
Chinese Physics C

PAPER

Sonic velocity in holographic fluids and its applications*

To cite this article: Yapeng Hu et al 2019 Chinese Phys. C 43 013107

 

View the article online for updates and enhancements.

This content was downloaded from IP address 132.229.211.122 on 08/01/2020 at 14:05

https://doi.org/10.1088/1674-1137/43/1/013107


Chinese Physics C Vol. 43, No. 1 (2019) 013107

Sonic velocity in holographic fluids and its applications *

Yapeng Hu(�æ+)1,2,3;1) Yu Tian(X�)3,4;2) Xiaoning Wu(Ç�w)3,5,6;3)

Huaifan Li(o~�)7;4) Hongsheng Zhang(Ü÷,)8;5)

1 College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2 Instituut-Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, Leiden 2333 CA, The Netherlands

3 Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
4 School of Physics, University of Chinese Academy of Sciences, Beijing 100190, China

5 Institute of Mathematics, Academy of Mathematics and System Science, Chinese Academy of Sciences, Beijing 100190, China
6 Hua Loo-Keng Key Laboratory of Mathematics, CAS, Beijing 100190, China

7 Institute of Theoretical Physics, Department of Physics, Shanxi Datong University, Datong 037009, China
8 School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, Shandong 250022, China

Abstract: Gravity/fluid correspondence acts as an important tool in investigating the strongly correlated fluids.

We carefully investigate the holographic fluids at the finite cutoff surface by considering different boundary conditions

in the scenario of gravity/fluid correspondence. We find that the sonic velocity of the boundary fluids at the finite

cutoff surface is critical in clarifying the superficial similarity between the bulk viscosity and perturbation of the

pressure for the holographic fluid, where we set a special boundary condition at the finite cutoff surface to explicitly

express this superficial similarity. Moreover, we further take the sonic velocity into account to investigate a case

with a more general boundary condition. In this more genaral case, although two parameters in the first order stress

tensor of holographic fluid cannot be fixed, one can still extract the information about the transport coefficients by

considering the sonic velocity seriously.
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1 Introduction

The AdS/CFT correspondence [1–4] is a significant
progress in theoretical physics. This correspondence pro-
vides new insights and useful tools to investigate the
strongly related field theory by using the weakly cor-
related gravity theory [5–10].

At long wave limit the AdS/CFT correspondence re-
duces to gravity/fluid correspondence [11]. In the grav-
ity/fluid correspondence, the dual field theory usually
resides on the infinite boundary (conformal boundary
or UV boundary), and has conformal dynamics [11–21].
In fact, the gravity/fluid correspondence can be gener-

alized to study nonconformal dual systems. A simple
way of achieving this is to break the conformal symme-
try by introducing a finite cutoff on the radial coordi-
nate in the bulk, which has implied a deep relation be-
tween the Navier–Stokes (NS) equations and the Einstein
equations [22–29]. In addition, from the renormalization
group (RG) viewpoint, the radial direction of the bulk
space-time corresponds to the energy scale of the dual
field theory [29–37]. Thus, investigations of the holo-
graphic fluids at a finite cutoff surface were started [24–
26, 29, 38–43]. The holographic fluid on the cutoff sur-
face is usually nonconformal [38–43].

In this study, we focus on the stress tensor of noncon-
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formal fluids, whose transport coefficients are obtained
via holography. It is found that the sonic velocity of the
holographic fluids at the finite cutoff surface is critical
in clarifying the superficial similarity between bulk vis-
cosity and perturbation of the pressure for holographic
fluids and further simplifies the first order stress tensor of
holographic fluid at the finite cutoff surface. Under more
general boundary conditions at the finite cutoff surface,
we also investigate applications of sonic velocity of non-
conformal holographic fluids in detail.

This article is organized as follows. In Sec. II, we
focus on the first order perturbative solution of the
Schwarzschild-AdS black brane solution. Since this part
is simple and fundamental, which can be seen in the
previous reports , here we just give a brief review as
a warm-up to make the whole paper more readable. In
Sec. III, several boundary conditions are carefully ana-
lyzed; it is classified into two cases under the choice of
boundary condition h(rc). Besides the general expres-
sions of perturbations of pressure and energy density in
the holographic fluid are expressed, the superficial simi-
larity has been also explicitly seen between the bulk vis-
cosity and perturbation of pressure. A crucial outcome
is a method proposed to distinguish this superficial simi-
larity through studies of sonic velocity in the holographic
fluid. Moreover, we further take the sonic velocity into
account to investigate a case with more general bound-
ary condition, which is h(rc) 6=0. Sec. IV is devoted to
the conclusion and discussion. Note that, Latin index re-
peated is usually represented to take the summation in
our whole paper. For example, ∂iβi=Σi∂iβi. However,
if it is not so, it will be pointed out in the manuscript.

2 Warm-up: The first order perturba-

tive solution of the Schwarzschild-AdS

black brane solution

We make a concise review of the Schwarzschild-AdS
black brane. The action of five-dimensional Einstein
gravity with a negative cosmological constant Λ=−6/ℓ2

is as follows:

I=
1

16πG

∫

M

d5x
√

−g(5)(R−2Λ). (1)

The corresponding field equation is given below.

RAB−
1

2
RgAB+ΛgAB = 0 . (2)

Here, the AdS radius ℓ = 1 and 16πG = 1 have been
set for later convenience. The Schwarzschild-AdS black
brane solution is

ds2=
dr2

r2f(r)
+r2

(

3
∑

i=1

dx2
i

)

−r2f(r)dt2, (3)

Where,

f(r) = 1−2M

r4
, (4)

The Hawking temperature of the Schwarzschild-AdS
black brane solution is given by the following equation.

T+ =
(r2f(r))′

4π

∣

∣

∣

∣

r=r+

=
r+
π

, (5)

where r+ is the location of horizon and positive root of
f(r)=0.

In the Eddington–Finkelstin coordinates, the black
brane solution takes the following form.

ds2 = −r2f(r)dv2+2dvdr+r2(dx2+dy2+dz2), (6)

Where, v=t+r∗ and r∗ is the tortoise coordinate satisfy-
ing dr∗=dr/(r2f). Note that, the holographic fluid is in-
vestigated to reside at some cutoff hypersurface with con-
stant radial coordinate r=rc (rc is a constant). It is help-
ful to make the following coordinateõtransformation:
v → v/

√

r2cf(rc) and xi → xi/rc in the solution (6) ,
which makes the induced metric on the cutoff surface
to be explicitly flat metric, i.e. the cutoff surface with
metric ds2=−dv2+dx2+dy2+dz2. The Hawking tempera-
ture is expressed as T=T+/

√

r2cf(rc) with respect to the
killing observer (∂/∂v)a in the new coordinate system;
the Schwarzschild-AdS black brane solution then takes
the following form.

ds2=− r2f(r)

r2cf(rc)
dv2+

2

rc
√

f(rc)
dvdr+

r2

r2c
(dx2+dy2+dz2),

(7)

while the entropy density is s =
r3+

4Gr3
c

. The boosted

Schwarzschild-AdS black brane solution is

ds2 = − r2f(r)

r2cf(rc)
(uµdx

µ)2− 2

rc
√

f(rc)
uµdx

µdr

+
r2

r2c
Pµνdx

µdxν , (8)

with

uv=
1

√

1−β2
i

, ui=
βi

√

1−β2
i

, Pµν=ηµν+uµuν , (9)

Where, xµ=(v,xi) represents the boundary coordinates
at the cutoff surface, Pµν is the projector onto spatial
directions, velocities βi are constants, and the bound-
ary indices (µ,ν) are raised and lowered by using the
Minkowski metric ηµν , while the bulk indices are distin-
guished by (A,B).

We define a useful tensor

WAB=RAB+4gAB, (10)

while solutions of equation motions are equivalent to
WAB=0. Viewed from the gravity/fluid correspondence
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scenario, one needs perturb the gravitational solutions
in the bulk spacetime to obtain transport coefficients of
holographic fluids like shear viscosity η. The general
procedure is to promote the constant parameters βi and
M in (8) to functions of boundary coordinates xµ, i.e.
βi(xµ) and M(xµ) [11, 12]. Therefore, (8) will be no
longer the solution of the field equation represented by
(2) since the parameters now depend on the boundary
coordinates and hence extra correction terms need to be
added to make (8) a self-consistent solution.

For the extra correction terms, we can just focus on
the extra correction terms around the origin xµ=0; the
first order extra correction terms around xµ=0 are [11]
as given below.

ds2(1) =
k(r)

r2
dv2+2

h(r)

rc
√

f(rc)
dvdr+2

ji(r)

r2
dvdxi

+
r2

r2c

(

αij(r)−
2

3
h(r)δij

)

dxidxj , (11)

where, an appropriate gauge has been chosen, i.e. the
background field gauge in a previous report [11] (GAB

represents the full metric).

Grr=0, Grµ∝uµ, T r((G(0))−1G(1))=0, (12)

where G(0), G(1) are the corresponding zero order and
first order terms in GAB; αij(r) is in fact traceless for this
background field gauge since Tr((G(0))−1G(1))=

∑

iαii.
Note that, parameters around xµ = 0 expanded to the
first order are

βi(x
µ)= ∂µβi|xµ=0x

µ, M(xµ)=M(0)+∂µM |xµ=0x
µ,
(13)

Where, βi(0) = 0 are assumed at the origin xµ = 0.
Thus, after inserting the metric (8) with nonconstant
parameters and (13) into WAB , the nonzero −WAB

is usually considered as the first order source term
S(1)

AB, while the first order perturbation solution around
xµ = 0 can be obtained from the vanishing WAB =
(effect from correction)−S(1)

AB, which are casted into the
Appendix A.

Still, there are two constraint equations

Wvv+
r2f(r)

rc
√

f(rc)
Wvr=0 ⇒ S(1)

vv +
r2f(r)

rc
√

f(rc)
S(1)

vr =0,

Wvi+
r2f(r)

rc
√

f(rc)
Wri=0 ⇒ S(1)

vi +
r2f(r)

rc
√

f(rc)
S(1)

ri =0. (14)

From the Appendix A, one rewrites these constrain equa-
tions (14) as

3∂vM+4M∂iβi=0,

∂iM+4M∂vβi=
−4M∂iM

r4cf (rc)
, (15)

which are nothing but the conservation equations of the
zeroth order stress-energy tensor [11, 12, 18, 19]. Fur-

ther, one analytically obtains

h(r) = Ch2+
Ch1

r4
,

k(r) = Ck2−
2Ch2r

4

r2cf (rc)
+

4Ch1M

3r4r2cf (rc)
+

2r3∂iβi

3rc
√

f (rc)
,

ji(r) =
r3

r5cf(rc)
3
2

(∂iM+r4cf(rc)∂vβi)+
Ci1r

4

4
+Ci2

=
r3r3c

√

f (rc)

2M+r4c
∂vβi+

Ci1r
4

4
+Ci2,

αij(r) = α(r)

{

(∂iβj+∂jβi)−
2

3
δij∂kβ

k

}

, (16)

Where, α(r) is α(r) = rc
√

f(rc)
∫ r

rc

s3−r3+
−s5f(s)

ds, and
Ch1,Ch2,Ck2,Ci1, and Ci2 are nine constants of integra-
tion.

3 The stress tensor of first order holo-

graphic fluid under different boundary

conditions at the finite cutoff surface

Note that the previous studies usually investigated
the holographic fluid just residing at the UV boundary or
infinite cutoff surface (i.e., rc to infinity) [11, 12]. Here,
we will try to use the gravity/fluid correspondence to
shed some insights on the holographic fluid at the finite
cutoff surface, which can be considered as a simple gen-
eralization of the previous works. However, it should be
emphasized that this generalization is nontrivial as the
stress tensor of the holographic fluid at the finite cut-
off surface is usually nonconformal and depends on the
choice of boundary conditions. All these points can be
seen more clearly in the following content.

According to the gravity/fluid correspondence, the
stress tensor Tµν of holographic fluid residing at the
cutoff surface with the induced metric γµν is given
by [22, 29, 44–48]

Tµν=2(Kµν−Kγµν−Cγµν), (17)

where, γµν is the boundary metric obtained from the
usual ADM decomposition

ds2=γµν(dx
µ+V µdr)(dxν+V νdr)+N 2dr2 , (18)

the extrinsic curvature is Kµν =− 1
2
(∇µnν+∇νnµ), and

nµ is the unit normal vector of the constant hypersurface
r=rc pointing toward the increasing r direction. In ad-
dition, the term Cγµν is usually related to the boundary
counterterm added to cancel the divergence of the stress
tensor Tµν when the boundary r=rc approaches infinity,
for example, C=3 in the asymptotical AdS5 case. How-
ever, there is no divergence of the stress tensor in our
case with finite boundary. In the following, we still add
the boundary counterterm with C=3 in the stress ten-
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sor simply because we require our result to reduce to the
previous result when rc goes to infinity [11, 12, 42, 43].
Therefore, after obtaining the first order perturbative so-

lution in the bulk, we can obtain the general formula of
stress tensor Tµν of the holographic fluid at the cutoff
surface, i.e. around the origin xµ=0

T (0)
vv = 2

(

C−3
√

f (rc)
)

,

T (0)
xx = T (0)

yy =T (0)
zz =

−4M+2
(

3−C
√

f (rc)
)

r4c
√

f (rc)r4c
, (19)

T (1)
vv = −2∂iβi+6

√

f (rc)h(rc)+

(

−2C+9
√

f (rc)
)

k(rc)

r2c
+2
√

f (rc)rch
′(rc),

T (1)
vi =

∂iM

f (rc)r4c
−∂vβi+2

(

2−C
√

f (rc)+3f (rc)
)

ji(rc)
√

f (rc)r2c
−
√

f (rc)j
′

i(rc)

rc
,

T (1)
ij = 2(δij∂kβk−∂(iβj))+2δij

∂vM

f (rc)r4c
+2

(

−C+
−2M+3r4c
√

f (rc)r4c

)

aij (rc)−
√

f (rc)rca
′

ij (rc)

+2δij

((

2C

3
+
5(2M−3r4c)

3
√

f (rc)r4c

)

h(rc)−
2

3

√

f (rc)rch
′(rc)

)

+2δij

(

(−2M+(3−2f (rc))r
4
c )k(rc)

2
√

f (rc)r6c
−
√

f (rc)k
′(rc)

2rc

)

. (20)

Obviously, the further explicit results of the first order
stress tensor depend on several conditions and hence ex-
tract the information of transport coefficients. In the
following, we will carefully investigate the boundary con-
ditions; particularly, the boundary condition related to
h(rc)will be investigated as the cases under this bound-
ary condition are complicated. Moreover, this boundary
condition can be relaxed to arbitrary at the finite cutoff
surface, which has not been investigated before.

3.1 Boundary condition with h(r
c
)=0

It is clear that one can fix the nine parameters
Ch1,Ch2,Ck2,Ci1, and Ci2 in (16) to extract the exact
transport coefficients of first order holographic fluid at
the finite cutoff surface in (20). Therefore, several con-
ditions can be assumed. In fact, the Dirichlet boundary
condition is usually chosen in (11) like [24, 38, 42, 43]

h(rc)=0, k(rc)=0, ji(rc)=0. (21)

In addition, the following condition can be chosen.

T (1)
vi =0, (22)

since T (1)
vi =0 is a gauge choice usually considered in the

Landau frame, i.e. T (1)
vv =T (1)

vi =0 which corresponds that
the velocity uµ is identified as the 4-velocity of energy
of the relativistic fluid or a (normalized) time-like eigen-
vector of Tµν . Therefore, one final condition is needed to
fix the nine parameters. Note that, obviously, the final
condition can be chosen as T (1)

vv = 0, which is just the
Landau frame case with (22), and the corresponding re-

sults have been explicitly obtained in the Appendix B.
However, from (20), we find that T (1)

vv =0 under (21) just
corresponds to a special boundary condition related to
h′(rc), while T (1)

vv will be nonzero for many other bound-
ary condition cases, i.e. h′(rc)=0. Therefore, it will be
interesting to investigate another special boundary con-
dition case, i.e., h(rc)=0 and h′(rc) is kept as an arbi-
trary constant. Moreover, one will find that this special
boundary condition will also be critical to explicitly see
the superficial similarity between the bulk viscosity and
perturbation of pressure in the stress tensor of the holo-
graphic fluid, while T (1)

vv =0 case is a little more difficult
to note this superficial similarity. Therefore, in the fol-
lowing, we will just focus on carefully investigating the
stress tensor of holographic fluid under this case of spe-
cial boundary conditions.

From (16), it is easy to find that keeping h′(rc) as an
arbitrary constant is equivalent to keeping the parameter
Ch1 as an arbitrary constant. Therefore, the other eight
parameters Ch2,Ck2,Ci1, and Ci2 can be solved from (21)
and (22), which are all expressed in Ch1

Ch2=−Ch1

r4c
, Ck2=− 2∂iβir

2
c

3
√

f (rc)
−2Ch1(2M+3r4c)

3r6cf(rc)
,

Ci1=− 4r2c∂vβi
√

f(rc)(2M+r4c)
, Ci2=

2Mr2c∂vβi
√

f(rc)(2M+r4c)
.

(23)

After inserting (23) into (20), the non-zero components
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of stress tensor T (1)
µν are

T (1)
vv =−2∂iβi+2rc

√

f(rc)h
′(rc)=−2∂iβi−

8
√

f(rc)Ch1

r4c
,

T (1)
ij =

−2r3+σij

r3c
+δij

(−2(2M+r4c)

3(−2M+r4c)
∂kβk−

8(2M+r4c)Ch1

3r8c
√

f(rc)
).

(24)

Note that if the fluid is not considered under the Lan-
dau frame, usually the stress tensor of holographic fluid
at the cutoff surface with the induced metric γµν = ηµν
can be written in the following general form [41].

Tµν=ρuµuν+pPµν−2ησµν−ζθPµν−ζ
′

θuµuν−κa(µuν),
(25)

where

Pµν=ηµν+uµuν ,

σµν≡1

2
P µαP νβ (∇αuβ+∇βuα)−

1

3
P µν∇αu

α,

θ=∇µu
µ, aν=uµ∇µu

ν , (26)

and ζ
′

is a shift of the local energy density by the ex-
pansion of the fluid, while κ is the heat conductivity. In
our case, if we still consider the fluid with the velocity in
(9), the above form of stress tensor can be represented
as given below.

Tµν=ρuµuν+pPµν−2ησµν−ζθPµν , (27)

where av=0, ai=∂vβi around xµ=0 has been used in our
case and the T (1)

vi 6=0 can be cancelled by the gauge choice
in (22); in addition, it should be pointed out that here ρ
and p can contain the first order terms with respect to
the derivative of velocity although the stress tensor form
looks like the form under the Landau frame.

A comparison between the results of (24) and (27)
makes it easy to identify the energy density ρ and shear
viscosity η. However, a superficial similarity between the
pressure p and bulk viscosity ζ is explicitly seen in this
case. Note that, from (19), the zero order pressure and

energy density of dual fluid are p0=
−4M+2

(

3−3
√

f(rc)
)

r4
c

r4
c

√
f(rc)

,

ρ0=2
(

3−3
√

f (rc)
)

, and hence the entropy density s of

dual fluid can be computed through the following equa-
tion

s=
∂p0

∂T
=4π

r3+
r3c

, (28)

which is consistent with the entropy density of the black
brane solution (7) with 16πG = 1 recovered, and it is
convenient to check this equation if we express p0 and
T in the functions of r+. Furthermore, it can be easily
checked that the familiar thermodynamic relation still
holds on the arbitrary cutoff surface for the zero order

pressure and energy density.

ρ0+p0−Ts=0, (29)

where T is the temperature of the dual fluid related to
the Hawking temperature of the black brane solution by
T =T+/

√

r2cf(rc). Therefore, the precise underlying su-
perficial similarity, is in fact, between the perturbation of
pressure p and the bulk viscosity ζ, i.e., the term propor-
tional to ∂kβk in T (1)

ij in (24) belongs to the perturbation
of pressure or the bulk viscosity. For example, there can
be two simple different choices, the first choice is

ρ = 2
(

3−3
√

f (rc)
)

−2θ−8
√

f(rc)Ch1

r4c
, η=

r3+
r3c

,

p =
−4M+2

(

3−3
√

f (rc)
)

r4c

r4c
√

f (rc)
−8(2M+r4c)Ch1

3r8c
√

f(rc)
,

ζ =
2(2M+r4c)

3(−2M+r4c)
, (30)

while the other is

ρ = 2
(

3−3
√

f (rc)
)

−2θ−8
√

f(rc)Ch1

r4c
, η=

r3+
r3c

,

p =
−4M+2

(

3−3
√

f (rc)
)

r4c

r4c
√

f (rc)
−8(2M+r4c)Ch1

3r8c
√

f(rc)

− 2(2M+r4c)

3(−2M+r4c)
θ, ζ=0. (31)

However, (30) and (31) cannot satisfy the thermody-
namic relation between energy density and pressure at
the same time. In addition, the bulk viscosity should be
only one number in the same boundary condition case.
Moreover, the bulk viscosity can increase the total en-
tropy of fluid and hence, it is different from the other
pressure term although sometimes it is also considered
as the effective pressure. Therefore, we should use an
underlying method to extract the physical information
of the holographic fluids. In fact, after a careful consid-
eration, we will find that there are two subtleties in the
first choice or consideration (30). First, the T (1)

vv =0 case
as a special case contained in (24) has been explicitly
shown in the Appendix B, and the bulk viscosity is zero,
which will not be consistent with the results in the first
choice with a nonzero bulk viscosity in (30). Second, the
Ch1 term in (30) can be also considered as the bulk vis-
cosity term, particularly when it is also proportional to
∂kβk in some boundary condition case and hence, there is
an underlying ambiguity for the choice of bulk viscosity
related to the term Ch1 in (30). Therefore, for further
obtaining the true transport coefficients particular the
bulk viscosity, one needs find out a method.

In the following, we will propose a method by check-
ing the underlying consistency in (30) or (31) with
the thermodynamic relation between energy density and
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pressure, i.e. through the studies of sonic velocity cs be-
tween the perturbations of energy density and pressure.
As we know, the first order term in ρ can also be consid-
ered as the perturbation of energy density δρ, while this
perturbation of energy density usually deduces the per-
turbation of pressure of fluid δp. In our case, using the
above explicit expressions of zero order pressure p0 and
energy density ρ0 of holographic fluid, we can easily fur-
ther obtain p0=− ρ0(6+ρ0)

3(−6+ρ0)
. Therefore, the perturbations

of energy density and pressure should satisfy the under-
lying thermodynamic relation through the sonic velocity
cs, i.e. δp= c2sδρ, while the square of sonic velocity can
be easily obtained from the following expression.

c2s=

(

∂p0

∂ρ0

)

s

=−ρ2
0−12ρ0−36

3(ρ0−6)2
=

(2M+r4c)

3(−2M+r4c)
, (32)

where the zero order energy density ρ0 and pressure p0

have been used and the derivative is usually taken for
an adiabatic process, i.e. the constant entropy density

s=
r3+

4Gr3
c

situation. In our case, we check that the per-

turbations of energy density δρ and pressure δp should
be

δρ = −2θ−8
√

f(rc)Ch1

r4c
,

δp = −8(2M+r4c)Ch1

3r8c
√

f(rc)
− 2(2M+r4c)

3(−2M+r4c)
θ. (33)

Therefore, it is obvious and interesting to find that the
second choice (31) will be the right choice as it satis-
fies the underlying thermodynamic relation between the
perturbations of energy density and pressure through the

sonic velocity, i.e. δp=
(2M+r4

c
)

3(−2M+r4
c
)
δρ=c2sδρ. In addition,

this choice is also consistent with the T (1)
vv =0 case with

zero bulk viscosity in the Appendix B. Note that our
proposal of taking the sonic velocity into account also
implicates that the true bulk viscosity ζT should not be

ζ but ζT = ζ−ζ
′

(∂p

∂ρ
) = ζ−c2sζ

′

in (25), which is consis-

tent with the discussion in [49], where a frame invariant
scalar related to the bulk viscosity has been defined in
(2.10) and later explicitly obtained in (2.24).

3.2 Boundary with h(r
c
) 6=0

In the above subsection, we have proposed a method
to clarify the superficial similarity between the bulk
viscosity and perturbation of the pressure. Note that
while using the Dirichlet boundary condition (21), the
main underlying simple reason is to keep a well-defined
boosted transformation at the finite cutoff surface, r=rc,
i.e. γµν=ηµν . However, after a careful observation at the
corrected metric (11), we find that the condition h(rc)=0
in (21) can be relaxed as h(rc) 6=0, which also keeps a
well-defined boosted transformation at the finite cutoff
surface r=rc. The cost is that the traceless condition in
(12) Tr((G(0))−1G(1))=0 has been broken as

Tr((G(0))−1G(1))=2h(rc) , (34)

where we have used the deduced condition αxx(rc) =
αyy(rc) =αzz(rc) =

2
3
h(rc) from the order γµν = ηµν . In

addition, for the corrected metric in (11) with a non-
traceless αij(r), i.e.

∑

i
αii(r) 6=0, the new components

of tensor WAB = (effect from correction)−SAB become
more complicated, which have also been expressed in Ap-
pendix C.

However, from these new components WAB, we find
that the solutions h(r), k(r), and ji(r) are the same as
those from (16), while αij(r) can be instead as

αij(r) = α(r)

{

(∂iβj+∂jβi)−
2

3
δij∂kβ

k

}

+bδij, (35)

where b is a constant. In addition, the first order of stress
tensors in (20) also have been changed and become more
complicate

T (1)
vv = −2∂iβi+6

√

f (rc)h(rc)+

(

−2C+9
√

f (rc)
)

k(rc)

r2c
+2
√

f (rc)rch
′(rc)−rc

√

f (rc)B(rc),

T (1)
vi =

∂iM

f (rc)r4c
−∂vβi+2

(

2−C
√

f (rc)+3f (rc)
)

ji(rc)
√

f (rc)r2c
−
√

f (rc)j
′

i (rc)

rc
,

T
(1)
ij = 2(δij∂kβk−∂(iβj))+2δij

∂vM

f (rc)r4c
+2

(

−C+
−2M+3r4c
√

f (rc)r4c

)

aij (rc)−
√

f (rc)rca
′

ij (rc)

+rc
√

f (rc)B(rc)δij+2δij

((

2C

3
+
5(2M−3r4c)

3
√

f (rc)r4c

)

h(rc)−
2

3

√

f (rc)rch
′(rc)

)

+2δij

(

(−2M+(3−2f (rc))r
4
c)k(rc)

2
√

f (rc)r6c
−
√

f (rc)k
′(rc)

2rc

)

. (36)
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where B(r) =
∑

i
α′

ii(r). Therefore, from the Dirichlet
boundary condition, k(rc) = 0, ji(rc) = 0 and T (1)

vx = 0
in (21) and (22), we can obtain the parameters Ck2,Ci1,
and Ci2

Ck2=
2Ch2r

2
c

f (rc)
− 4Ch1M

3r6cf (rc)
− 2r2c∂iβi

3
√

f (rc)
,

Ci1=− 4r2c∂vβi
√

f(rc)(2M+r4c)
, Ci2=

2Mr2c∂vβi
√

f(rc)(2M+r4c)
,

(37)

where Ch1 and Ch2 are arbitrary parameters related to
the unfixed h(rc) and B(r) will be found to be zero in
this case. Substituting (37) into (36), i.e. the nonzero
first order stress tensor of holographic fluid at finite cut-
off surface, one can obtain

T (1)
vv = −2∂iβi+6

√

f (rc)Ch2−
2
√

f (rc)Ch1

r4c
,

T (1)
ij =

−2r3+σij

r3c
+δij

(−2(2M+r4c)

3(−2M+r4c)
∂kβk

−2f(rc)+12(1−
√

f(rc))

3r4c
√

f(rc)
Ch1

+
4(1+3

√

f(rc))−10f(rc)

3
√

f(rc)
Ch2

−2b

(

3+
2M−3r4c

r4c
√

f(rc)

))

. (38)

Note that after making some tedious calculations, one
can finally obtain a simple result

T (1)
ij =

−2r3+σij

r3c
+δij

(−2(2M+r4c)

3(−2M+r4c)
∂kβk

− 2(2M+r4c)

3r8c
√

f(rc)
Ch1+

2(2M+r4c)

r4c
√

f(rc)
Ch2

)

,

=
−2r3+σij

r3c
+δij(c

2
sT

(1)
vv ), (39)

where the condition b = 2
3
h(rc) has been used to keep

αxx(rc)=αyy(rc)=αzz(rc)=
2
3
h(rc). From these results

and taking the method into account, one will be surprised
that precise transport coefficients can still be extracted
although some parameters have not been fixed, i.e. Ch1

and Ch2. The bulk viscosity is still zero in this more
general boundary condition case with h(rc) 6=0.

4 Conclusion and discussion

In this study, after constructing the first order per-
turbative solution of the Schwarzschild-AdS black brane
spacetime, we used the gravity/fluid correspondence to
carefully investigate the stress tensor of first order holo-
graphic fluid at a finite cutoff surface by considering dif-
ferent boundary conditions. In general, some frame to

discuss the fluid, such as Landau frame or Eckart frame
in fluid mechanics is selected. However, recent studies
show that the physical results may be different in differ-
ent frames [50], especially in the studies of stability prob-
lem. Therefore, it seemed better to relax the constraints
of the Landau frame, i.e. admitting the perturbation of
energy density in our case. However, an important ques-
tion is that how we can eliminate the ambiguity freedom
in T (1)

xx if we relax the constraint. As the first key point,
we obtained that this ambiguity freedom is related to the
perturbation of the pressure and bulk viscosity terms
in T (1)

xx , which are very similar. Furthermore, we find
a method by taking the sonic velocity in (32) into ac-
count to clarify this superficial similarity between bulk
viscosity and perturbation of the pressure to obtain the
physical transport coefficients. The second key point of
our paper is that we have explicitly expressed this sim-
ilarity between bulk viscosity and perturbation of the
pressure terms in T (1)

xx by investigating another special
boundary condition case related to the scalar mode h(r)
of metric perturbation, i.e. h(rc)=0; however, h′(rc) is
arbitrary, which has not been investigated and seen be-
fore; we found that this condition, h′(rc) 6=0, is crucial to
explicitly yield the perturbation of pressure and see the
superficial similarity between pressure perturbation and
bulk viscosity. However, by using this method, we can
easily obtain the physical transport coefficients in this
case. The third key point of our study is the investiga-
tion of a more general boundary condition case, i.e. h(rc)
is not zero, which has not been reported yet. This case
was more complicated than the cases considered before,
since some results have been changed, i.e. the traceless
condition Tr((G(0))−1G(1)) has been broken and the for-
mula of stress tensor in (36) becomes more complicated.
Moreover, the two parameters Ch1 and Ch2 cannot be
fixed now due to the nonzero h(rc). However, it is sur-
prising that one can still extract exact information of
transport coefficients from the complicated formula T (1)

xx

by using the method, and we obtain that bulk viscosity
is still zero in this more general boundary condition case.

Note that our results of sound velocity in holographic
fluids via gravity/fluid correspondence are nontrivial.
First, our results are the original ones among the refer-
ences because almost all the previous studies via grav-
ity/fluid correspondence are just considered under the
Landau frame, i.e. T (1)

vv = 0. It should be pointed out
that the corresponding transport coefficients may also be
finally obtained under the Landau frame if some bound-
ary condition is lost just like the case with the boundary
condition h(rc) 6= 0 in the present study; however, the
calculations will be more complicated. Moreover, under
the Landau frame, the explicit coefficient c2s in front of
T (1)
vv shall not be obtained in the expression of T (1)

xx in
(39). In fact, (39) is an important equation to extract
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some underlying relationship between T (1)
xx and T (1)

vv . Sec-
ond, based on the result in the case of boundary condi-
tion h(rc) 6=0, it implicates that the sonic velocity further
simplified the complicated expression of T (1)

xx in (20). In-
deed, our subsequent work in [51] has shown this point.
Using this simplification, we have further deduced an un-
derlying universality in the expression of T (1)

xx , which has
shed some insights on the clue of obtaining the nonzero
bulk viscosity for the holographic fluid at the finite cutoff
surface. More details and some other discussions related
to our work are:

(1) Usually the superficial similarity between bulk
viscosity and perturbation of pressure is hardly observed
and difficult to distinguish. We proposed an approach
to extract the physical transport coefficients of the holo-
graphic fluids in this study. In addition, our proposal
also implicates that the true bulk viscosity ζT should be
not ζ but ζT = ζ−ζ

′

(∂p

∂ρ
) through (25) and is consistent

with the discussion in [49], where a frame invariant scalar
related to the bulk viscosity has been defined in (2.10)
and explicitly obtained in (2.24).

(2) Our approach is useful to deduce the true bulk
viscosity term in the scenario of gravity/fluid correspon-
dence. Further studies of holographic fluid with other
different boundary conditions at the finite cutoff surface
are in process, where we simplify the T (1)

xx by taking the
sonic velocity into account in [51]. Moreover, we have
found some underlying universality in the T (1)

xx after tak-
ing the sonic velocity into account. In addition, note
that here we chose these boundary conditions just simply
from the mathematical point of view, i.e. these bound-

ary conditions are mathematically permitted. However,
the underlying physical meaning of these boundary con-
ditions is lost; therefore, it will be interesting and impor-
tant to find out the underlying physical meaning of these
different boundary conditions in the future work. In ad-
dition, there have been other methods and studies inves-
tigating the bulk viscosity [38–41, 52–56].It will be inter-
esting to make the comparisons between these methods
and the method based on gravity/fluid correspondence,
which may give some insight into the underlying physical
meaning of these different boundary conditions.

(3) All our discussions are considered in the so-called
background gauge in (11). In fact, as discussed in [41],
there is an ambiguity in the extra correction term g(1) in
(11). This ambiguity can affect our choices of the bound-
ary conditions, and hence, may affect the stress tensor
with transport coefficients. Several studies showing that
bulk viscosity can also appear in other gauge have been
reported [40, 41]. In addition, there are gauge invariant
quantities for the metric and energy momentum tensor
under perturbation [57], and whether bulk viscosity
depends on these gauge invariant quantities is still an
open issue. Therefore, the underlying relations between
gauge, boundary conditions, gauge invariant quantities,
and stress tensors for holographic fluids with transport
coefficients are of interest for further studies.

Y.P Hu thanks Profs. Yan Liu, Ya-Wen Sun, Hai-

Qing Zhang, Rong-Gen Cai, Li-Ming Cao and Drs. Song

He, Yun-Long Zhang for the fruitful discussions and also

thanks anonymous referees for helpful comments.

Appendix A: The tensor components of WAB and SAB

The tensor components ofWAB=(effect from correction)−
SAB are

Wvv = −
8r2f(r)h(r)

r2cf (rc)
−
2
(

2M+r4
)

f(r)h′(r)

rr2cf (rc)

+
f(r)k′(r)

2r
−
1

2
f(r)k′′(r)−S(1)

vv ,

Wvi =
3f(r)j′i(r)

2r
−
1

2
f(r)j′′i (r)−S

(1)
vi (r), (A1)

Wvr =
8h(r)

rc
√

f (rc)
+
2
(

2M+r4
)

h′(r)

r3rc
√

f (rc)
−
rc
√

f (rc)k
′(r)

2r3

+
rc
√

f (rc)k
′′(r)

2r2
−S(1)

vr , (A2)

Wri = −
3rc
√

f (rc)j
′
i(r)

2r3
+
rc
√

f (rc)j
′′
i (r)

2r2
−S

(1)
ri , (A3)

Wrr =
5h′(r)

r
+h′′(r)−S(1)

rr , (A4)

Wii =
8r2

r2c
h(r)+

(

−14M+11r4
)

h′(r)

3rr2c
+

1

3r2c
r4f(r)h′′(r)

+
f (rc)k

′(r)

r
+

(

2M−5r4
)

α′
ii(r)

2rr2c

−
1

2r2c
r4f(r)α′′

ii(r)−S
(1)
ii ,

(here ii=xx,yy,zz with no summation) (A5)

Wij=

(

2M−5r4
)

α′
ij(r)

2rr2c

−
1

2r2c
r4f(r)α′′

ij(r)−S
(1)
ij , (i 6=j), (A6)

cWij−
1

3
δij

(

∑

k

Wkk

)

=

(

2M−5r4
)

α′
ij(r)

2rr2c

−
1

2r2c
r4f(r)α′′

ij(r)−S
(1)
ij +

1

3
δij(δ

klS
(1)
kl ), (A7)
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where the first order source terms are

S(1)
vv (r) = −

3∂vM

r3rc
√

f (rc)
−

(

2M+r4
)

∂iβi

r3rc
√

f (rc)
, (A8)

S
(1)
vi (r) =

(

−2M+3r4+2r4c
)

∂iM

2r3r5cf (rc)3/2
+

(

2M+3r4
)

∂vβi

2r3rc
√

f (rc)
, (A9)

S(1)
vr (r) =

∂iβi

r
, (A10)

S
(1)
ri (r) = −

3∂vβi

2r
−

3∂iM

2rr4cf (rc)
, (A11)

S(1)
rr (r) = 0, (A12)

S
(1)
ij (r) =

(

δij∂kβk+3∂(iβj)

) r
√

f(rc)

rc
. (A13)

Appendix B: The case T
(1)
vv =0

In this case, the nine parameters can be fixed using
T

(1)
vv =0, (21) and (22)

Ch1=−
∂iβir

4
c

4
√

f (rc)
, Ch2=

∂iβi

4
√

f (rc)
,

Ck2=−
∂iβi

(

−10M+r4c
)

6f (rc)3/2r2c
,

Ci1=−
4r2c∂vβi

√

f(rc)(2M+r4c )
, Ci2=

2Mr2c∂vβi
√

f(rc)(2M+r4c)
. (B1)

Consequently, the nonzero components of T
(1)
µν are

T
(1)
ij =−2r3+σij/r

3
c , σij=∂(iβj)−

1

3
δij∂kβ

k. (B2)

From (25), one can simply read out

ρ=6
(

1−
√

f (rc)
)

, p=
−4M+6

(

1−
√

f (rc)
)

r4c

r4c
√

f (rc)
,

η=r3+/r
3
c , ζ=0. (B3)

Thus, the dual fluid obtained at the finite cutoff surface is not
conformal because the trace of Tµν is nonzero, i.e. ρ=3p has
been broken. This result is consistent with that in Ref. [26],
and expected from the fact that the conformal symmetry has
been broken with a finite radial coordinate in the bulk. In
addition, as rc→∞, the results in (B3) can relate to those in
the infinite boundary by just a conformal factor. Since the
conformal symmetry is recovered in this case, these results
can be related to each other by conformal transformation.

Moreover, the entropy density from (7) is s=
r3+

4Gr3
c

and after

substituting the coefficient 16πG in η, we can easily find that
η/s=1/(4π), which is consistent with the well-known η/s re-
sult for the dual fluid at the infinite boundary in the Einstein
gravity [11, 12, 18, 19, 42].

Appendix C: New tensor components of WAB and SAB

For the corrected metric in (11) with a nontraceless αij(r)
i.e.,

∑

iαii(r) 6=0, we can obtain the new tensor components
of WAB=(effect from correction)−SAB as

Wvv = −
8r2f(r)h(r)

r2cf (rc)
−
2
(

2M+r4
)

f(r)h′(r)

rr2cf (rc)
+
f(r)k′(r)

2r

−
1

2
f(r)k′′(r)+

(2M+r4)r2c(2M−r4)

2r5(2M−r4c)
B(r)−S(1)

vv ,

Wvi =
3f(r)j′i(r)

2r
−
1

2
f(r)j′′i (r)−S

(1)
vi (r) ,

Wvr =
8h(r)

rc
√

f (rc)
+
2
(

2M+r4
)

h′(r)

r3rc
√

f (rc)
−
rc
√

f (rc)k
′(r)

2r3

+
rc
√

f (rc)k
′′(r)

2r2
−

2M+r4

2r3rc
√

f(rc)
B(r)−S(1)

vr ,

Wri = −
3rc
√

f (rc)j
′
i(r)

2r3
+
rc
√

f (rc)j
′′
i (r)

2r2
−S

(1)
ri ,

Wrr =
5h′(r)

r
+h′′(r)−

B(r)

r
−
B′(r)

2
−S(1)

rr ,

Wii =
8r2

r2c
h(r)+

(

−14M+11r4
)

h′(r)

3rr2c
+

1

3r2c
r4f(r)h′′(r)

+
f (rc)k

′(r)

r
+

(

2M−5r4
)

α′
ii(r)

2rr2c

−
1

2r2c
r4f(r)α′′

ii(r)−
r3f(r)

2r2c
B(r)−S

(1)
ii ,

(here ii=xx,yy,zz with no summation)

Wij =

(

2M−5r4
)

α′
ij(r)

2rr2c
−

1

2r2c
r4f(r)α′′

ij(r)−S
(1)
ij , (i 6=j),

Wij−
1

3
δij

(

∑

k

Wkk

)

=

(

2M−5r4
)(

α′
ij(r)−δij

1
3
B(r)

)

2rr2c

−
1

2r2c
r4f(r)

(

α′

ij(r)+δij
1

3
B(r)

)′

−S
(1)
ij +

1

3
δij(δ

klS
(1)
kl ),

where B(r)=
∑

iα
′
ii(r), and the first order source terms are

the same as those in Appendix .
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