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ABSTRACT

We investigate the Lyman α emitter luminosity function (LAE LF) within the redshift range 2.9 ≤ z ≤ 6 from the first instal-
ment of the blind integral field spectroscopic survey MUSE-Wide. This initial part of the survey probes a region of 22.2 arcmin2

in the CANDELS/GOODS-S field (24 MUSE pointings with 1h integrations). The dataset provided us with 237 LAEs from which
we construct the LAE LF in the luminosity range 42.2 ≤ log LLyα[erg s−1] ≤ 43.5 within a volume of 2.3 × 105 Mpc3. For the
LF construction we utilise three different non-parametric estimators: The classical 1/Vmax method, the C− method, and an im-
proved binned estimator for the differential LF. All three methods deliver consistent results, with the cumulative LAE LF being
Φ(log LLyα[erg s−1] = 43.5) ' 3 × 10−6 Mpc−3 and Φ(log LLyα[erg s−1] = 42.2) ' 2 × 10−3 Mpc−3 towards the bright- and faint-
end of our survey, respectively. By employing a non-parametric statistical test, as well as by comparing the full sample to sub-
samples in redshift bins, we find no supporting evidence for an evolving LAE LF over the probed redshift and luminosity range.
Using a parametric maximum-likelihood technique we determine the best-fitting Schechter function parameters α = −1.84+0.42

−0.41 and
log L∗[erg s−1] = 42.2+0.22

−0.16 with the corresponding normalisation log φ∗[Mpc−3] = −2.71. However, the dynamic range in Lyα lumi-
nosities probed by MUSE-Wide leads to a strong degeneracy between α and L∗. Moreover, we find that a power-law parameterisation
of the LF appears to be less consistent with the data compared to the Schechter function, even so when not excluding the X-Ray
identified AGN from the sample. When correcting for completeness in the LAE LF determinations, we take into account that LAEs
exhibit diffuse extended low surface-brightness haloes. We compare the resulting LF to one obtained where we apply a correction
assuming compact point-like emission. We find that the standard correction underestimates the LAE LF at the faint end of our survey
by a factor of 2.5. Contrasting our results to the literature we find that at log LLyα[erg s−1] . 42.5 previous LAE LF determinations
from narrow-band surveys appear to be affected by a similar bias.

Key words. Cosmology: observations – Galaxies: high-redshift – Galaxies: luminosity function – Techniques: imaging spectroscopy

1. Introduction

One of the most fundamental statistical distribution functions to
characterise the population of galaxies is the galaxy luminosity
function (LF). The differential LF, ψ(L, z), counts the number
of galaxies N per unit volume V as a function of luminosity L
and redshift z: dN = ψ(L, z) dL dV dz. While this bi-modal form
provides the most general description, observationally the LF is
often determined at a fixed redshift or a redshift interval over
which effects of redshift evolution are deemed negligible, i.e

dN = φ(L) dL dV . (1)

Galaxy LFs and their redshift evolution provide a gold standard
for summarising the changing demographics of galaxies with
cosmic look-back time. Being essential benchmarks for cosmo-
logical models of galaxy formation and evolution in our uni-
verse, LF determinations are often amongst the pivotal goals in

the design and analysis of extragalactic surveys (Petrosian 1992;
Willmer 1997; Johnston 2011; Dunlop 2013; Caditz 2016).

While Lyman α (Lyα, λ1216) emission was already sug-
gested as a prime tracer for galaxy formation studies in the early
universe more than five decades ago (Partridge & Peebles 1967),
initial searches for such high-z Lyα emitting galaxies (LAEs)
were unsuccessful and, hence, constrained only upper limits of
the LAE LF (see review by Pritchet 1994).

The first successful detections of LAEs accompanied by
spectroscopic confirmations on 8 m class telescopes employed
a colour-excess criterion in narrow-band (NB) images (Hu &
McMahon 1996; Hu et al. 1998). In the following years the NB
imaging technique was routinely used to construct LAE samples
of up to several hundreds of galaxies at 2 . z . 5 (see review by
Taniguchi et al. 2003). Mostly from such NB surveys, sometimes
in combination with spectroscopic follow-up of sub-samples, the
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first LAE LF estimates up to z ∼ 6 were obtained (e.g., Cowie
& Hu 1998; Kudritzki et al. 2000; Ouchi et al. 2003; Hu et al.
2004; Ajiki et al. 2004; Tapken et al. 2006; Dawson et al. 2007;
Gronwall et al. 2007; Murayama et al. 2007; Sawicki et al. 2008;
Henry et al. 2012).

Most of the LAE LF studies so far focused on a single red-
shift slice of typically ∆z ' 0.1 (corresponding to typical NB fil-
ter widths ∆λ ' 100Å). Significant progress in terms of method-
ology, numbers of LAEs, and rate of spectroscopic follow-up
observations was achieved by Ouchi et al. (2008) within three
redshift slices (z ∼ {3, 4, 5}) over a 1 deg2 region in the Sub-
aru/XMM-Newton Deep Survey (SXDS; Furusawa et al. 2008).
Later, Ouchi et al. (2010) extended the SXDS LAE survey to
z ≈ 6.6. More recently, further Subaru/Suprime-Cam NB imag-
ing data in other fields were used to construct LAE LFs over
5 deg2 at z = 5.7 and z = 6.6 (Matthee et al. 2015; Santos et al.
2016). Moreover, by combining NB and medium-band observa-
tions from the Subaru and the Isaac Newton Telescope Sobral
et al. (2018b) constructed a LAE LF from ∼ 4000 LAEs simul-
taneously from redshifts z ∼ 2 to z ∼ 6.

The latest development in NB LAE surveys is due to the ad-
vent of Subaru/Hyper Suprime-Cam, a 1.5 deg2 wide-field im-
ager (Miyazaki et al. 2012, 2018). Recently, the first results for
a ∼14 deg2 and ∼21 deg2 NB survey at z ∼ 6 and z ∼ 7, respec-
tively, where published (the so called SILVERUSH survey Ouchi
et al. 2018; Shibuya et al. 2018b,a). From this unprecedented
dataset Konno et al. (2018) constructed the LAE LF for sources
LLyα & 1043erg s−1. Without any doubt NB imaging studies have
been and are still of central importance for our understanding of
the LAE LF. Only their wide nature allows the construction of
statistical samples of the brightest and rarest LAEs.

However, the LAE LF determination from NB imaging stud-
ies is fraught with some difficulties that can be alleviated in blind
surveys with an integral field spectrograph (IFS, see e.g. the re-
cent textbook by Bacon & Monnet 2017). Especially, since an
IFS samples spectra over a contiguous field of view, the resulting
3D datacubes can be envisioned as a stack of narrow-band im-
ages of much smaller bandwidth compared to imaging narrow-
band filters. Thus, a blind search for emission line sources in
an IFS datacube provides directly a catalogue of spectroscopi-
cally confirmed Lyα emitters, avoiding the need for follow-up
spectroscopy. Then, flux measurements on the lines can be per-
formed in virtually any conceivable aperture, resulting in reliable
flux measurements absent of slit- or bandpass- losses. Moreover,
instead of probing only a tiny redshift slice, IFSs cover an ex-
tended range in redshifts. Another advantage is that the narrow
bandwidth of the individual wavelength slices in the datacube
significantly reduces the contribution of sky background to emis-
sion line signals. This allows IFS searches to reach significant
fainter limiting fluxes compared to NB imaging surveys. Lastly,
by construction an integral field spectroscopic survey delivers a
flux-limited LAE sample, rather than an equivalent-width lim-
ited sample. This mitigates possible biases from heterogeneous
equivalent width cuts in NB imaging studies.

A pilot IFS survey for LAEs between 3 < z < 6 was per-
formed by van Breukelen et al. (2005) with the Visible Multi
Object Spectrograph (Le Fèvre et al. 2003) Integral Field Unit at
ESOs Very Large Telescope (VLT). However, this pilot study
was severely limited by the relatively low throughput, small
field of view, and the low spectral resolution of this instrument.
Substantial progress in performing a blind IFS survey to detect
Lyα emitters was achieved in the Hobby Eberle Telescope Dark
Energy Experiment (HETDEX) Pilot Survey by Adams et al.
(2011). Utilising 61 nights of observations with VIRUS-P (Hill

et al. 2008), a path-finder fiber-fed IFS that will be replicated 156
times for the final HETDEX survey (Hill & HETDEX Consor-
tium 2016), on the McDonald 2.7m Harlan J. Smith telescope,
Adams et al. constructed a catalogue of 397 emission line galax-
ies blindly selected over 169 arcmin2 in areas with rich com-
plementary datasets. This catalogue contained 99 LAEs without
X-ray counterparts between 1.9 < z < 3.8. From the Adams
et al. catalogue Blanc et al. (2011) constructed the Lyα LF in the
luminosity range 42.6 ≤ log LLyα [erg s−1] ≤ 43.5.

With the advent of the Multi Unit Spectroscopic Explorer
at ESOs VLT (MUSE, Bacon et al. 2014; Caillier et al. 2014)
the field of blind deep IFS surveys was revolutionised. This
image-slicer based IFS with a 1′×1′ field of view covering the
wavelength range from 4650Å to 9300Å was designed from the
ground up as a discovery machine for faint emission line galax-
ies, especially LAEs at high redshift (2.9 . z . 6.6, Bacon et al.
2004).

Its unprecedented potential for LAE LF determinations was
demonstrated in the analysis of a 27h integration on the Hub-
ble Deep Field South (Casertano et al. 2000) obtained during
commissioning (Bacon et al. 2015). By utilising 59 LAEs from
this dataset Drake et al. (2017b) could put constrains the Lyα
LF down to log LLyα[erg s−1] = 41.4, almost an order of magni-
tude deeper than almost all previous observational efforts, with
the only exception being a heroic 92h deep long-slit integration
with the FORS2 instrument on ESOs VLT (Rauch et al. 2008).
Recently, the Drake et al. (2017b) pilot-study was significantly
refined by Drake et al. (2017a) using 601 LAEs found in the
MUSE Consortium Guaranteed Time Observations (GTO, Ba-
con et al. 2017; Inami et al. 2017) of the Hubble Ultra Deep Field
(Beckwith et al. 2006). This dataset consists of a 3.15′×3.15′
mosaic exposed at 10h depth, and a central 1.15 arcmin2 31h
deep pointing that reached similar depths as the pilot study in
the Hubble Deep field South. As a novelty Drake et al. (2017a)
accounted for the effect of extended low-surface brightness Lyα
haloes in their completeness assessment.

However, the pencil beam nature of the MUSE-deep fields
does not allow to probe the LAE LF at brighter luminosi-
ties. Thus, complementary to the MUSE Deep Fields a shal-
lower large-area programme, dubbed MUSE-Wide, is also part
of the MUSE GTO. MUSE-Wide aims at covering 100 arcmin2

at 1h depth in regions where deep HST imaging surveys where
performed, namely the CANDELS/Deep region in the Chan-
dra Deep Field South (Grogin et al. 2011; Koekemoer et al.
2011, CDFS) and the GOODS/South survey (Giavalisco et al.
2004). Recently, Herenz et al. (2017) (hereafter H017) pre-
sented a catalogue of 831 emission line selected galaxies from
the first 24 MUSE-Wide pointings (corresponding to an area of
22.2 arcmin2) in the CDFS. This catalogue contains 237 LAEs
with luminosities 41.6 ≤ log LLyα[erg s−1] ≤ 43.5 in the redshift
range 3 < z < 6, thus augmenting the sample of faint LAEs from
the MUSE-Deep fields. In the present manuscript we will utilise
the LAE sample obtained in the first 24 MUSE-Wide pointings
for studying the LAE LF.

The structure of this manuscript is as follows: In Sect. 2 we
provide an overview of the utilised MUSE-Wide survey data and
we describe how we obtained the LAE initial sample from this
dataset. Following, in Sect. 3 we explain how we construct the
LAE selection function in MW. Then, in Sect. 4 we provide an
overview of the adopted methods for constructing the LAE LF.
Our results on the LAE LF are given in Sect. 5. In Sect. 6 we
compare our results with the literature. Finally, we summarise
the results obtained so far in Sect. 7, were we also present an
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outlook for further refinements of our study that will be relevant
with the release of the full MUSE-Wide sample.

Throughout the paper we always assume a standard ΛCDM
concordance cosmology with ΩΛ = 0.7, ΩM = 0.3, and H0 =
70 km s−1 when converting observed to physical quantities.

2. MUSE-Wide data and Lyα emitter sample

The data under scrutiny in this paper are the 24 adjacent 1′×1′
one hour deep MUSE pointings in the CANDELS/Deep re-
gion of the GOODS-South field. The data were taken during
the first period of MUSE GTO Observations between Septem-
ber and October 2014 (ESO programme ID 094.A-0205) as part
of the MUSE-Wide (MW hereafter) survey. Accounting for the
4′′ overlap between individual pointings, the total survey area
is 22.2 arcmin2. The survey covers a wavelength range from
4750 Å to 9350 Å, thus probes Lyα emitters within the redshift
range 2.9 ≤ z ≤ 6.7.

A detailed account of the observations, data reduction, and
construction of the emission line selected galaxy catalogue has
been given in H017, here we only provide an overview.

2.1. Observations and Data Reduction

Each 1h deep MW pointing consists of four individual 15 minute
exposures. More than half of the observations were taken under
photometric conditions during dark and grey nights, with the re-
mainder taken under clear conditions during dark nights. The
measured seeing ranged from 0.7′′ to 1.1′′, with 0.9′′ being the
average of the observations.

For each of the pointings a datacube was created by em-
ploying the MUSE data reduction system (Weilbacher et al.
2014) in combination with a few custom developed routines and
the Zurich Atmosphere Purge (ZAP) sky-subtraction software1

(Soto et al. 2016a). We also used the self-calibration procedure
that is part of the MUSE Python Data Analysis Framework –
MPDAF2 (Conseil et al. 2016; Bacon et al. 2017).

The reduced data consists of 24 datacubes, each covering
1′×1′ on the sky with a spatial sampling 0.2′′×0.2′′. These spa-
tial sampling elements (so-called spaxels) contain a spectrum
from 4750 Å–9350 Å that is sampled at 1.25Å in air wave-
lengths. Each volume element (a so-called voxel) of a datacube
stores the received flux density in units of 10−20erg s−1cm−2Å−1.
The full width at half maximum (FWHM) of the spectrographs
line spread function is roughly twice the spectral sampling (i.e.
∼2.5Å) resulting in a resolving power of R ∼ 1900–3800 over
the covered wavelength range.

The MUSE data reduction system also propagates the vari-
ances during all reduction steps into each voxel, thereby creating
a complementary variance datacube for each pointing. However,
these formal variance values underestimate the true variances,
and are thus not optimal for emission line detection and estima-
tion of the error on emission line flux measurements. In order
to correct for this, we performed an empirical estimate of the
variance values by evaluating the statistics of randomly placed
apertures in empty regions of the sky (see Sect. 3.1.1 in H017).

1 ZAP is publicly available via the Astrophysics Source Code Library:
http://ascl.net/1602.003 (Soto et al. 2016b).
2 MPDAF is publicly available via the Astrophysics Source Code Li-
brary: http://ascl.net/1611.003 (Piqueras et al. 2017).

2.2. Emission Line Galaxy Catalogue

Emission line source detection in the MW data is performed
with our dedicated Line Source Detection and Cataloguing Tool
LSDCat3 (Herenz & Wisotzki 2017). As a required preparatory
step before emission line source detection we remove source
continua from the datacube by subtracting a ≈190Å wide run-
ning median in the spectral direction. This method of removing
source continua has proven to be very effective, leaving as re-
maining features mostly real emission lines and straight-forward
identifiable residuals from continua that vary at higher frequen-
cies than the width of the median filter (e.g. cold stars).

In the next step LSDCat cross-correlates each datacube with
a 3D matched filter template for compact emission line sources.
We used a 3D Gaussian as the template, with its spatial FWHM
dictated by the wavelength dependent seeing PSF and its spec-
tral FWHM fixed to vFWHM = 250 km s−1. As demonstrated in
Sect. 4.3 of Herenz & Wisotzki (2017), the latter value is opti-
mal for detecting LAEs in MUSE surveys at their highest pos-
sible signal-to-noise (S/N) ratios. Then the initial emission line
candidate catalogue was created by setting the detection thresh-
old to S/Nthresh = 8. This initial catalogue was then screened
by four investigators (ECH, LW, TU, and JK) using the interac-
tive graphical tool QtClassify4 (Kerutt 2017; see also Appendix
of H017). The purpose of this screening process was to identify
the detected emission lines, as well as to purge obviously spuri-
ous detections (e.g. due to continuum residuals). Real detections
were assigned with quality and confidence flags. Here, the qual-
ity flag encodes whether multiple emission lines of a source were
detected (quality A), multiple emission lines are present but be-
low the detection threshold (quality B), or whether the identifi-
cation was based on a single line (quality C). By this definition
all of the LAEs considered in the present analysis are quality C
objects. As detailed in H017 (Sect. 3.1.4), the confidence val-
ues encode a more subjective measure of belief towards the final
identification of a source, ranging from 1 (minor doubts) to 3
(no doubts). These values were assigned based on the apparent
shape of the spectral profile and, if present, on the morphology
and size of an optical counterpart in the HST images.

2.3. The Lyman α Emitter Sample

The final emission line catalogue published in H017 consists of
831 emission line galaxies, with 237 Lyα emitting galaxies in
the redshift range 2.97 ≤ z ≤ 5.99. Two of these high-z galaxies
exhibit clear signatures of active nuclei5 and are also flagged as
active galaxies in the Chandra 7Ms source catalogue (Luo et al.
2017). Another object was classified as a strong C iv emitter, and
is therefore also likely not a star-forming LAE6. We note that
these AGN are also the most luminous LAEs in our sample. In
our analysis below we will discuss the effect of not excluding
these bona-fide AGNs when determining the LAE LF.

All except five of the 234 non-AGN LAE galaxies have only
a single line detected by LSDCat. The five exceptions are charac-
terised by strongly pronounced double peaked Lyα profiles, with
both peaks having individual entries in the emission line cata-

3 LSDCat is publicly available via the Astrophysics Source Code Li-
brary: http://ascl.net/1612.002 (Herenz & Wistozki 2016).
4 QtClassify is publicly available via the Astrophysics Source Code
Library: http://ascl.net/1703.011 (Kerutt 2017).
5 MW IDs 104014050 and 115003085.
6 MW ID 121033078.

Article number, page 3 of 23



A&A proofs: manuscript no. mw_lae_lf_paper_arXiv

3.0 3.5 4.0 4.5 5.0 5.5 6.0
17.75

17.50

17.25

17.00

16.75

16.50

16.25

16.00

lo
g

1
0
F

L
y
α
[e

rg
s−

1
cm

−
2
]

3.0 3.5 4.0 4.5 5.0 5.5 6.0

z

0

2

4

6

8

10

12

14

16

N
L
A

E

Fig. 1. Top panel: Fluxes and redshifts of the MW LAE sample used in
this study (open circles) in comparison to the fluxes and redshifts of the
MUSE HDFS LAEs used to determine a realistic selection function as
described in Sect. 3.2 (filled circles). Bottom panel: Redshift histogram
of the MW LAE sample (binning: ∆z = 0.1).

logue7. Moreover, only 20 sources have confidence value 1 as-
signed, i.e. there remained minor doubts on them being classified
as Lyα. However, we found that excluding those low-confidence
sources from our analysis had no impact on the resulting LF de-
terminations.

LAE redshifts were determined by fitting the spectral pro-
files. As detailed in H017 we used the fitting formula

f (λ) = A × exp
(
−

(λ − λ0)2

2 × (aasym(λ − λ0) + d)2

)
(2)

introduced by Shibuya et al. (2014) to adequately model the
asymmetric spectral profiles of LAEs. The free parameters A,
λ0, aasym, and d in Eq. (2) are the amplitude, the peak wave-
length, the asymmetry parameter, and the typical width of the
line, respectively.

Emission line fluxes Fline of the LAEs were determined with
the automated flux extraction routine of LSDCat. In Herenz &
Wisotzki (2017) we found that for LAEs in the MW survey the
automatic measurements from the software compare best to a
manual curve-of-growth analysis over the spectral and spatial ex-
tent of the emitters when aperture radii of three times the Kron-
radius (Kron 1980) were used. Thus we use these Fline(3×RKron)
fluxes as the basis for our luminosity function analysis. The
mean and median 3 × RKron radii in which fluxes were extracted
are 2.1′′ and 2.0′′, respectively, with values ranging from 1.8′′
to 3.7′′. However, we cautioned in H017 that quite frequently
the spectral window of the automated flux extraction did not
completely encompass the whole spectral profile of the LAEs.
7 MW IDs 106014046, 115005089, 110003005, 122021111, and
123018120.

These profiles are often characterised by a weak secondary bump
bluewards of the main spectral peak. This may result in flux-
losses. In order to correct for those losses, we first visually in-
spected all spectral profiles to classify them as single or double
peaked. We found that 90 LAEs in our sample show a weaker
secondary blue peak. We then fitted all double peaked profiles
with a linear combination of two profiles described by Eq. (2).
From these fits we calculated the fraction of the line flux out-
side the spectral extraction window as flux correction factor. The
average (median) flux correction factor for the double peaked
emitters derived from this procedure is 1.17 (1.16). Using the
single component fits of Eq. (2) we also derived flux correc-
tion factors for the single peaked LAE profiles. Here the correc-
tion factors are significantly smaller (mean: 1.03, median: 1.02),
thus indicating the overall robustness of the automated proce-
dure for simple emission line profiles. The final LAE fluxes used
in our analysis are then obtained by multiplying the catalogued
Fline(3×RKron) fluxes by each individually determined correction
factor. An overview of the fluxes and redshifts and a redshift his-
togram of the MW LAE sample are shown in Figure 1.

Finally, the measured fluxes are then converted into Lyα lu-
minosities viz

LLyα = 4πFLyαD2
L(z) , (3)

where DL(z) is the luminosity distance corresponding to the red-
shift of the Lyα emitter that was determined from fitting the
spectral line profile with Eq. (2).

3. The MUSE-Wide Lyman α emitter selection
function

To derive the luminosity function from the MW LAE sample,
we first need to determine the selection function for LAEs in
our integral-field spectroscopic survey. The selection function
encodes the probability fC(FLyα, λ) of observing a LAE with flux
FLyα at wavelength λ in our survey. Given an adopted cosmology
it can also be uniquely represented in redshift-luminosity space:
fC(FLyα, λ)↔ fC(LLyα, zLyα).

In order to construct fC(FLyα, λ) for MW, we study the suc-
cess rate of recovering artificially implanted LAEs with our de-
tection procedure. In Sect. 3.1 we perform this experiment with
model sources characterised by a compact point-like spatial pro-
file and a simple spectral profile. Then, in Sect. 3.2, we perform
this experiment under more realistic assumptions by account-
ing for the observed variety in spectral- and spatial profiles of
LAEs. To this aim we will make use of real LAEs observed in
the MUSE HDFS (Bacon et al. 2015). Finally, we explain in
Sect. 3.3 how the measured recovery fractions are converted to
selection functions fC(FLyα, λ).

3.1. Source recovery experiment with artificial point sources

We first computed recovery fractions for an over-simplified case
where we assumed that LAEs are perfect point sources with sim-
ple spectral profiles. In particular we modelled the light profiles
of the implanted sources with a Moffat function (Moffat 1969).
This parameterisation provides a reasonably good approxima-
tion of the seeing induced point-spread function in ground based
optical to near-infrared observations (Trujillo et al. 2001). To ac-
count for the wavelength dependence of the full width at half
maximum (FWHM) of the point spread function, we used the
coefficients of linear fits of FWHM(λ) provided in Table 2 of
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Fig. 2. Insertion wavelengths for completeness function estimation. The bottom panel shows the background noise over the whole spectral range,
with vertical lines indicate the positions of the artificially implanted LAEs. The top panels are zoomed-in versions around the regions of interest.
The colours of the vertical lines correspond to the colours used for the source recovery fractions in Figs. 3, 4, and 5.
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Fig. 3. Recovery fraction Ndet/Ntotal from a source insertion and recov-
ery experiment for simplified point-like emission sources at five dif-
ferent wavelengths (see Figure 2) in the MW pointing 01 datacube.
Ntotal = 64 is the number of inserted sources at a given flux level and
Ndet is the number of recovered sources for a given line flux Fin obtained
with same detection procedure used to construct the original MW cata-
logue.

H017. The spectral profile of the fake sources is modelled as a
simple Gaussian of 250 km s width (FWHM).

As it is computationally not feasible to perform the source in-
sertion and recovery experiment for all wavelength layers in each
of the 24 MW datacubes, we selected five insertion wavelengths
that are representative of typical noise situations in the datacube
(see Figure 2): λ1 = 5000 Å, λ2 = 6861.25 Å, λ3 = 7100 Å,
λ4 = 7242.5 Å, and λ5 = 8292.5 Å. In particular, the spectral
regions around 5000Å and 7100Å are typical regions devoid

of night sky line emission, while 6861.25Å is in the wing of
a sky line, and the 7242.5Å and 8292.5Å positions are chosen
to be right between two neighbouring sky lines. At these inser-
tion wavelengths we then populate each of the 24 MW cubes
with Ntot = 64 fake sources at different spatial positions. In-
stead of placing the inserted sources on a regular grid, we used a
quasi-random grid based on a Sobol sequence (see e.g. Sect. 7.7
of Press et al. 1992). This is done to avoid placement of the
sources at similar distances to the edges of the MUSE slice
stacks. These stacks are arranged in a rectangular pattern, which
is only slightly modulated by the small dither offsets during the
observations. With this procedure we ensured that our selection
function is not affected by systematic defects that are known
to exist at the slice stack edges (see e.g. Fig. 3 in Bacon et al.
2017). We then inserted fake sources with 20 different flux levels
from log FLyα[erg s−1cm−2] = −17.5 to log FLyα[erg s−1cm−2] =
−15.5 in steps of 0.1 dex at the five chosen wavelength layers
into each MW datacube. The 20 × 24 = 480 datacubes were
then continuum subtracted with the running median filter as de-
scribed in Sect. 2.2. We then process these continuum subtracted
cubes with LSDCat in the same way as for the original catalogue
construction (Sect. 2.2). In order to decrease the computational
cost for this experiment, we trimmed the continuum subtracted
fake-source populated datacubes by ±30Å around each inser-
tion wavelength. For each subcube we then counted the num-
ber sources Ndet that are recovered by LSDCat above the same
detection threshold (S/Ndet = 8) that was used for the creation
of the MW emission line source catalogue (cf. Sect. 2.2). As an
example, we show in Fig. 3 the resulting recovery fractions for
each insertion wavelength for MW pointing 01. We note that the
shape and order of the curves is similar for all other pointings.

3.2. Source recovery experiment with real LAEs

We also performed a source insertion and recovery experiment
using the 10 LAEs from the MUSE HDFS catalogue that have
highest S/N-ratios (MUSE HDFS ID 43, 92, 95, 112, 139, 181,
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Fig. 4. Recovery fractions from a source insertion and recovery exper-
iment with 10 MUSE HDFS LAEs for MW datacube 01. Each panel
displays the recovery fraction Ndet/Ntotal for a particular MUSE HDFS
LAE of as a function of its scaled flux at 5 different wavelengths (see
Figure 2). (Ntotal and Ndet as defined in Figure 3).
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Fig. 5. Stack over the recovery fractions Ndet./Ntotal of the 10 differ-
ent MUSE HDFS LAEs used in the source recovery experiment. These
curves represent the selection function at 5 different wavelengths in a
MW datacube. Exemplarily, we show only the results for the MW dat-
acubes 01, noting that the shape of the curves are similar for all other
fields.

246, 325, 437, and 547 – all have S/N>10). These sources show
a range of different surface-brightness profiles: E.g., while the
LAEs 43, 92, and 95 are fairly extended, the LAEs 181, 325, and
542 show more compact surface brightness profiles (Wisotzki
et al. 2016). They also represent a range in fluxes, redshifts and
line profiles. Given their high S/N-ratios in the MUSE HDFS
data, they are practically noise free compared to the noise level
in MW, even when being multiplicatively rescaled to higher flux
levels. We compare the fluxes and redshifts of these 10 LAEs
to the actual MUSE-Wide sample in Figure 1. As evident, all
MUSE HDFS LAEs used in the source insertion experiment
could potentially be part of the MW Sample.

We now rescaled these LAEs to 20 different flux
levels between log FLyα[erg s−1cm−2] = −17.5 to
log FLyα[erg s−1cm−2] = −15.5 in steps of 0.1 dex (i.e. we
use the same flux levels as for before for the simplified sources).
For this purpose we first measured the fluxes from the MUSE
HDFS LAEs by utilising LSDCat’s flux-measurement routine
with circular apertures of radius 3RKron. We then cut out mini
cubes from the MUSE HDFS datacube that are centred on the
LAEs. The vocals in those mini-cubes were then multiplied by
constant factors to reach the desired flux levels. These 20×10
(flux samples × source samples) “fake-source” mini cubes were
inserted into each of our 24 MW datacubes at the five different
insertion wavelengths and at the same positions that were also
used for the simplified sources.

When inserting the sources at different wavelengths we ac-
counted for the redshift broadening of spectral profile, i.e. we
kept the profile shape fixed in velocity space. We also needed
to account for the differences in the points-spread functions
between MW and MUSE HDFS. Since in all MW datacubes
the point-spread function (PSF) is broader than the PSF in the
HDFS, we have to degrade the PSF of the inserted mini cubes.
To this aim we convolved their spatial layers with a 2D Gaussian
of dispersion σ2D(λ) =

√
σMW(λ)2 − σHDFS(λ)2, where σMW(λ)

and σHDFS(λ) are the wavelength-dependent PSF dispersions of
a MUSE-Wide datacube and the MUSE HDFS datacube, respec-
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tively. Here the MUSE HDFS PSF was determined in a from fits
to the brightest star in the field (see Fig. 2 of Bacon et al. 2015),
while the linear model of H017 was used for the MW PSF.

After having continuum subtracted datacubes with artifi-
cially implanted sources, the next step is to perform the recovery
experiment. To reduce the computational cost of this experiment,
we trim the fake-source inserted cubes in wavelength range to
±30Å around each insertion wavelength. The full recovery ex-
periment is thus performed on 20×10×5×24 = 24000 datacubes
of dimensions ∼ 300 × 300 × 50 (neglecting empty edges due to
the rotation of the MW pointings). Each of these cubes was pro-
cessed with LSDCat using the same parameters that were used
to generate the catalogue of LAEs in the 24 MW fields. We then
counted the number of recovered sources Ndet above the same de-
tection threshold that was used in the creation of the MW LAE
source catalogue (S/Ndet = 8).

We demonstrate the outcome of the recovery experiment
with realistic LAES for the MW pointing 01 datacube in Fig-
ure 4, noting that the results for the other datacubes are simi-
lar: We found that the completeness curves for all emitters have
a very steep cut-off at line fluxes of 10−16. . . 10−17 erg s−1cm−2.
While for the more compact LAEs the cut-off is comparable to
the one obtained for the idealised sources (cf. Figure 3), for the
more extended LAEs it is significantly shifted to brighter flux
levels. The exact turnover point on a given curve appears to be a
complicated function of a source’s surface-brightness profile and
its spectral profile. However, we observe that for a given source
all curves are self-similar and the shift depends only on the in-
sertion wavelength (Fig. 2). Since the 10 LAEs from the MUSE
HDFS used in the recovery experiment are expected to be a rep-
resentative subset of the overall high-z LAE population, we ex-
pect the overall LAE selection function at a specific wavelength
to be the average recovery fraction over all sources 〈Ndet/Ntot〉 at
this wavelength. In Fig. 5 we show as an example these averaged
recovery fractions for MW pointing 01. Similar to the idealised
sources, the shape and the order of the curves is similar for all
other pointings.

3.3. From recovery fractions to selection functions

Up to this point we are equipped with LAE selection functions
for the MW LAEs only at 5 different wavelengths within the
MUSE wavelength range. However, we notice in Figure 3 and
Figure 5 that the curves at the different wavelengths are self-
similar and that their order in flux is always the same. This re-
sult indicates that there is a universally shaped selection func-
tion whose shift with respect to the flux axis is determined by a
wavelength dependent quantity. Indeed, we find that the shift of
the 50% completeness point ( fC(F50) = 0.5) of the determined
curves shows a nearly constant F50/σ̃emp ratio for all curves,
with σ̃emp being the empirically determined background noise
convolved with a 250 km s−1 wide (FWHM) Gaussian. The ra-
tio F50/σ̃emp(λ) is between 400 and 460 for the different dat-
acubes; the exact value depends on the average datacube back-
ground noise and is a function of the observing conditions. Using
this scaling we can compute fC,i(FLyα, λ) for each of the 24 MW
pointings (here i indexes the pointing): We create a master f (F)-
curve from shifting the 5 stacked curves on top of each other by
requiring them to have the same fC(F′50) = 0.5 value. For each
wavelength bin we then shift this f (F)-master curve according
to the F50/σ̃emp(λ)-proportionality to obtain fC,i(FLyα, λ). The fi-
nal selection functions for the MW LAE catalogue are then the
average of all 24 selection functions.

The resulting selection function for the point-like emission
line sources is called “point source selection function” (PSSF).
This more realistic selection function is therefore called function
“real source selection function” (RSSF). Both selection func-
tions are shown in Figure 6 in redshift-flux space and in Figure 7
redshift-luminosity space.

The PSSF can be seen as a limiting depth of our survey, since
it resembles closely the template of the matched filter used in
the emission line source detection (H017). More importantly in
comparison to the RSSF it also demonstrates the loss in sen-
sitivity in LAE surveys due to the fact that these sources are
not compact, but exhibit significant low surface brightness halo
components. Moreover, while the transition from 0% to 100%
completeness is quite rapid for the PSSF, the variety of Lyα halo
properties encountered amongst LAEs leads to a much smoother
transition. Notably, in extreme cases Lyα haloes can contain up
to 90% of the total Lyα flux (Wisotzki et al. 2016; Leclercq
et al. 2017). Therefore, the assumption of point-like LAEs in es-
timating the selection function leads to an overestimate of survey
depth. While Grove et al. (2009) already noted this effect, they
were not able to robustly quantify it due to the lack of deeper
comparison data.

4. The Lyman α luminosity function – methods

Before presenting the results of the LAE LF in the next section,
we provide here an overview of the methods used to derive the
LAE LF in our integral field spectroscopic dataset.

We use three different non-parametric LF estimators, which
are explained in Sect. 4.1: The “classical” 1/Vmax-method
(Sect. 4.1.1), a binned alternative method to 1/Vmax introduced
by Page & Carrera (Sect. 4.1.2), and the C−-method (Sect. 4.1.3).
As we will discuss, the latter two methods provide some ad-
vantages over the classical 1/Vmax approach. Moreover, we also
make use of a non-parametric method to test the redshift evolu-
tion of the LAE LF (Sect. 4.1.4).

Furthermore, photometric uncertainties at low-completeness
levels will lead to biases in the LF estimate. In order to avoid
those biases we truncate the sample and define appropriate lumi-
nosity bins for the binned estimators. We motivate our truncation
criterion and bin-size choice in Sect. 4.2.

Finally, in Sect. 4.3 we explain the maximum-likelihood fit-
ting formalism that we employ to derive parametric models of
the LAE LF.

4.1. Non-parametric luminosity function estimates

4.1.1. The 1/Vmax method

The first non-parametric LF estimator we consider is the so-
called 1/Vmax-estimator (Schmidt 1968; Felten 1976) in a
modified version to account for a complex, i.e. redshift- and
luminosity-dependent, selection function (Fan et al. 2001; Ca-
ditz 2016).

The 1/Vmax estimator approximates the cumulative luminos-
ity function

Φ(LLyα) =

∫ ∞

LLyα

φ(L′Lyα) dL′Lyα , (4)

where φ(LLyα) is the differential LF introduced in Eq. (1), via

Φ(LLyα,k) =
∑
i≤k

1
Vmax,i

. (5)
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Fig. 6. Selection function fC(FLyα, λ) for LAEs in the MW survey. The white and black lines indicate the 15% and 85% completeness limits,
respectively. The left panel shows the “real source selection function” (RSSF, see Sect. 3.2). The right panel shows the “point source selection
function” (PSSF, see Sect. 3.1).
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Fig. 7. Selection function for LAEs in the MW survey, similar to Figure 6, but now transformed to redshift-luminosity space.

Here, and in the following, we assume that the objects are or-
dered in Lyα luminosity, i.e.

LLyα,1 > LLyα,2 > · · · > LLyα,N−1 > LLyα,N . (6)

Vmax,i in Eq. (5) denotes the maximum volume accessible for
each LAE i in the survey. In the presence of our redshift-
dependent selection function fC(L, z) (Fig. 7) we can write

Vmax,i = ω

∫ zmax

zmin

fc(LLyα,i, z)
dV
dz

dz (7)

(e.g. Wisotzki 1998; Johnston 2011). Here ω is the angular area
of the survey (ω = 22.2 arcmin2 for the 24 fields of the first
instalment of the MW survey under consideration here), dV

dz is
the differential cosmological volume element8, and zmin (zmax)

8 For a definition of dV
dz see, e.g., Hogg (1999).

denotes the lower (upper) limit of the redshift range under con-
sideration9.

Moreover, in the 1/Vmax formalism the differential LF can be
approximated by the binned estimator

φ1/Vmax (〈LLyα〉) =
1

∆LLyα

∑
k

1
Vmax,k

, (8)

where 〈LLyα〉 is the average Lyα luminosity of a bin, ∆LLyα is the
width of the bin, and the sum runs over all sources k in that bin.
The uncertainty for each bin is defined as

∆φ1/Vmax (〈LLyα〉) =

√
1

∆L2

∑
i

1
V2

max,i

(9)

(e.g. Johnston 2011).
9 In our study these limits are either imposed by the full spectral cov-
erage of MUSE, i.e. (zmin, zmax) = (2.9, 6.7), or by the redshift bins that
we consider (see Table 1 below).
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4.1.2. The binned estimator proposed by Page & Carrera
(2000)

The second non-parametric estimator we consider provides an
alternative binned estimate for the differential LF. In its original
form it was proposed by Page & Carrera (2000). Following Yuan
& Wang (2013), who provide a thorough comparison with the
1/Vmax method, we call it the φPC estimator. This estimator was
motivated by potential systematic biases in the 1/Vmax estimator
close to the flux limit of the survey. It has not yet been utilised
to derive LAE LFs.

Instead of considering the maximum volume accessible for
each individual source in the binned 1/Vmax-estimator (Eq. 8),
Page & Carrera (2000) argue that it is more robust to consider the
average four-dimensional volume in redshift-luminosity space
for each bin and then to divide the number of sources present
in the bin by this hypervolume. In the presence of a redshift de-
pendent selection function we can write the φPC estimator as

φPC(〈LLyα〉) =
N

ω
∫ Lmax

Lmin

∫ zmax

zmin
fc(LLyα, z) dV

dz dz dL
, (10)

where again 〈LLyα〉 denotes the average Lyα luminosity of a bin,
zmin and zmax are the limits of the redshift range under consid-
eration, Lmin and Lmax are lower and upper bounds of the bin
in which the LF is estimated, and N is the number of sources
within the bin. In analogy to Eq. (9), we estimate the statistical
uncertainty on φPC(〈LLyα〉) by replacing N with

√
N in Eq. (10).

4.1.3. The C− method

We also consider the C− method for estimating the cumulative
LF defined in Eq. 4. This method was introduced into the as-
tronomical literature by Lynden-Bell (1971) and the generalisa-
tion for complex selection functions was introduced by Petrosian
(1992). The generalised C− method has, as of yet, not been used
to derive LAE LFs. Formal derivations of the method in the pres-
ence of a redshift- and luminosity-dependent selection function
are given elsewhere (e.g. Fan et al. 2001; Johnston 2011; Caditz
2016), here we just summarise the computational algorithm10.

The first step in the generalised C− method is to define a so-
called generalised comparable set Ji for each LAE i that contains
all LAEs j with higher Lyα luminosity:

Ji = { j : L j > Li} . (11)

The next step is to make a weighted count of the number of LAEs
in each comparable set

Ti =

Ni∑
j=1

w j , (12)

where Ni is the number of LAEs in the comparable set Ji. The
weights w j for each object j in Ji are given by the selection
probability if the Ji-defining object i with its Lyα luminosity
LLyα,i would have been detected at the redshift of an object
j, fc(LLyα,i, z j), normalised by j’s actual selection probability
fc(LLyα,i, z j), i.e.

w j =
fc(LLyα,i, z j)
fc(LLyα, j, z j)

. (13)

10 An introduction into the C− method is also presented in Chap-
ter 4.9.1. of the Ivezić et al. (2014) textbook.

Since by construction LLyα, j > LLyα,i, and since fc is monotoni-
cally increasing with luminosity at a given redshift, w j ≤ 1 holds.
With these weighted counts then the cumulative LAE LF is given
as

Φ(LLyα,k) = Φ(LLyα,1)
k∏

i=2

(
1 +

1
Ti

)
. (14)

where the normalisation Φ(LLyα,1) has to be determined sepa-
rately (see Sect. 4.1.4 below).

A potential advantage of the C−-method over the 1/Vmax
method is that it only requires evaluation of the selection func-
tion at redshifts where sources were actually detected, whereas
the calculation of the LF using the 1/Vmax-method requires inte-
gration over the selection function over the whole redshift range
of interest.

Caditz (2016) provides a detailed formal comparison be-
tween the C− and 1/Vmax estimators, showing that both are
asymptotically unbiased, i.e. both 1/Vmax and C− yield a correct
estimate of the true luminosity function for large number of ob-
jects and a correct estimate of the selection function. However,
the main difference between the two estimators is that 1/Vmax is
more sensitive to uncertainties in the selection function, while
C− is more sensitive to random fluctuations in the sample.

4.1.4. A non-parametric test for LF evolution

The 1/Vmax-method as formulated in Sect. 4.1.1 explicitly as-
sumes that the LF is non-evolving over the redshift range un-
der consideration, whereas the key assumption in the above de-
scribed C−-method is that the distribution function Ψ(L, z), de-
scribing a potentially evolving LF as a scalar field in redshift-
luminosity space, is separable, i.e.

ψ(L, z) = ρ(z)φ(L) . (15)

Here ρ(z) describes the mean density of sources as a function
of redshift. Thus, if Eq. (15) is an adequate description of the
evolving LF, then φ(L), and correspondingly Φ(L), would retain
its shape over the redshift range under consideration, with only
the overall normalisation being allowed to change.

The assumption of an LF evolving according to Eq. (15) is
commonly refered to as pure density evolution. In principle ρ(z)
can also be determined with the formalism described above, by
just exchanging redshifts with luminosities of object i in Eq. (12)
and then using Eq. (14) to estimate ρ(z). While such a deriva-
tion could be used to normalise the cumulative LF from the C−-
method, we here take the short-cut by utilising Φ(LLyα,1) from
the 1/Vmax method in Eq. (14),

Φ(LLyα,1) =
1

Vmax,1
, (16)

i.e. we implicitly assume that ρ is constant over the redshift
ranges under consideration.

Following Fan et al. (2001), we test the validity of the pure
density evolution of the LAE LF in the luminosity range probed
by our survey with the statistical test devloped by Efron & Pet-
rosian (1992). Therfore we calculate for each Ji the generalised
rank Ri of zi:

Ri =

Ni∑
j=1

w jΘ(zi − z j) , with Θ(x) =

{
0 for x < 0
1 for x ≥ 0

. (17)
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Fig. 8. LAE sample of the first 24 MW pointings in redshift-luminosity space. The dashed line represents the 85% RSSF completeness limit, while
the black line denotes the 15% RSSF completeness limit, at which we truncate our sample. 179 of 237 (75.6%) LAEs remain in the truncated
sample. Individual emitters are colour coded according to their assigned confidence flags (blue — little to no doubts on being an LAE; green —
LAEs flagged as uncertain; more details on how the confidence values were assigned are given in Sect. 3.2 of H017). The two highest LLyα objects
are AGN indicated by red symbols. Sources below the truncation line are shown with open symbols. Horizontal dotted lines denote the adopted
bin boundaries (log LLyα,bin[erg s−1] = 42.2 + i × 0.2 for i = 0, 1, . . . , 5) for the binned LAE LF estimates.

If z is independent of L in the sense of Eq. (15), then the Ri’s
should be distributed uniformly between 0 and the correspond-
ing Ti’s, i.e. the expectation value of Ri is Ei = Ti/2 and its
variance is Vi = T 2

i /12. Moreover, then the statistic

τ =

∑
i(Ri − Ei)√∑

i Vi
(18)

is approximately a standard normal distribution under the null
hypothesis that independence between z and L in Eq. (15) is
valid.

We follow the literature by adpoting |τ| < 1 as the critical
value at which the independence assumption cannot be rejected
(Efron & Petrosian 1992; Fan et al. 2001). We point out that for
a standard normal distribution this value corresponds to p-values
p0 > 0.16, i.e. it is decidedly larger than commonly adopted
significance levels to reject the null hypothesis (e.g., p0 < 0.05
for 1σ).

4.2. Truncation and Binning of the Sample

Non-parametric estimates of the differential luminosity function,
regardless of the utilised estimator, require binning of the sample
in luminosities. Moreover, at the faintest luminosities the photo-
metric uncertainties become so large that they would translate
into a large uncertainties for the completeness correction in the
LF estimation. This potential bias can be avoided by trimming
the sample from such sources. We visualise our choice of bin
sizes and truncation limit for the RSSF in Figure 8.

We curtail the sample from sources that are detected below
the fc = 0.15 completeness limit. As can be seen in Figure 8,
the vast majority of LAEs below the fc = 0.15 limit have photo-
metric errors that extend below the 0% completeness line, which

provides the main motivation for this truncation limit. This trun-
cation limit removes 54 LAEs from the initial MW LAE sam-
ple for the RSSF. In the calculation of the luminosity function,
we account for the truncation limit by setting fc ≡ 0 for all
fc < 0.15.

We chose our lowest luminosity boundary to be
log LLyα[erg s−1] = 42.2. We motivate this value by the
fact that it straddles our RSSF truncation criterion in the z . 5
region in the sample (Figure 8). However, as we opt for an
integer single digit, this removes four additional objects from
the LF sample truncated according to the RSSF. For the PSSF all
except one source have fc > 0.15 above log LLyα[erg s−1] = 42.2.
We motivate our adopted bin-size ∆ log LLyα[erg s−1] = 0.2
by being significantly larger than the photometric error in the
lowest luminosity bin. Moreover, we will show in Sect. 5.2 that
for this bin-size the non-parametric estimates are in optimal
agreement with the parametric maximum-likelihood solution.

Although estimating the binned differential LF is popular in
the literature, we point out that binning represents a loss of infor-
mation11, while all information present in the source catalogue
is retained when deriving the cumulative LF (Felten 1976; Ca-
ditz 2016). Moreover, the adopted maximum-likelihood proce-
dure explained in the next section does not require binning of
the data. We here use the binned estimates only for visual com-
parison to the binned values from the literature in combination
with our derived Schechter parameterisation (Sect. 7 below).

11 A recent discussion of the pitfalls when utilising binning in the anal-
ysis of astronomical data was presented in Steinhardt & Jermyn (2018).
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4.3. Parametric maximum likelihood luminosity function
estimation

In order to obtain a parametric description of the MW LAE LF
we use the maximum likelihood parameter estimation approach
introduced by Sandage et al. (1979) into the field of observa-
tional cosmology. Maximum likelihood estimation is a statistical
technique to estimate the parameters of a model given the data.
We therefore need to assume an analytical expression for the LF.
The Schechter function (Schechter 1976) is the most commonly
adopted functional form for the Lyα LF:

φ(L) dL = φ∗
( L

L∗

)α
exp

(
−

L
L∗

) dL
L∗

. (19)

We obtain the free parameters L∗ (characteristic luminosity in
erg s−1), α (faint-end slope) and φ∗ (normalisation in Mpc−3) by
maximising the likelihood function

L =

NLAE∏
i=1

p(Li, zi) , (20)

where

p(Li, zi) =
φ(Li) fc(Li, zi)∫ Lmax

Lmin

∫ zmax

zmin
φ(L) fc(L, z) dV

dz dL dz
(21)

(e.g. Sandage et al. 1979; Fan et al. 2001; Johnston 2011). In
practice we search for the minimum of

S = −2 × lnL . (22)

Evaluation of this equation thus requires a summation over the
entire unbinned sample. As can be seen in Eq. 21, the space den-
sity scaling factor φ∗ cancels out and is thus not really a free
parameter in the fitting process. For any given combination of
L∗ and α the value of φ∗ is however uniquely determined since
the integral in the denominator must equal the total number of
objects in the sample used to calculate the likelihood function
(e.g., Mehta et al. 2015).

Even simpler than a Schechter function is a power-law dis-
tribution of

φ(L) dL =
φ∗

L∗
× Lβ dL , (23)

which lacks the exponential cutoff and thus implies a larger
fraction of high-luminosity objects for equal power law indices
β = α. Comparing Eq. (23) to Eq. (21) it becomes evident that
only β is a free parameter in the likelihood function, but similar
as a above, the ratio φ∗/L∗ is uniquely constrained by the total
number of objects.

We do not consider more complex parametric expressions for
the Lyα LF such as a double power law because, as demonstrated
below (Sect. 5.2), these are not required for our data.

5. The Lyman α luminosity function – Results

5.1. Non-parametric reconstructions of the LAE LF

We first employ the non-parametric statistical test described in
Sect. 4.1.4 to investigate whether the observed MW LAE LF is
consistent with a pure density evolution scenario. Table 1 lists
the obtained τ-values from Eq. (18) along with the correspond-
ing p-values under the normal distribution approximation. We
calculated τ both for the RSSF and the PSFF. Moreover, we not
only tested evolution for the full MW redshift range, but also

Table 1. Results of statistical test according to Eq. (18) for testing the
assumption of pure density evolution as defined in Eq. (15).

Redshift range |τPSSF| |τRSSF| pPSSF pRSSF

2.9 < z ≤ 4 0.47 0.24 0.32 0.40
4.0 < z ≤ 5.0 0.79 0.98 0.21 0.16
5.0 < z ≤ 6.7 0.05 0.29 0.48 0.39

2.9 < z ≤ 6.7 0.46 0.31 0.32 0.38

Notes. τ values were computed for the point source selection function
(τPSSF) and the selection function accounting for extended Lyα emission
(τRSSF). The corresponding values of p for a standard normal distribu-
tion are given in the third and fourth column.
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Fig. 9. Top panel: Global (2.9 ≤ z ≤ 6.7) cumulative LAE LF from
MW obtained with the C−-method utilising the realistic source selection
function (RSSF) and point-source selection function (PSSF). Bottom
panel: Relative difference in per-cent between cumulative LFs utilising
the RSSF and PSSF.

within three redshift ranges: 2.9 < z ≤ 4, 4 < z ≤ 5, and
5 < z ≤ 6.7. Regardless of the adopted selection function, we
find that the pure density evolution scenario cannot be rejected
over the full redshift range (i.e. |τ| < 1, thus p0 > 0.16), as well
as in the redshift ranges. This means that over the dynamic range
of probed Lyα luminosities the shape of the observed LAE LF
remains unchanged at 3 . z . 5. The test, however, is not sen-
sitive for a possible change in the normalisation. But, we will
demonstrate below (see especially Figure 19) that such a change
in normalisation is also not required for the observed LAE LF.

A non-evolving apparent LAE LF is consistent with the
result from the NB imaging survey by Ouchi et al. (2008).
This study found no significant differences between the ap-
parent (i.e. uncorrected for Lyα absorption by the intergalac-
tic medium) LAE LF in their three surveyed redshift slices
(z ' {3.1, 3.7, 5.7}). On the other hand, at first our result ap-
pears to be in tension with the recently reported LAE LF evo-
lution from z ' 2.5 to z ' 6 within the SC4K survey (Sobral
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Table 2. Binned differential LAE LF from the first 24 MW pointings.

log LLyα NLAE φPC ∆φPC φ1/Vmax ∆φ1/Vmax

(erg s−1) (Mpc−3[∆ log LLyα]−1) (Mpc−3[∆ log LLyα]−1) (Mpc−3[∆ log LLyα]−1) (Mpc−3[∆ log LLyα]−1)

42.3 52 5.5 × 10−3 7.7 × 10−4 5.9 × 10−3 8.6 × 10−4

42.5 59 3.0 × 10−3 4.0 × 10−4 3.1 × 10−3 4.1 × 10−4

42.7 40 1.4 × 10−3 2.2 × 10−4 1.4 × 10−3 2.3 × 10−4

42.9 17 4.7 × 10−4 1.1 × 10−4 4.8 × 10−4 1.2 × 10−4

43.1 6 1.4 × 10−4 5.8 × 10−5 1.5 × 10−4 5.9 × 10−5

43.3 1 2.3 × 10−5 2.3 × 10−5 2.3 × 10−5 2.3 × 10−5

Notes. φPC is computed with the Page & Carrera (2000) estimator (Sect. 4.1.2), while φ1/Vmax results from binned 1/Vmax estimator (Sect. 4.1.1).
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Fig. 10. Comparison of the RSSF completeness corrected cumulative
LAE LFs obtained with the C− and 1/Vmax estimators. Top panel: Cu-
mulative LAE LFs from both methods. Bottom panel: Relative differ-
ence in per-cent between 1/Vmax and C− method.

et al. 2018b). But, the change in the SC4K LAE LFs is driven
by a decreasing number density of the highest luminosity LAEs
(log LLyα[erg s−1] & 43.0). Unfortunately, with the current MW
data we do not sample a large enough number of such luminous
LAEs to obtain a statistically robust confirmation of this result.
Moreover, the current MW sample is also not well populated
with z & 5.5 LAEs. Thus, as of yet, we also can not add con-
straints to the ongoing debate in the literature regarding a possi-
ble LAE LF evolution between z = 5.7 and z = 6.6 (Ouchi et al.
2010; Santos et al. 2016; Konno et al. 2018).

We now analyse the differences in the resulting LAE LF
when employing the two different selection functions con-
structed in Sect. 3. To this aim we plot in Figure 9 the resulting
cumulative LAE LFs obtained with the C−-method (Sect. 4.1.3)
for the RSSF, which explicitly accounts for the extended low-
surface brightness haloes of LAEs (left panel in Figure 6), and
for the PSSF, which assumes LAEs to be compact PSF broad-
ened sources (right panel in Figure 6 and 7). We find that at the
faint-end of our probed luminosity range (log LLyα[erg s−1] =
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Fig. 11. Top panel: Absolute difference between binned 1/Vmax and φPC
estimator for global MW LAE LF in comparison to the Poissonian er-
rors in each bin. Bottom panel: Relative difference between the two
binned estimators in per-cent.

42.2) the inferred LAE density utilising the RSSF is a factor
of 2.5 higher compared to the PSSF: ΦRSSF(log LLyα[erg s−1] =

42.2) = 2×10−3 Mpc−3, while ΦPSSF(log LLyα[erg s−1] = 42.2) =

8 × 10−4 Mpc−3.
We argue that due to the ubiquity of extended Lyα emis-

sion around LAEs, the RSSF represents a more realistic selec-
tion function. Hence, we regard the LAE LF constructed with
this completeness correction as unbiased. Since previous LAE
LF determinations, except Drake et al. (2017a), have not ac-
counted for extended nature of LAEs in their selection func-
tions, we expect similar biases in their inferred number densities
close to their limiting luminosities. Indeed, we will demonstrate
in Sect. 6 that our PSSF completeness-corrected Lyα LF agrees
better with most literature estimates. Therefore, we emphasise
that our PSSF LAE LF estimates here only serve demonstrative
purposes, while the RSSF corrected estimate can be regarded as
our best estimate.

Numerically, we obtain the same difference between the
LAE LFs from the different selection functions when utilising
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Fig. 12. Results from the Schechter function ML fit for the global MW
LAE LF. Contours are drawn at ∆S = {2.3, 6.17} thereby outlining
the {68.3%, 95.4%} confidence intervals for α and log L∗. In colour
we show the normalisation log φ∗, which is a dependent quantity on
α and L∗, i.e. it is not a free parameter in the fitting procedure. The
cross indicates the best fitting (log L∗[erg s−1], α) = (42.66,−1.84).
At this point in log L∗ − α space the dependent normalisation is
log φ∗(log L∗, α)[Mpc−3] = −2.71. The 1D error-bars show the 68.3%
confidence interval from the marginalised distribution in α and log L∗
(see text).

the 1/Vmax estimator (Sect. 4.1.1). To demonstrate the similar-
ity in the resulting LFs between C− and 1/Vmax we compare in
Figure 10 the inferred cumulative LAE LFs from both estima-
tors. The maximum discrepancy occurs at the faint-end of our
probed luminosity range. Here 1/Vmax provides slightly higher
LAE densities than C−: Φ1/Vmax (log LLyα[erg s−1] = 42.2) =

1.2 × ΦC− (log LLyα[erg s−1] = 42.2). The same result is obtained
for the PSSF. As outlined in Sect. 4.1.3, while the C− construc-
tion requires only an evaluation of the selection function at red-
shifts where objects are detected, the 1/Vmax estimate requires
the evaluation of an integral over the selection function at all red-
shifts. Since our selection function stems from an extrapolation
of the results from a source insertion and recovery experiment
at five discrete wavelengths, the two estimators deal differently
with possible uncertainties from this extrapolation approach. En-
couragingly, the differences in the final LAE LF result are small.
This validates the robustness of our selection function construc-
tion.

Lastly, we compute binned estimates from our sample using
the bins motivated in Sect. 4.2 with the 1/Vmax (Sect. 4.1.1) and
φPC (Sect. 4.1.2) estimators. The results are given in Table 2. In
Figure 11 we compare the results from the two different estima-
tors. Following the expectation of Page & Carrera (2000), the
binned 1/Vmax estimator is biased to higher values of the differ-
ential LF, especially in the low-luminosity bins near the com-
pleteness limit. We find the maximum discrepancy in the lowest
luminosity bin to be 8%. However, at the current size of the MW
sample the results are within the statistical counting error for
each bin. Nevertheless, we encourage the use of the Page & Car-
rera (2000) estimator in future constructions of the binned LAE
LF with larger samples, since it is less biased compared to the
classical 1/Vmax techniques in the lowest luminosity bins of the
sample (see also Yuan & Wang 2013).
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Fig. 13. Cumulative LAE LF from MW obtained with the 1/Vmax esti-
mator in comparison to 68.3% and 95.4% confindence limits of the ML
Schechter fit.

5.2. Parametric modelling

In order to obtain a parametric form of the LAE LF we eval-
uate the inverted log-likelihood function in Eq. (22) “brute-
force” for a densely sampled grid of the Schechter function
(Eq. 19) parameters L∗ and α. The minimum of Eq. (22) func-
tion represents the maximum-likelihood solution. It is found for
log L∗[erg s−1] = 42.66 and α = −1.84. The corresponding value
for the normalisation φ∗ is log φ∗[Mpc−3] = −2.71. In Figure 12
the ∆S = 2.3, and ∆S = 6.17 contours from the evaluation of
Eq. (22) are shown. These two contours correspond to the stan-
dard 1σ and 2σ confidence (68.3% and 95.4%) regions. In this
figure we also visualise the dependence of the normalisation φ∗
on L∗ and α.

From the “banana-shaped” appearance of the ∆S contours
in Figure 12 it is evident that we have a strong degener-
acy between L∗ and α: Higher L∗ values require steeper faint
end slopes, i.e. smaller α’s, and vice-versa. By marginalising
over α and L∗ we recover the 1D 68.3% confidence intervals
log L∗[erg s−1] = 42.66+0.22

−0.16 and α = −1.84+0.42
−0.41, respectively.

The so obtained 1D errors are also drawn as error-bars around
the maximum-likelihood value in Figure 12. These Schechter pa-
rameters are within the 68.3% confidence intervals from the ML
analysis performed by Drake et al. (2017a) on the MUSE HUDF
data: log L∗[erg s−1] = {42.72+0.23

−0.97, 42.74+∞
−0.19, 42.66+∞

−0.19} and
α = {−2.03+0.76

−0.07,−2.36+0.17
−∞ ,−2.86+0.76

−∞ for the redshift ranges
2.9 ≤ z ≤ 4, 4 < z ≤ 5, and 5 < z ≤ 6.64, respectively. We
remark that in Drake et al. (2017a) the 1D confidence intervals
on L∗ and αwere estimated by taking the extremes of the ∆S = 1
contour, i.e. without doing the marginalisation. This estimation
implicitly assumes a 2D Gaussian distribution for the likelihoods
(James 2006). Nevertheless, we verified that the extremes of the
∆S = 1 contour are in good agreement with the marginalised
confidence limits. But we caution that such 1D errors do, by
construction, not reflect the interdependence between α and L∗.
Importantly, this interdependence needs to be taken into account
when discussing the LAE LF redshift evolution based on para-
metric LF fits. To facilitate such a discussion in future work, we
release our obtained S (log LLyα, α) and φ∗(log LLyα, α) functions
shown in Figure 12 in machine readable form with this publica-
tion.

Article number, page 13 of 23



A&A proofs: manuscript no. mw_lae_lf_paper_arXiv

42.0 42.5 43.0 43.5
log10 LLy  [erg s 1]

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

re
ds

hi
ft

Power Law LF
= 2.94

42.0 42.5 43.0 43.5
log10 LLy  [erg s 1]

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

re
ds

hi
ft

Power Law LF
= 2.99

42.0 42.5 43.0 43.5
log10 LLy  [erg s 1]

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

re
ds

hi
ft

Schechter LF
log L = 42.66

= 1.84

Power Law incl. AGNPower LawSchechter Function

Fig. 14. The expected LAE distribution in redshift-luminosity space from the best-fit parameterisations folded with the MW survey area, selection
function and fc = 0.15 truncation criterion is shown in shaded orange (left: Schechter Function; centre: power law; right: power law without
excluding the AGN LAEs). The distributions are used to generate random samples to calibrate the 1D and 2D Kolmogorov-Smirnov and Kuiper
test statistics. Blue circles show the actual LAE samples in redshift-luminosity space. The 2D KS-test statistic is computed by comparing the actual
samples to the model distributions.

Table 3. p-values from Monte-Carlo calibrated KS and Kuiper tests of the observed distribution against maximum-likelihood LF models obtained
by folding the maximum-likliehood Schechter (Eq. (19) or power-law (Eq. 23) parameterisations with the MW survey area and LAE selection
function (RSSF), as well as the fc = 0.15 truncation criterion. 1D KS and Kuiper tests are performed in redshift and luminosities (see Figures 15,
16 and 17), while the 2D KS test operates directly in redshift-luminosity space (see Figure 14).

Parametrisation pLLyα

KS pLLyα

Kuiper pz
KS pz

Kuiper p2DKS

Schechter (log L∗ = 42.66, α = −1.84, log φ∗ = −2.71) 0.74 0.73 0.30 0.49 0.87
Power Law (log L∗ = 42.5, β = −2.99, log φ∗ = −2.932) 0.08 0.04 0.17 0.35 0.23
Power Law incl. AGN (log L∗ = 42.5, β = −2.94, log φ∗ = −2.930) 0.12 0.08 0.18 0.29 0.30

Notes. L∗ in erg s−1 and φ∗ in Mpc−3.

In Figure 13 we compare the maximum-likelihood estimated
Schechter function LF to the non-parametric 1/Vmax-estimate.
The in this figure shown 68.3% and 95.5% confidence limits on
the cumulative Schechter function were obtained by randomly
drawing12 1000 LAE LFs from the normalised likelihood func-
tion (Eq. 20). We deliberately compare here the parametric re-
sults to the non-parametric 1/Vmax estimate, because in both
approaches the selection function needs to be integrated over
the whole redshift range (compare denominators in Eq. 21 and
Eq. 7), which is not the case for the C−-method. Thus, a compar-
ison of the maximum-likelihood results to the C− results would
stand on unequal footing. As evident from Figure 13, there is
excellent agreement between the non-parametric and parametric
LFs, indicating that indeed the Schechter parameterisation ap-
pears qualitatively to be a valid description of the LAE LF.

We also test whether a power-law (Eq. 23) is a more suitable
parameterisation of the LAE LF from our MW data. To this aim,
we first calculate the inverted log-likelihood function for a fine
sampled grid of power-law slopes β. We find the minimum in S
at β = −2.99 ± 0.12. The normalisation, evaluated at log L∗ =
42.5, is log φ∗ = −2.932 ± 0.006. We also perform the same
analysis without excluding the AGN from the sample. In this
case we recover a slope β = −2.94 ± 0.12, and normalisation
log φ∗ = −2.930 ± 0.006 (at log L∗ = 42.5).

Equipped with these results, we now quantify the goodness-
of-fit. Our statistical analysis will enables us to decide whether

12 Random draws where realised with the rejection method (Press et al.
1992).

the power-law or Schechter parameterisation describes the LAE
LF more adequately. A possible statistical tests in this respect
is the Kuiper test (e.g., Press et al. 1992; Ivezić et al. 2014).
This test bears similarities to the well-established Kolmogorov-
Smirnov (KS) test, but it is more sensitive to the discrepancies
in the wings of the distribution (see also Wisotzki 1998). Hence,
it is more suitable for the situation at hand, as the exponential
cut-off to the power-law in the Schechter function modulates the
expected frequency of the brighter galaxies in our probed lu-
minosity range. Nevertheless, for comparison purposes we also
compute the classical KS tests. Both tests are one-dimensional,
thus require marginalisation over our sample and the model dis-
tributions (explained below), either over redshifts or luminosi-
ties. When marginalising over redshifts we thus test for discrep-
ancies between the observed and model luminosity distributions.
Given the assumption of a non-evolving LF over the probed red-
shifts, which was already backed with evidence in the previous
section, this marginalisation provides the most powerful metric
for testing the different LF parameterisations. Marginalising over
luminosities, on the other hand, tests whether the observed dis-
tributions in redshifts are adequately described by one param-
eterisation. This provides us with a parametric test for redshift
evolution. Finally, dealing with a 2D distribution in redshift-
luminosity space we also calculate a 2D variant of the KS statis-
tic that was originally developed by Peacock (1983).

A possible pitfall when utilising these tests is that we deter-
mined the model parameters from the same dataset. As explained
in Wisotzki (1998) then the distribution functions of those test
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Fig. 15. Visualisation of the procedure to calculate the Kuiper- and KS-
test statistics. Panel (a): Predicted number counts as a function of red-
shift from the maximum likelihood Schechter model folded with the
MW survey area, selection function (RSSF), and the fc = 0.15 trun-
cation criterion (orange curve) in comparison to a histogram of the
observed number counts (blue histogram). Panel (b): Normalised cu-
mulative distribution in redshift for the Schechter model in panel (a)
compared to the observed cumulative distribution. Panel (c): Similar
to panel (a), but as a function of Lyα luminosity. Panel (d): Similar to
panel (b), but as a function of Lyα luminosity. The Monte-Carlo cali-
brated p-values of the KS and Kuiper test are given in panel (b) and (d)
– see also Table 3.
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Fig. 16. Same as Figure 16, but for the maximum likelihood power law
model.

statistics are not valid anymore for calculating p-values needed
to reject or accept the null-hypothesis “data is represented by
the model”. This is because the null-hypothesised model has
been moved closer to the data due to its estimation from the
data. We circumvent this by performing Monte-Carlo simula-
tions to calculate the distribution of these test-statistics under
the null-hypothesis (Press et al. 1992, Chapt. 14.3). Therefore
we draw a large number of samples of the same size as our LAE
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Fig. 17. Same as Figure 16, but here the analysis was performed without
excluding the AGN from the sample.

LF sample from the ML luminosity function models. In these
simulations we account for the surveyed area, the MW selection
function (RSSF), and the fc = 0.15 sample truncation criterion.
We show in Figure 14 the resulting 2D distributions in redshift-
luminosity space from the maximum-likelihood models together
with the MW LAE sample. Moreover, the marginalised differen-
tial and cumulative distributions in redshift- or luminosity-space,
together with binned histograms of the actual samples are shown

in Figure 15 for the Schechter function, in Figure 16 for the
power law, and in Figure 17 for the power law without exclu-
sion of the two AGN in the sample. The 2D KS test-statistics are
computed by comparing the 2D model distributions to the actual
samples (i.e. from the data shown in Figure 14), and the 1D KS-
and Kuiper-tests are computed by comparing the cumulative 1D
model distributions to the cumulative sample distribution (i.e.
from the data shown in panels (b) and (d) in Figures 15, 16, and
17). We list in Table 3 the resulting p-values from those tests.

It is visually already apparent, especially when contrasting
the panels comparing the cumulative distributions in LLyα in
Figures 15, 16, and 17 that the expected distributions from the
power-law parameterisations show marked discrepancies with
respect to the observed distribution. This visual impression is
confirmed by the p-values (Table 3). All three statistical tests re-
sult in markedly smaller p’s for the power law model compared
to the p’s for the Schechter model. The KS- and Kuiper-tests in
redshift space result in p-values at which neither the power-law
nor Schechter model can be formally rejected. This shows that a
single parameterisation of the LAE LF is adequate to describe
the LAE LF over the redshift- and luminosity range probed
by MW, but the Schechter model can be favoured due to its
markedly higher p-values. This result is consistent with the non-
parametric test presented in the previous section that indicated
a non-evolving LAE LF over the redshift range probed by MW
(Table 1). Given the non-evolving LF, the resulting p = 0.04 of
the Kuiper test in LLyα for the power law model means that we
can reject this parameterisation at 2σ significance. Only when
not excluding the X-Ray identified AGN from the LAE sample,
the power-law becomes a marginally consistent description of
the sample. Based on these results we adopt our ML Schechter
model as the working hypothesis for the remainder of this paper.

We noticed that parametric models for LAE LFs in the lit-
erature are sometimes obtained by χ2-fitting a model to non-
parametric binned estimates of the differential LF (e.g. van
Breukelen et al. 2005; Cassata et al. 2011; Matthee et al. 2015;
Santos et al. 2016; Sobral et al. 2018b). However, we cau-
tion that such an approach does result in model parameters
that are not independent on the placement of the bins and the
adopted bin width. We visualise this in Figure 18 for our sam-
ple. There we show the resulting (L∗, α) values from a non-
linear fit (obtained with the Leveneberg-Marquardt algorithm)
of the Schechter function (Eq. 19) to different binned 1/Vmax
estimates (Eq. 8). For this exercise we varied both the size (dif-
ferent panels in Figure 18) and the placement (different colours
in Figure 18) of the bins. Moreover, we ignored incomplete
bins, i.e. bins with objects that fall below the fc = 0.15 trun-
cation criterion, in the fitting procedure. As evident, the result-
ing (L∗, α) pairs scatter substantially, with only a few combi-
nations of bin-width and bin-placement reproducing the actual
ML solution. Thus, such a fitting approach will not lead to a ro-
bust parameterisation of the LF. However, given a ML solution it
could potentially be used to determine an optimal bin-width and
bin-placement at which the binned estimate will be closest to
the adopted parametric form. Indeed, for our adopted bin-width
(∆ log LLyα[erg s−1] = 0.2) and bin-placement (lowest luminos-
ity boundary log LLyα[erg s−1] = 42.2), the parametric fit to the
binned data is in very good agreement with the ML solution.

We plot in Figure 19 the non-parametric differential MW
LAE LF in three redshift bins (2.9 < z ≤ 4, 4 < z ≤ 5, and
5 < z ≤ 6.7), as well as the global (2.9 < z < 6.7) LAE
LF. The non-parametric results shown in this figure are obtained
with the φPC-method for the RSSF and the PSSF. For both the
redshift bins and the whole redshift range we also display the
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Fig. 18. Resulting Schechter parameters L∗ and α from a non-linear least-squares fit (using the Levenberg-Marquardt algorithm) of the Schechter
function (Eq. 19) to the binned differential 1/Vmax estimator (Eq. 8) for different binning schemes. Panels from left to right show five differ-
ent bin-sizes ∆ log LLyα[erg s−1] = {0.075, 0.1, 0.15, 0.2, 0.25}. Colour coded in each panel is the best-fit (L∗, α) pair according to the lowest-
luminosity boundary of the starting bin. Incomplete bins (containing objects at fc < 0.15) are ignored in the fit, i.e. the magenta point in the panel
∆ log LLyα[erg s−1] = 0.2 panel represents the adopted binning scheme (cf. Sect. 4.2) in Table 2 and Figure 20. For guidance the likelihood contours
and the maximum-likelihood solution from Figure 12 are shown in each panel.

68.3% and 95.4% confidence intervals of the global Schechter
LF. As for Figure 13, these intervals were obtained by randomly
drawing 1000 LAE LFs from the normalised likelihood func-
tion. Here it can be seen that the global Schechter fit is an ex-
cellent description of the global binned RSSF LF. This result
confirms what we saw already when comparing the parametric
to the non-parametric cumulative LAE LFs in Figure 13. More-
over, the binned estimates in the different redshift bins are also in
excellent agreement with the global Schechter parameterisation,
thus adding further evidence to our previous tests that indicated
a non-evolving apparent LAE LF. All these results justify the
use of a global LAE LF in this redshift range by MW. Hence,
the estimates in the redshift bins here serve only demonstrative
purposes and will not be considered further. For the same rea-
son, parametric estimates in the redshift bins are prohibitive for
our sample, as they just would lead to a larger uncertainty on the
final fitting parameters (so called “overfitting”). We commented
already on the upwards correction of the LAE LF by up to a fac-
tor of 2.5 at the faint-end of our probed luminosity range when
utilising the RSSF instead of the PSSF (Sect. 5.1). Finally, in the
here presented comparison between RSSF and PSSF corrected
LFs it can be visually appreciated that neglecting extended Lyα
emission in the selection function naturally leads to the inference
of a flatter faint-end slope α in the Schechter parameterisation.
We will demonstrate in the next section that the PSSF corrected
values are in better agreement with previously determined liter-
ature estimates.

We also compare in Figure 19 the MW LAE LF to published
LAE LF estimates other from MUSE surveys performed within
the MUSE consortium (Bina et al. 2016; Drake et al. 2017b,a).
Key parameters from those surveys are also listed in Table 4.
Both, the binned estimates from the pilot study by Bina et al.
(2016), which makes use of the lensing cluster Abell 1689, as
well as the global LAE LF determination from the deep MUSE
commissioning data in the Hubble Deep Field South show some
agreement at the 1σ level with our estimates. However, the er-
ror bars from theses early analyses of MUSE data are quite
large, and the estimates scatter substantially. More relevant is
the good agreement between our results and the binned esti-
mates from the MUSE-Deep programme in the Hubble Ultra
Deep Field by Drake et al. (2017a). Where the luminosity ranges
between MUSE-Deep and the here presented MW sample over-
lap, the datapoints are in almost perfect agreement, except for

the brightest Drake et al. (2017a) bins for the redshift range
2.9 < z ≤ 4 and for the global LF. However, the mismatch in
those brightest bins is a consequence of the pencil-beam nature
of the MUSE Deep survey, making it prone to cosmic variance
for such brighter and rarer LAEs. We stress again that the Drake
et al. (2017a) study also incorporates a correction for extended
Lyα halos in their completeness function estimates. In this re-
spect it is especially encouraging that even their faintest bins
(log LLyα[erg s−1] < 42.0) are in agreement with the 2σ con-
tours of our extrapolated Schechter parameterisation below the
luminosity limit of MW13, except at z > 5. There, however, the
faintest bins are below the adopted fc = 0.25 completeness cutoff
for the parametric modelling in Drake et al. (2017a), as at those
low completeness levels the selection function was deemed un-
reliable. The comparison with the MUSE-deep analyses demon-
strates how MW is complementary at brighter luminosities. In
a forthcoming study we will perform a joint and homogenised
LAE LF analysis of the deep and wide MUSE datasets.

6. Comparison with the Literature

We now compare the obtained MW LAE LF with previous liter-
ature estimates in the redshift range 3 . z . 6. For this purpose
we utilise the literature compilation of binned differential LAE
LF estimates provided by Sobral et al. (2018b), with the excep-
tions of a few references which were not present in that compila-
tion (namely the studies by Shimasaku et al. 2006, Shioya et al.
2009, Henry et al. 201214 and Konno et al. 2018). An overview
of the comparison studies is provided in Table 4, where we list
their methodology, redshift ranges, survey areas, probed comov-
ing volumes, as well as the lowest Lyα luminosities to which the
LAE LF was probed. For the imaging campaigns we also list the
adopted equivalent width cuts, as well as the number of photo-
metric LAE candidates and actual spectroscopic confirmations.

Except for the MUSE studies mentioned at the end of the pre-
vious section only Sobral et al. (2018b) attempted to construct a
global LAE LF over a similar redshift range. We provide a com-
parison between their binned estimates and our binned and para-

13 As discussed by Drake et al. (2017a), their faintest bins at 3 < z < 4
are consistent with the LAE LF construction at z ∼ 3 from a blind 92h
long-slit integration with FORS2 by Rauch et al. (2008).
14 We use the “inferred LAEs, high” LF estimate from Henry et al.
(2012), for which also the less certain LAEs where kept in the sample.
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Fig. 19. Differential MUSE-Wide LAE LF in the redshift ranges 2.9 < z ≤ 4 (top left panel), 4 < z ≤ 5 (top right panel), 5 < z < 6.7 (bottom
left panel), and for the global MW redshift range (bottom right panel). Our “realistic source selection function” (RSSF, see Sect. 3.2) corrected
binned estimates are shown as filled circles, while the with the oversimplified “point source selection function” (PSSF, see Sect. 3.1) corrected
binned estimates are shown with open circles. Yellow (dark yellow) shaded regions indicate the 68.3% (95.4%) confidence regions for a Schechter
parameterisation obtained a maximum likelihood analysis (Sect. 4.3). For this parametric modelling we corrected with the RSSF for completeness.
Also shown in this figure are other MUSE LAE estimates obtained by the MUSE GTO consortium, namely the binned estimates by Drake et al.
(2017b) obtained from MUSE commissioning observations in the Hubble Deep Field South, the binned estimates by Drake et al. (2017a) from the
MUSE-Deep observations in the Hubble Ultra Deep Field, and the pilot study by Bina et al. (2016) exploiting gravitational lensing by the lensing
cluster Abell 1689.

metric estimates in Figure 20. Where the MW luminosity range
overlaps with SC4K, both LF estimates are in agreement, except
for the faintest SC4K bins. These bins fall below our RSSF cor-
rected results and line up closer with our PSSF corrected binned
estimates. We will comment on this mismatch at the faint end
below, as it seems to be a generic property of previous LAE LF
construction attempts.

First we focus in Figure 20 on the bright end of the global
SC4K LAE LF (log LLyα & 43.2). There we note an apparent
excess of the Sobral et al. (2018b) bins compared our the 1σ
contours of our extrapolated Schechter parameterisation. In fact,

the display of our binned RSSF-corrected estimate together with
the SC4K binned estimate is very suggestive of a non-existent
“knee” in the LAE LF and thus indeed supportive of the power-
law parameterisation favoured by Sobral et al. (2018b). This is
not in tension with our statistical analysis presented in Sect. 5.2
that disfavoured a power-law. The reason could simply be the
limited dynamical range in high Lyα luminosities. Such bright
and rare LAEs are only sampled with robust statistics in wide-
field NB imaging campaigns. Notably, also several other studies
also indicate that a non-exponential drop-off at the bright-end of
the LAE LF is not required, both at lower redshifts (z . 2, Konno
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Table 4. Compilation of key parameters of LAE LF studies from the literature in the redshift range probed by MW.

Reference Method(∗) EWlim
Lyα z Area Volume log LLyα,lim N(∗∗)

phot N(∗∗)
spec

[Å] [deg2] [Mpc3] log [erg s−1]

Ouchi et al. (2008) SC/NB503 64 3.1 ± 0.03 0.983 7 × 105 42.0 356 41
. . . SC/NB570 44 3.7 ± 0.03 0.965 6.1 × 105 42.6 101 26
. . . SC/NB816 27 5.7 ± 0.05 1.033 9.2 × 105 42.5 401 17
Grove et al. (2009) FORS2/3NB 25 2.85/3.15/3.25 0.037 1.4 × 104 41.5 83 59

Cassata et al. (2011) VIMOS - 2 − 6.6 0.62/0.16† - 41.0 84†† 153††

Matthee et al. (2017) INT/NB501 12 3.06 ≤ z ≤ 3.17 0.7 7.2 × 105 43.0 32 5

Sobral et al. (2018b) SC/IA464-527] 50 3.1 ± 0.4 ≈ 2 17.3 × 106 42.5 2146 ?‡

. . . SC/IA574,624 50 3.9 ± 0.3 ≈ 2 10.1 × 106 42.95 240 ?‡

. . . SC/IA679,709 50 4.7 ± 0.2 ≈ 2 10.6 × 106 43.1 160 ?‡

. . . SC/IA738-827\ 50 5.4 ± 0.5 ≈ 2 15.5 × 106 43.3 147 ?‡

. . . SC4K/global 50 ∼ 2.5 − 6 ≈ 2 ∼ 108 42.5 3434 112‡

Drake et al. (2017a) MUSE/HUDF - 3.5 ± 0.5 7 × 10−7 3.1 × 104 41.0 - 193
. . . . . . - 4.5 ± 0.5 7 × 10−7 2.6 × 104 41.0 - 144
. . . . . . - 5.8 ± 0.8 7 × 10−7 3.6 × 104 41.0 - 50
. . . . . . - 2.91 − 6.64 7 × 10−7 9.3 × 104 41.0 - 387
Drake et al. (2017b) MUSE/HDFS - 2.91 − 6.64 8 × 10−8 1 × 104 41.4 - 59
Dawson et al. (2007) 4m/5NB 15 4.4 ± 0.1 2 × 10−4 1.5 × 104 42.0 97 79

Shioya et al. (2009) SC/NB711 12 4.86 ± 0.03 1.83 1.1 × 106 42.8 79 0
Konno et al. (2018) HSC/NB816 10 5.73 ± 0.05 13.8 1.2 × 107 42.9 1077 49

Shimasaku et al. (2006) SC/NB816 10 5.7 ± 0.05 0.2 1.8 × 105 42.5 89 39

Santos et al. (2016) SC/NB816 25 5.7 ± 0.05 7 6 × 106 42.4 514 46

Henry et al. (2012) IMACS/NB+slits - 5.7 ± 0.1 0.015 1.5 × 104 42.1 105‡‡ 6

Bina et al. (2016) MUSE/Abell1689 - 2.91 − 6.64 8 × 10−8 900[ 40.5 - 17

Notes.
(∗): Legend for abbreviations: SC/X=Subaru Suprime-Cam with filter X; HSC/NB816=Subaru Hyper Suprime-Cam with NB816 fil-
ter; FORS2/3NB=ESO VLT/FORS2 - 3 fields, with 3 different narrow-band filters; VIMOS=ESO VLT/VIMOS multi-slit spectro-
scopic survey; INT/NB501= Wide-Field Camera with NB501 filter at Isaac Newton 2.5m Telescope; MUSE/HUDF=MUSE Hubble Ul-
tra Deep Field; MUSE/HDFS=MUSE Hubble Deep Field South; 4m/5NB=5 overlapping narrow-band filters on two 4m class tele-
scopes; IMACS/NB+slits=Multi-slit narrow-band spectroscopic search with IMACS on the Baade telescope (see also Martin et al. 2008);
MUSE/Abel1689=MUSE observations of the lensing cluster Abell 1689.
(∗∗) : Number of photometrically selected LAE candidates (Nphot) and number of spectroscopic confirmations (Nspec).
†: Area of the imaging campaign (VIMOS Deep Survey / VIMOS Ultra Deep Survey) from which targets where pre-selected for VIMOS multi-slit
spectroscopy.
††: Here Nphot refers to the number of photometrically pre-selected LAEs, while Nspec indicates the number of serendipitously detected sources.
‡: Spectroscopic confirmations only reported for the combined SC4K sample.
‡‡: Single unresolved emission line objects without continuum detections (see also Martin et al. 2008).
]: IA464, IA484, IA505, and IA527 medium band filters.
\: IA738, IA767, and IA827 medium band filters.
[: Effective comoving volume from lensing magnification.

et al. 2016; Wold et al. 2017; Hao et al. 2018) and at higher red-
shifts (z & 5, Santos et al. 2016; Matthee et al. 2017; Bagley et al.
2017). While the low redshift studies demonstrate convincingly
that the excess at the bright end of the LAE LF can almost exclu-
sively be attributed to AGN (see especialyl Konno et al. 2016;
Wold et al. 2017), the nature of these sources at high-redshifts
appears to be less clear. Another hint at the possible mismatch
of our favoured Schechter model with the bright end of the LAE
LF can also be seen in Figure 21, where we compare the 1σ and
2σ contours of the global Schechter parameterisation from our
likelihood analysis with binned estimates from the literature in
different redshift ranges. However, there is considerable scatter
amongst the literature estimates, even amongst the different red-

shift slices from the SC4K survey, and at least most of the data
points are consistent at the 2σ level with the Schechter model.

If the bright-end excess seen in the LAE LF can not be at-
tributed to AGN activity (e.g. Sobral et al. 2018b excluded AGN
based on X-Ray and radio diagnostics), then the LAE LF would
be of different shape compared to the rest-frame ultra-violet
(UV) LF of high-redshift galaxies which appears to be well
described by a Schechter function (e.g. Bouwens et al. 2007,
2015). However, the most recent wide area ground based sur-
veys start to question this result by reporting a bright-end excess
in the UV LF that can not be solely attributed to AGN activity
and seems to deviate from a simple Schechter parameterisation
(Ono et al. 2018; Viironen et al. 2018). Certainly, Lyα radia-
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Fig. 20. Global (2.9 ≤ z ≤ 6) MUSE-Wide LAE LF (binned RSSF and
PSSF corrected results from fille and open circles, respectively) with
1σ (dark grey shaded region) and 2σ intervals (grey shaded region) for
the RSSF corrected Schechter parameterisation as in the bottom right
panel of Figure 19, in comparison to the binned estimates of the global
(2.5 ≤ z ≤ 6) SC4K LAE LF (Sobral et al. 2018b).

tive transfer is expected to modulate the Lyα output of a galaxy
compared to its overall ionising photon production, which as a
good first-order approximation can be traced by its UV luminos-
ity (e.g. Bouwens et al. 2016; Schaerer et al. 2016). In princi-
ple the UV and LAE LFs can be linked to each other (Henry
et al. 2012; Gronke et al. 2015). However, in which way ra-
diative transfer processes or additional Lyα photon production
processes (e.g., ionising photons from UV undetected satellite
galaxies or Lyα boosting from the UV background as proposed
in Mas-Ribas & Dijkstra 2016) could influence the bright-end
of the LAE LF compared to the bright end of the UV LF re-
mains currently purely speculative. Indeed, a few of the most-
luminous LAES at z & 6 have already received observational
attention (e.g, Ouchi et al. 2009; Lidman et al. 2012; Hu et al.
2016; Matthee et al. 2018), with one object being suggested
to either host metal-free stars (Sobral et al. 2015) or a direct-
collapse black hole (Pallottini et al. 2015). At z ∼ 2 − 3 So-
bral et al. (2018a) presented recently spectroscopic results on 20
bright LAEs (log LLyα [erg s−1] > 42.7). Interestingly, these au-
thors report a 60% AGN fraction for such luminous LAEs, which
rises sharply to 100% for log LLyα [erg s−1] > 43.3. This indeed
suggests that the observed deviations from a Schechter function
at bright luminosities are caused by sources whose Lyα emission
is powered by non-thermal black hole accretion processes, rather
then star formation.

We also find some notable overall disagreements between the
literature and our estimates in luminosity range where MW over-
laps with other surveys. In the redshift range 2.9 < z ≤ 4 (top-
left panel in Figure 21) we find that our LF is significantly higher
(i.e. up to an order of magnitude) compared to the LF estimates
obtained by Cassata et al. (2011). But, the Cassata et al. z ∼ 3−4
LF is also significantly below most other literature estimates and
it is only consistent with the faint end (log LLyα[erg s−1] ≤ 42.5)
of the Grove et al. (2009) LF. Moreover, also most of the LF bins
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Fig. 21. Differential LAE LF estimates from the literature grouped in
three redshift bins (2.9 < z ≤ 4 in the top panel, 4 < z ≤ 5 in the
middle panel, and 5 < z . 6 in the bottom panel) comparison to our
1σ (dark grey shaded region) and 2σ intervals (grey shaded region) for
the RSSF corrected global Schechter parameterisation (shown already
in Figure 19 and Figure 20). References are provided in Table 4, in the
legend we abbreviate always with the first letter of the first author and
the last two digits of publication year. We also show our PSSF corrected
binned estimates as open circles, as those are often in better agreement
with the literature estimates (see text).
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from Dawson et al. (2007) z ∼ 4 (centre panel in Figure 21) are
significant below our inferred LF.

Finally, we find from the comparison in Figure 21, where we
group the literature results in three redshift bins that the majority
of literature LF estimates at luminosities log LLyα . 42.5 falls
below our global Schechter parameterisation. We stress again
that this parameterisation was obtained by implicitly correcting
for extended low-surface brightness Lyα halos by utilising our
RSSF. In this respect it is especially interesting that that the ma-
jority of the literature estimates are often in nearly perfect agree-
ment with our PSSF completeness corrected LF estimates. Es-
pecially the binned estimates of Ouchi et al. (2008) at z ∼ 3, as
well as the binned estimate from Shimasaku et al. (2006) and
Cassata et al. (2011) at z ∼ 6 line up perfectly with our PSSF
corrected estimates. Thus, we are able to reproduce the results
of previous campaigns by using a completeness correction that
is comparable to the ones applied in those studies.

Notably, almost all LAE LF estimates in the literature so far
did not take the extended nature of LAEs into account when
constructing their selection functions. For example, Ouchi et al.
(2008) populate their narrow band imaging data with fake point
sources, while Hao et al. (2018), at z ∼ 2, rescale the flux of
stellar images in their images. A slightly different approach was
used by Konno et al. (2018) utilise a Sèrsic n = 1.5 surface-
brightness profile with small effective radii of re = 0.9 kpc, but
also these fake sources do not correlctly represent the typical ex-
tended Lyα surface-brightness profiles. As the source detection
algorithms used in those surveys utilise parameters optimised for
the detection of compact sources, we argue that the inferred se-
lection functions in those studies must be overoptimistic. As we
will elaborate later, this leads to a bias in the luminosity function
estimate near the completeness limit of the surveys, thus leading
to wrong estimates on the faint end of the LAE LF. Moreover,
for the faint end studies at z ∼ 6.5 appear to be in subtle dis-
agreement (Ouchi et al. 2010; Matthee et al. 2015). Interestingly,
Matthee et al. (2015) followed a different approach compared to
Ouchi et al. (2010) to estimate their completeness by rescaling
fluxes of other sources in the narrow-band filter that do not show
an excess but otherwise fulfil the additional colour-selection cri-
teria. Nevertheless, this model-independent approach, utilised
also in Sobral et al. (2018b), neglects that a significant fraction
of Lyα emission comes from the diffuse low-SB halo.

We argue here that assuming LAEs to be be compact “point-
like” sources is not a justifiable simplification anymore. As al-
ready mentioned in Sect. 5.1, Grove et al. (2009) suspected an
inherent bias in LAE LF estimates caused by ignoring possible
extended emission in the construction of the selection function.
Moreover, the LAEs found in the deep long-slit integration of
Rauch et al. (2008), as well as the stacking analyses by Steidel
et al. (2011) and Momose et al. (2014) already hinted at a large
fraction of LAEs being surrounded by low surface-brightness
Lyα halos. Now, from the MUSE deep fields, the omnipres-
ence of Lyα halos around LAEs is a well established fact on
an object-by-object basis (Wisotzki et al. 2016; Leclercq et al.
2017). Here we show that accounting for this effect results in
an upward correction by a factor of up to three for LF bins at
log LLyα[erg s−1] . 42.5 of previous surveys.

7. Summary and Outlook

We presented a framework for constructing the LAE LF in an
integral field spectroscopic survey. We utilised these methods
on the LAE sample resulting from the first instalment of the
MW survey. Our LAE LF sample covers luminosities 42.2 ≤

log LLyα[erg s−1] ≤ 43.5. We showed that the apparent LAE LF
in this luminosity range is non-evolving over the redshift range
2.9 ≤ z ≤ 6.7. This result is irrespective of the assumed se-
lection function, but we argued that the classical assumption
of LAEs being compact-point like objects biases LF estimates
too low near the completeness limit of a survey. We found that
different non-parametric estimates provide nearly identical de-
scriptions of the cumulative or differential LAE LF. We ob-
tained a maximum-likelihood Schechter parameterisation of the
LAE LF for log L∗[erg s−1] = 42.66+0.22

−0.16, and α = −1.84+0.42
−0.42,

but with a strong degeneracy between both parameters. The a-
posteriori normalisation of the maximum-likelihood Schechter
fit is log φ∗[Mpc−3] = −2.71. We showed that the Schechter pa-
rameterisation accurately describes our non-parametric cumula-
tive and differential estimates, while parametrising the LAE LF
with a simple power-law provided a less optimal fit. A compari-
son of our LAE LF with binned estimates of the differential es-
timates from the literature revealed subtle disagreements. Espe-
cially at fainter luminosities (log LLyα[erg s−1] . 42.5) our LF,
and the Drake et al. (2017a) MUSE HUDF LAE LF, are higher
than the literature LF estimates. This is a natural consequence
of incorporating the dilution of detectable Lyα signal due to
extended low-surface brightness Lyα haloes into the complete-
ness correction. We showed that we achieve a better agreement
with the literature when assuming for the completeness correc-
tion that LAEs are compact point-like sources. However, in light
of the recently accumulated evidence regarding the ubiquity of
extended Lyα haloes we argued that this is an oversimplified as-
sumption.

With the release of the full MW dataset (Urrutia et al., in
prep.) we will significantly improve the statistical robustness of
the here presented results due to the by a factor of more than
five increased sample size. The main draw-backs of the current
data is the lack of a sizeable sample of z > 5 LAEs, and the
small number of very luminous (log LLyα[erg s−1] > 43.0) LAEs.
Yet, it is especially this currently under-sampled region in the
(LLyα, z)-parameter space where other campaigns hint at a pos-
sible evolution in the shape and normalisation of the LAE LF
(e.g. Santos et al. 2016; Sobral et al. 2018b). While measuring
robustly the LF for the most luminous LAEs will remain a do-
main of the wide-area NB campaigns, MW nicely populates the
Lyα luminosity range that overlaps with the faintest ends of such
campaigns and the bright ends of the MUSE deep surveys. The
next step in our analysis will be the construction of a combined
LAE LF from the final MW data set and the MUSE deep fields.

Of course, with an increased sample size on the horizon, we
need to be aware of possible systematic uncertainties in the here
presented framework. Firstly, all the here applied non-parametric
and parametric LF estimators do not take photometric uncertain-
ties into account. Secondly, we do not account for uncertainties
in the selection function.

Regarding the selection function construction we assumed
that the 10 LAEs from the source insertion and recovery exper-
iment in the HDFS are representative of the whole population,
and thus we weighted them equally. We can justify this approach,
as no scaling relations between Lyα halo flux fraction and other
physical properties have been found. Especially, the halo-flux
fraction appears to be independent of Lyα luminosity (Leclercq
et al. 2017). And, as we explained in Sect. 3.2, the used sources
span a range in halo flux fractions and line profiles. Neverthe-
less, as of yet we do not have a for selection effects corrected
distribution of halo flux fractions. Equipped with such a distri-
bution in the future, a more realistic weighting scheme could be
employed.
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However, a more relevant systematic effect might result from
ignoring the statistical errors on the flux measurement in the LF
construction. It is known that especially near the completeness
limit of a survey, where also the photometric uncertainties be-
come larger that ignoring photometric errors systematically bi-
ases the LF. This bias is referred to as Eddington-Malmquist-bias
in the literature (see, e.g., Sect. 5.5 in Ivezić et al. 2014). The bias
is a combined effect of photometric errors, sample truncation on
observed values, and a rising luminosity function towards fainter
luminosities. The effect is that near the completeness limit more
sources scatter into the sample, than sources which scatter out
of the sample. Ultimately this results in higher inferred number
source densities at the faint end of the probed luminosity range,
and consequentially also to higher inferred slopes in paramet-
ric LF determinations. We point out that our sample truncation
was quite conservative (Sect. 4.2), i.e. we excluded almost 1/4th
of the faintest sources from our final LAE LF sample. More-
over, in the binned estimates the bin-size was chosen to be larger
than the photometric error in the faintest bin and the number of
sources scattering between the two faintest appears to compen-
sate each other in both directions. A more quantitative discus-
sion is outside the scope of this analysis, but we remark that the
Eddington-Malmquist-bias has not been commented upon in the
LAE LF literature. We argue that robust determinations of the
faint end slope need to account for this bias in the future, e.g. by
modelling the dependence of the photometric uncertainties on
the inferred LFs. Of interest in this respect appears the modified
ML estimator developed by Mehta et al. (2015), that can account
for photometric uncertainties. Methods like this will allow for
a robust and unbiased determination of LAE LFs in the future
from which in turn vital key information regarding cosmology
and galaxy formation can be extracted.
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