
1

Healthy scents: microbial volatiles as new frontier in antibiotic research?

Mariana Avalos1, Gilles P. van Wezel1,2, Jos M. Raaijmakers1,2, Paolina Garbeva2*.

1Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands. 

2Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB Wageningen, The 

Netherlands.

* Corresponding author: p.garbeva@nioo.knaw.nl

 

mailto:p.garbeva@nioo.knaw.nl


2

ABSTRACT

Microorganisms represent a large and still resourceful pool for the discovery of novel 

compounds to combat antibiotic resistance in human and animal pathogens. The ability of 

microorganisms to produce structurally diverse volatile compounds has been known for 

decades, yet their biological functions and antimicrobial activities have only recently attracted 

attention. Various studies revealed that microbial volatiles can act as infochemicals in long-

distance cross-kingdom communication as well as antimicrobials in competition and 

predation. Here, we review recent insights into the natural functions and modes of action of 

microbial volatiles and discuss their potential as a new class of antimicrobials and modulators 

of antibiotic resistance. 

INTRODUCTION

The problem of antimicrobial resistance

The discovery and use of antibiotics to treat infectious diseases has dramatically affected 

human life spans. Nevertheless, the increasing use of antibiotics has led  to a rapid acquisition 

of antibiotic resistance by pathogenic microorganisms [1,2] as was already predicted by 

Alexander Fleming shortly after he discovered penicillin [3]. The threat of the increased 

frequency of antibiotic resistance is further augmented by the reduced interest and efforts of 

the pharmaceutical industry to discover and develop novel antibiotics [4-6]. Therefore, 

scientists are taking the lead in finding new strategies to identify new antibiotics to turn the 

tide of antibiotic-resistance[7]. In particular, we need to expand the chemical space of 

bioactive molecules with different modes of action and for which resistance development is 

less likely to occur. To date, the attention of industrial screening efforts has been almost 

exclusively directed at canonical antibiotic classes such as polyketides (PKS), nonribosomal 
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(NRPS) and ribosomal (RiPP) peptide antibiotics, β-lactams and aminoglycosides. However, 

there is a major and highly diverse class of natural products that has been largely ignored by 

the pharmaceutical industry, namely the volatile compounds. Research on microbial volatiles 

is an emerging field with immense potential for both human, animal and plant health [8-11]. 

Here, we provide a brief and up-to-date overview of recent studies concerning the natural 

functions of microbial volatiles with a specific focus on volatiles that have antimicrobial 

activity or that act as modulators of antimicrobial resistance.  

Chemical diversity and natural functions of microbial volatile compounds (MVCs)

Bacteria and fungi release a plethora of organic and inorganic volatile compounds, small 

molecules with low molecular weight and high vapour pressure. These physicochemical 

properties enable MVCs to diffuse more easily, allowing dispersal over longer distances than 

other microbial metabolites. A decade ago, the excellent review by Schulz and Dickschat [12] 

on microbial volatiles marked the rise of this emerging and exciting research field of natural 

product chemistry. Since then, numerous structurally diverse MVCs produced by marine and 

terrestrial microorganisms have been described [13,14].  MVCs belong to diverse chemical 

classes, including alkanes, alkenes, alcohols, esters, ketones, terpenoids, sulfur-containing 

compounds and a range of small inorganic compounds. Moreover, within these classes there 

appears to be an enormous chemical diversity of MVCs that remains to be discovered as 

exemplified by the terpenes sodorifen [15] and pristinol [16]. MVCs may be unique to a single 

phylogenetic group or even species, which also allows the use of MVCs for chemotaxonomic 

purposes [17] and for the selective detection of pathogens in both indoor and outdoor 

environments [18]. For example, VCs produced by M. tuberculosis help to detect the 

pulmonary infection and asses the efficacy of treatment [19]. 
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MVCs play important ecological roles in intra- and inter-kingdom interactions [20 [21]. 

Activities reported for MVCs include modulation of growth, motility, virulence and biofilm 

formation as well as production of specialized metabolites (e.g. toxins), antibiotic resistance 

and spore germination in competing microorganisms (i.e. bacteria, fungi) [22-27]. For 

example, some Streptomyces species surpass obstacles by so-called ‘explorer cells’, whereby 

they colonize new areas in the face of competition induced by the biogenic volatile 

trimethylamine [28]. The skin-borne Staphyloccoccus schleiferi produces schleiferons A and B 

that modulate the skin microbiome possibly by inhibiting the growth of Gram-positive bacteria 

and by interfering with prodiginines production [26]. Plants also respond to and utilize MVCs 

leading to growth promotion or inhibition, induced systemic resistance or alteration of the 

plant metabolome [11,29,30]. Recent studies further point to other intriguing ecological roles 

of MVCs in cross-kingdom interactions. For example, ammonia produced by bacteria 

promotes the symbiosis between a fungus and a beetle by regulating the consumption 

sequence of the carbon sources pinitol and glucose [31]. Other studies indicated that volatiles 

from Bacillus subtilis Pseudomonas fluorescens, Serratia odorifera, and Xanthomonas 

campestris act as infochemicals disclosing a food source to bacterial predators, whereby the 

nematode Caenorhabditis elegans responded by crossing a 3-cm plastic barrier presumably to 

feed on the bacteria [9].  In contrast,  MVCs like acetaldehyde, cyclohexene and dimethyl 

disulfide, were reported to reduce the motility of nematodes [32]. Recent studies in our labs 

further revealed that terpenes from Collimonas may act as a defense mechanism against 

protozoan predation [21]. Also the terpene geosmin produced by Streptomyces and other 

bacteria has been proposed to be multifunctional as a signaling molecule involved in 

sporulation of the producing strain [33] and as a deterrent in food for Drosophila flies [34]. For 

more comprehensive overviews of other natural roles of MVCs in intra- and interspecific 
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interactions and cross-kingdom communication, we refer to several recent reviews [9,14,35-

39]. 

Microbial volatile compounds as antimicrobials

MVCs can have significant inhibitory effects on the growth or development of other 

microorganisms (Figure 2). The activity spectrum of MVCs appears to be as diverse as their 

chemistry. Most of the studies to date have focused on antifungal activities of MVCs and only 

a few have reported their antibacterial properties. Examples include: the hormone-like γ-

butyrolactones with broad spectrum activity against bacteria, fungi and yeast [13]; furfuryl 

isovalerate that inhibits growth of Gram-positive and Gram-negative bacteria, and acts as a 

quorum quencher in Gram-negative bacteria [13]; pyrazines (2,5-bis (1-methylethyl)-

pyrazine), produced by Paenibacillus in interaction with Burkholderia [40], with activity against 

human pathogenic bacteria like Escherichia. coli, Staphylococcus aureus and the yeast Candida 

albicans. Interestingly, only few studies to date have looked into the antibacterial activities of 

MVCs produced by actinobacteria (Figure 2), the most prolific producers of known antibiotics, 

anticancer, antifungal, immunosuppressant and herbicidal compounds [41,42]. Preliminary 

experiments conducted in our labs suggest that the role of actinobacterial MVCs as antibiotics 

has been grossly underestimated. Our experiments indicated that approximately 15% of all 

actinobacteria species tested (N=200) can inhibit the growth of Bacillus subtilis or Escherichia 

coli in an experimental setup where the actinobacteria were physically separated from the 

target (Avalos et al. unpublished data). Intriguingly, those actinobacterial strains that produce 

volatiles that inhibit the growth of the Gram-positive B. subtilis did not inhibit growth of the 

Gram-negative E.coli and vice versa, suggesting that actinobacterial MVCs exhibit different 

modes of action.
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The antimicrobial activity of MVCs can be further enhanced via synergy with ‘soluble’ 

antibiotics. For example, pre-treating antibiotic-resistant bacteria with the terpene eugenol 

lowered the minimal inhibitory concentration (MIC) such that they became antibiotic sensitive 

again [43]. Similarly, phenylpropanoids such as β- cinnamic and ferulic acid, conferred 

sensitivity to amikazin, erythromycin and vancomycin [43]. A mixture of the monoterpenes γ-

terpinene, 1S-α-pinene, β-pinene and β-myrcene produced by Collimonas  pratensis inhibited 

growth of  S. aureus and E. coli [44]. Additionally, essential oil components such as limonene, 

sabinene, α-pinene, thymol and carvacrol have been shown to have potential as enhancers of 

anti-tuberculosis drugs like ethambutol, rifampicin and isoniazid [45].

Modes of action of MVCs

Despite the observations that many MVCs have antimicrobial activity, only few studies 

provided insight into their modes of action. Pentalenolactone is an example with a specific 

intracellular target; it impedes glycolysis by inhibiting glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) [46]. Another example comes from Muscodor albus, a fungus that 

produces an antimicrobial blend of volatiles [47] that appears to operate by causing DNA 

damage; E. coli cells became particularly sensitive to these MVCs when they lack the enzymes 

(e.g. RecA) for DNA repair [48]. Another mode of action proposed is the modification of 

membrane fluidity/permeability by MVCs, allowing their entry into the cell or causing 

increased leakage of intracellular materials [49]. This mode of action might be widespread 

among MVCs from different microbial families. For example, VCs from yeasts such as 3-

methyl-1-butanol disrupt the fungal membrane by increasing the peroxidation levels of 

membrane lipids, thereby causing a non-selective permeability of the plasma membrane [50]. 

Other modes of action comprise the interference of MVCs with cell-to-cell communication or 
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quorum sensing. The aforementioned schleiferon A and B inhibit quorum sensing, thereby 

reducing the expression of prodigiosin and bioluminescence in Gram-negative bacteria [26]. 

Another well-studied example is the diffusible signal factor DSF (cis-11-methyl-2-dodecenoic 

acid) which modulates the virulence factors in Xanthomonas campestris [51,52]. In B. subtilis,  

DSF-family signals significantly decreased the transcription of drug efflux systems and biofilm 

formation [53]. Homologs occur in many bacteria. One example is Stenotrophomonas 

maltophilia, a Gram-negative bacterium that is found ubiquitously in different environments, 

including nosocomial infections where it affects biofilm formation in Pseudomonas 

aeruginosa, a lung pathogen associated with cystic fibrosis [54,55]. 

MVCs as modulators of antibiotic resistance

An important activity of MVCs in the light of this review is their ability to modulate antibiotic 

resistance. Recently, Groenhagen et al. [56] demonstrated that the volatiles 1-methylthio-3-

pentanone and o-aminoacetophenone from Burkholderia ambifaria increased resistance of 

E. coli to aminoglycoside antibiotics like gentamicin and kanamycin. Trimethylamine (TMA) 

modified resistance to tetracycline by increasing the pH and lowering the transport of 

tetracycline inside the cell due to changes in transmembrane pH and proton motive force 

[57]. Slow-growing cells present in a normal growing population, also referred to as persister 

cells or persisters, evolve tolerance to antibiotics and other environmental stresses. 

Recently, a link was established between persistence and a toxin-antitoxin system. High 

persistence (hip) mutants exhibited significant survival after treatment with cell wall 

inhibitors. The mutations were mapped to a toxin-antitoxin locus (hipBA).  In this example, 

the toxin HipA inactivates glutamyl-tRNA synthetase by phosphorylation, thereby inhibiting 

cell growth [58,59]. The anti-toxin HipB is a transcriptional repressor that neutralizes HipA 
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and regulates hipBA expression [60,61]. Microarray data of E. coli exposed to VCs emitted by 

B. subtilis showed induction of the expression of hipA and hipB, thereby inducing resistance 

[24,62]. Specifically, 2, 3-butanedione and glyoxylic acid produced by B. subtilis enhance 

resistance to ampicillin and tetracycline in E. coli through hipBA [24]. 2-Aminoacetophenone 

(2-AA) produced by P. aeruginosa regulates quorum sensing and also stimulates persister 

cell formation. The long-range effect of this volatile also influenced persister cell formation 

in pathogenic bacteria belonging to a different genus that do not produce 2-AA, like 

Acinetobacter baumanii [25]. Interestingly, microorganisms may also 'eavesdrop' the 

signalling molecules produced by other microorganisms, thereby taking advantage of their 

effect. As an example, Pseudomonas putida recognizes indole produced by E. coli, which 

induced the Pseudomonas TtgGHI antibiotic efflux pump allowing its growth in the presence 

of ampicillin [63].

Besides organic  MVCs, it is becoming clear that  small inorganic MVCs (such as 

hydrogen cyanide (HCN)) can have a major effect on antibiotic resistance. We propose that 

this is a general phenomenon and to exemplify our proposition we discuss three molecules 

here, hydrogen sulphide (H2S), nitric oxide (NO) and ammonia (NH3).  H2S and NO have 

overlapping activities and play an important role in the protection against oxidative stress 

and against antibiotics. Interference with H2S production by Bacillus anthracis, P. aeruginosa, 

S. aureus, and E. coli rendered these human pathogenic bacteria sensitive to a range of 

different antibiotics, which could be reversed to resistance by adding exogenous H2S [64]. 

Interestingly, H2S provided protection against many classes of antibiotics targeting DNA, 

RNA, cell wall or protein biosynthesis[64]. These modulating activities have also been 

attributed to nitric oxide (NO), mainly  due to the pioneering work of Gusarov and Nudler 

[65-68]. NO is produced from arginine by nitric oxide synthases (bNOS) that are present in 



9

many Gram-positive bacteria. NO was first recognized as being critical for the survival of 

bacteria such as Bacillus anthracis against oxidative stress and survival in macrophages 

[65,67]. However, NO also directly protected bacteria against a broad spectrum of antibiotics 

[66,68]. In nature, this trait likely evolved to allow NO-producers to share their habitat with 

other antibiotic-producing species [66]. B. subtilis cells producing NO are able to grow in the 

presence of P. aeruginosa producing the toxin PYO [66]. Similarly, B. subtilis and S. aureus 

grow in the presence of cefuroxime only when producing NO, while nos null-mutants cannot 

[66]. NO-mediated resistance is achieved through direct chemical modification of toxic 

compounds [66]. The role of NO may even go a lot further, as it was shown that the lifespan 

of the NO non-producing C. elegans is expanded significantly when it feeds on NO-producing 

bacilli, offering a striking new example of symbiosis mediated by a volatile compound [69].

Ammonia (NH3) generated by the catabolism of aspartate, promotes intracellular 

accumulation of polyamines modifying E. coli membrane permeability thereby increasing 

resistance to tetracycline [70]. In contrast, exposure to ammonia decreased resistance to 

kanamycin. This effect could be explained by a higher expression of the polyamine-induced 

protein OppA, a periplasmic binding protein involved in uptake of aminoglucosides [71]. We 

have recently established that E. coli cells become more resistant to NH3 by reducing the 

expression of the regulatory system (ompR/envZ) of the major outer membrane porins 

OmpF & OmpC. These results suggest that porins represent a major point of entry for 

ammonia (Avalos et al., unpublished data). 

Outlook and perspectives

Microorganisms are rich sources of VCs. However, their functions and role as antimicrobial are 

yet poorly understood. Some MVCs are produced by many different bacterial genera, while 
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others are unique at the species level providing useful information for microbial 

chemotaxonomy and detection. Furthermore, some MVCs are only induced during 

interspecific interactions, suggesting a major role in communication and/or competition. 

For most bioactive MVCs the genes involved in biosynthesis and regulation are yet 

unknown. There is indication that the production of some ‘soluble’ and volatile compounds is 

encoded by the same genes, for example blastmycinones and butenolides are derived from 

the antimycin biosynthetic pathway [72]. Salinisporamide A, an anticancer compound 

presently undergoing clinical trials is synthesized using previously unknown volatile 

cyclohexene derivatives as intermediates [73].  Such evidence calls for integrative 

bioinformatics and systems biology approaches to unravel their biosynthesis and study 

synergism between soluble and volatile compounds. This should shed more light on how 

closely related these seemingly different ‘worlds’ of natural products are. 

Examples reviewed here bring attention to the fact that MVCs can serve as a self-defence 

mechanism for the producer or the community. We firmly believe that the near complete 

omission of volatile compounds from drug discovery efforts needs to be reconsidered 

especially at a time where new antibiotic treatments are so desperately needed to counteract 

antimicrobial resistance. One argument that is often heard is that volatile compounds need to 

be solubilized before they can be applied. This may be true for topical or IV application, but 

we would like to point out that some of the diseases that are most difficult to treat such as 

the lung diseases tuberculosis and cystic fibrosis may be targeted by MVCs . Inhaling MVCs 

should be considered as a possible therapy in addition to regular antibiotic regimes, taking 

advantage of their direct and modulating effects described in this review. The information 

gathered can also be used in the design and development of novel chemical structures and 

therapies such as the example given by Abed, N. et al., (2015) [74], where they use the natural 
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terpenes farnesyl and geranyl to design a nano-device that takes advantage of the formation 

of an environmentally sensitive bond between the terpenes and penicillin helping the delivery 

of the antibiotics directly into cells.

 ‘Small-talk’ molecules like the terpene 3-carene produced under poor-nutrient growth 

conditions [27] or the pyrazines produced by Paenibacillus during its interaction with 

Burkholderia  [40] play an important role as infochemicals as they are produced specifically 

when needed while the smaller inorganic  molecules like NH3 or NO produced in high amounts 

make a ‘loud noise’ that is easily perceived by different organisms.   

Improving our understanding of the natural roles of volatile compounds in the 

microbial environment (i.e. learning from nature) would greatly help in the search for novel 

bioactive molecules for drug development or as biomarkers for clinical and industrial 

purposes.
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Figure 1. Examples of MVCs with antimicrobial activity
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Figure 2. Chemical classes of volatile compounds released by bacteria. Highlighted in purple are the VCs
identified in Streptomyces strains. Zoomed compounds in green correspond to the widespread terpene
geosmin (non-active as antibiotic) and ammonia (active as antimicrobial). At the center two-compartment
plates: (1) Streptomyces strain (left L) producing high amount of ammonia inhibiting the growth of E. coli (right
R) and (2) Streptomyces strain (left L) producing geosmin not inhibiting the growth of E. coli (right R)
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Figure 3. MVCs  modes of action as antimicrobials and modulators of antibiotic resistance.




