As an example, consider a star with an-
gular momentum at ejection equal to our smoothing value
σL = 10 pc × km/s and let us assume conservation of angu-
lar momentum. When the star reaches ∼ 10 kpc from the
GC, the non-radial component of the velocity must then be
known with ∼ 10−3 km/s precision. Note that this value is
at least three orders of magnitude smaller than the expected
velocity error-bars mentioned at the start of this Section.

To expedite this process, we propose to start by artifi-
cially enlarging the phase space volume associated to the
GC by modifying the pericentre and angular momentum
smoothing lengths σr, σL . This has the intended effect of
allowing a larger region within the observed w ± ∆w to be
consistent with a trajectory crossing the GC. An iterative
search can then be performed, where the parameters σr, σL
are slowly lowered and the observed phase space error ∆w
shrunk until a HVS orbit is found. In our case, for every
step, we zoom in around the maximum likelihood orbit.

To test the feasibility of this approach we apply it to
a few average constrainers in our sample. We begin with
an observed position w which we shift by a factor 0.5∆w

compared to the real one to simulate noisy data, and for
each iteration step we back-propagate 103 positions within
the estimated uncertainties in velocity and distance from the
sun. Starting from Gaia-like uncertainties, we obtain in < 10
iterations a phase space region 10−8 times smaller, which
contains orbits passing through the GC (according to our
original strict σr, σL) and with the same initial condition as
the starting w .

This procedure we suggest effectively fits the position of
the observed star itself while fitting the potential parameters
under the assumption that it is a HVS. As discussed in Sec.
4.4 this exposes us to contamination from halo stars which
might be observationally consistent with radial orbits. This
contamination is found however not to be dominant.

This paper has been typeset from a TEX/LATEX file prepared by
the author.
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