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We study observational constraints on a specific dark energy model in the framework of Gleyzes-
Langlois-Piazza-Vernizzi theories, which extends the Galileon ghost condensate (GGC) to the domain of
beyond Horndeski theories. In this model, we show that the Planck cosmic microwave background (CMB)
data, combined with datasets of baryon acoustic oscillations, supernovae type Ia, and redshift-space

distortions, give the tight upper bound jαð0ÞH j ≤ Oð10−6Þ on today’s beyond-Horndeski (BH) parameter αH.
This is mostly attributed to the shift of CMB acoustic peaks induced by the early-time changes of
cosmological background and perturbations arising from the dominance of αH in the dark energy density.
In comparison to the Λ cold dark matter (ΛCDM) model, our BH model suppresses the large-scale
integrated-Sachs-Wolfe tail of CMB temperature anisotropies due to the existence of cubic Galileons, and it
modifies the small-scale CMB power spectrum because of the different background evolution. We find that
the BH model considered fits the data better than ΛCDM according to the χ2 statistics, yet the deviance
information criterion (DIC) slightly favors the latter. Given the fact that our BHmodel with αH ¼ 0 (i.e., the
GGC model) is favored over ΛCDM even by the DIC, there are no particular signatures for the departure
from Horndeski theories in current observations.

DOI: 10.1103/PhysRevD.100.063509

I. INTRODUCTION

Despite the tremendous progress of observational cos-
mology over the past two decades, the origin of today’s
acceleration of the Universe has not been identified yet. The
standard concordance scenario is the ΛCDM model, in
which the cosmological constant Λ is the source for cosmic
acceleration. In addition to the difficulty of naturally
explaining the origin of Λ from the vacuum energy [1–3],
it is known that there are tensions between some datasets in
the estimations of today’s value of the Hubble constant
H0 ¼ 100 h km sec−1 Mpc−1 [4–8] and the amplitude σ8 of
thematter power spectrumon the scale of 8 h−1Mpc [9–13].
Such observational tensions along with the theoretical
shortcoming of ΛCDM reinforce the idea to look for
alternative models of dark energy [14–20].
Many extensions to the standard cosmological scenario

include large-distance modifications of gravity due to an
extra scalar degree of freedom (DOF), thus they are dubbed
scalar-tensor theories [21]. Among those, the Horndeski
class of theories [22] is the most general scheme with

second-order equations of motion [23–25]. The latter
feature ensures the absence of Ostrogradski instabilities,
related to the existence of higher-order time derivatives.
It is possible to construct healthy theories beyond

Horndeski gravity free from Ostrogradski instabilities. In
Gleyzes-Langlois-Piazza-Vernizzi (GLPV) theories [26],
for example, there are two extra Lagrangians beyond the
Horndeski domain without increasing the extra propagating
DOFs [27,28]. GLPV theories have several peculiar proper-
ties: the propagation speeds of matter and the scalar field
are mixed [29–32], a partial breaking of the Vainshtein
mechanism occurs inside astrophysical bodies [33–38], and
a conical singularity can arise at the center of a spherically
symmetric and static body [39,40]. We note that there exist
also extensions of Horndeski theories containing higher-
order spatial derivatives [41–43] (encompassing Horava
gravity [44]) and degenerate higher-order scalar-tensor
theories with one scalar propagating DOF [45–48].
The detection of the gravitational wave (GW) signal

GW170817 [49] accompanied by thegamma-ray burst event
GRB170817A [50] shows that the speed of GWs ct is

PHYSICAL REVIEW D 100, 063509 (2019)

2470-0010=2019=100(6)=063509(17) 063509-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.063509&domain=pdf&date_stamp=2019-09-10
https://doi.org/10.1103/PhysRevD.100.063509
https://doi.org/10.1103/PhysRevD.100.063509
https://doi.org/10.1103/PhysRevD.100.063509
https://doi.org/10.1103/PhysRevD.100.063509


constrained to be in the range −3 × 10−15 ≤ ct − 1 ≤ 7 ×
10−16 [51] at the redshift z ≤ 0.009, wherewe use the unit in
which the speed of light c is equivalent to 1. The Horndeski
Lagrangian, which gives the exact value ct ¼ 1without the
tuning among functions, is of the form L ¼ G4ðϕÞRþ
G2ðϕ; XÞ þ G3ðϕ; XÞ□ϕ, where G4 is a function of the
scalar field ϕ, R is the Ricci scalar, andG2;3 depend on both
ϕ and X ¼ ∂μϕ∂μϕ [52–57]. There are also dark energy
models in which the GW speed consistent with the above
observational bound of ct can be realized [58–60]. In GLPV
theories with the X dependence in G4, it is also possible to
realize ct ¼ 1 by the existence of an additional quartic
Lagrangian beyond the Horndeski domain [61].
In addition to the bound on ct, the absence of the decay of

GWs into dark energy at LIGO/Virgo frequencies (f∼
100 Hz) may imply that the parameter αH characterizing
the deviation from Horndeski theories is constrained to be
very tiny for the scalar sound speed cs different from 1,
typically of order jαHj≲ 10−10 today [62]. If we literally use
this bound, there is little room left for dark energy models in
beyond-Horndeski theories [63,64]. If cs is equivalent to 1,
the decay of GWs into dark energy is forbidden. However, it
was argued in Ref. [62] that power-law divergent terms
would appear, leading to the conclusion that the operator
accompanying αH must be suppressed as well [62].
We note that the LIGO/Virgo frequencies are close to

those of the typical strong coupling scale or cutoff Λc of
dark energy models containing derivative field self-
interactions [65]. Around this cutoff scale, we cannot
exclude the possibility that some ultraviolet (UV) effects
come into play to recover the propagation and property
of GWs similar to those in general relativity (GR). If this
kind of UV completion occurs around the frequency
f ∼ 100 Hz, the aforementioned bounds on ct and αH
are not applied to the effective field theory of dark energy
exploited to describe the cosmological dynamics much
below the energy scale Λc. Future space-based missions,
such as LISA [66], are sensitive to much lower frequencies
(f ∼ 10−3 Hz), so they will offer further valuable informa-
tion on the properties of GWs with different frequencies.
In GLPV theories, there are constraints on the parameter

αH arising from the modifications to gravitational inter-
actions inside astrophysical objects. For example, the
consistency of the minimum mass for hydrogen burning
in stars with the red dwarf of lowest mass shows that jαHj is
at most of order 0.1 [35,36,67,68]. By using x-ray and
lensing profiles of galaxy clusters, similar bounds on αH
were obtained in Ref. [37]. From the orbital period of the
Hulse-Taylor binary pulsar PSR B1913þ 1, the upper
bound of jαHj is of order 10−3 [69]. Cosmological con-
straints on αH were derived by using particular parametric
forms of dimensionless quantities appearing in the effective
field theory of dark energy to describe their evolution.
In this case, the constraints from CMB and large-scale
structure data on jαHj are of order Oð1Þ [70].

In this paper, we place observational bounds on the
beyond-Horndeski (BH) dark energy model proposed in
Ref. [61] and study how the parameter αH is constrained
from the cosmological datasets of CMB temperature anisot-
ropies, baryon acoustic oscillations (BAO), supernovae type
Ia (SN Ia), and redshift-space distortions (RSDs). In the limit
αH → 0, themodel reduces to the Galileon ghost condensate
(GGC) in Horndeski theories. The recent analysis of
Ref. [71] reveals that the GGC model is observationally
favored over ΛCDM according to several information
criteria. We will investigate whether or not this property
persists for the BH dark energymodel (αH ≠ 0) of Ref. [61].
For the likelihood analysis, we will use the publicly avai-
lable effective field theory for CAMB (EFTCAMB) code1

[72,73]. In our investigation the gravitational theory is
completely determined by a covariant action, while the
analysis in Ref. [70] follows a parametrized approach to
GLPV theories. In this respect, the two cosmologicalmodels
considered are completely different and the constraint on αH
obtained in this paper cannot be straightforwardly compared
to the results in Ref. [70].
The paper is organized as follows. In Sec. II, we briefly

review the basics of the BH dark energy model introduced
in Ref. [61]. In Sec. III, we show how this model can be
implemented in the EFT formulation and derive the back-
ground equations of motion together with theoretically
consistent conditions. In Sec. IV, we discuss the evolution
of cosmological perturbations in the presence of matter
perfect fluids and investigate the impact of our model on
observable quantities. In Sec. V, we present the Monte-
Carlo-Markov-chain (MCMC) constraints on model
parameters and compute several information criteria to
discuss whether the BH model is favored over the ΛCDM
model. Finally, we conclude in Sec. VI.

II. DARK ENERGY MODEL IN GLPV THEORIES

The dark energy model proposed in Ref. [61] belongs to
the quartic-order GLPV theories given by the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p X4
i¼2

Li þ SM½gμν; χM�; ð2:1Þ

where g is the determinant of metric tensor gμν, SM is the
matter action for all matter fields χM, and the Lagrangians
L2;3;4 are defined by

L2 ¼ G2ðϕ; XÞ;
L3 ¼ G3ðϕ; XÞ□ϕ;

L4 ¼ G4ðϕ; XÞR − 2G4;Xðϕ; XÞ½ð□ϕÞ2 − ϕμνϕμν�
þ F4ðϕ; XÞϵμνρσ ϵμ

0ν0ρ0σϕμ0ϕμϕνν0ϕρρ0 ; ð2:2Þ

1Web page: http://www.eftcamb.org.
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where G2;3;4 and F4 are functions of the scalar field ϕ and
X ¼ ∇μϕ∇μϕ, R is the Ricci scalar, and ϵμνρσ is the totally
antisymmetric Levi-Civita tensor satisfying the normaliza-
tion ϵμνρσϵμνρσ ¼ þ4!. We also define Gi;X ≡ ∂Gi=∂X and
use the notations ϕμ ¼ ∇μϕ and ϕμν ¼ ∇ν∇μϕ for the
covariant derivative operator∇μ. We assume that the matter
fields χM are minimally coupled to gravity.
The last term containing F4ðϕ; XÞ in L4 arises beyond

the domain of Horndeski theories [26]. The deviation from
Horndeski theories can be quantified by the parameter

αH ¼ −
X2F4

G4 − 2XG4;X þ X2F4

; ð2:3Þ

which does not vanish for F4 ≠ 0. The line element
containing intrinsic tensor perturbations hij on the flat
Friedmann-Lemaître-Robertson-Walker (FLRW) space-
time is given by

ds2 ¼ −dt2 þ a2ðtÞðδij þ hijÞdxidxj; ð2:4Þ

where aðtÞ is the time-dependent scale factor, and hij
satisfies the transverse and traceless conditions (∇jhij ¼ 0

and hii ¼ 0). The propagation speed squared of tensor
perturbations is [26,29,30]

c2t ¼
G4

G4 − 2XG4;X þ X2F4

: ð2:5Þ

In quartic-order Horndeski theories (F4 ¼ 0), the X
dependence in G4 leads to the difference of c2t from 1.
In GLPV theories, it is possible to realize c2t ¼ 1 for the
function

F4 ¼
2G4;X

X
; ð2:6Þ

under which αH ¼ −2XG4;X=G4.
In this paper, we will study observational constraints on

the model proposed in Ref. [61]. This is characterized by
the following functions:

G2 ¼ a1X þ a2X2; G3 ¼ 3a3X;

G4 ¼
m2

0

2
− a4X2; F4 ¼ −4a4; ð2:7Þ

wherem0 and a1;2;3;4 are constants. This beyond-Horndeski
model, hereafter BH, satisfies the condition (2.6), and
hence c2t ¼ 1. When a4 ¼ 0, BH recovers the GGC model
studied recently in Ref. [71]. Taking the limits a2 → 0 and
a3 → 0, GGC recovers the cubic covariant Galileon [74,75]
and ghost condensate [76], respectively.
The BH model allows for the existence of self-

accelerating de Sitter solutions finally approaching constant

values of X. Before approaching the de Sitter attractor, the
dark energy equation of state wDE can exhibit a phantom
behavior (i.e., wDE < −1) without the appearance of ghosts
[61]. The cubic covariant Galileon gives rise to the tracker
solution with wDE ¼ −2 in the matter era [77], but this
evolution is incompatible with the joint data analysis of
CMB, BAO, and SN Ia [78]. On the other hand, in both BH
and GGC, the a2X2 term works to prevent for approaching
the tracker, so that −2 < wDE < −1 in the matter era. This
behavior of wDE is consistent with the recent observational
datasets of CMB, BAO, and SN Ia [71].
The BH model leads to the evolution of cosmological

perturbations different from that in GR. The late-time
modification to the cosmic growth rate arises mostly from
the cubic Galileon term 3a3X□ϕ [61,79]. In GGC, the
combined effect of 3a3X□ϕ and a2X2 can suppress the
power spectrum of large-scale CMB temperature anisotro-
pies, so that the model shows a better compatibility with the
Planck data with respect to the Λ cold dark matter (ΛCDM)
[71]. It remains to be seen whether the similar property also
holds for the BH model with a4 ≠ 0, which we will address
in this paper.

III. METHODOLOGY

In this section, we discuss the evolution of the back-
ground and linear scalar perturbations in the BH model. We
make use of the EFTCAMB/EFTCosmoMC codes [72,73],
in which the EFT of dark energy and modified gravity [80–
84] is implemented into CAMB/CosmoMC [85,86]. The
EFT framework enables one to deal with any dark energy
and modified gravity model with one scalar propagating
DOF ϕ in a unified and model-independent manner.
The EFT of dark energy is based on the 3þ 1 Arnowitt-

Deser-Misner (ADM) decomposition of spacetime [87]
given by the line element

ds2 ¼ −N2dt2 þ hijðdxi þ NidtÞðdxj þ NjdtÞ; ð3:1Þ
where N is the lapse, Ni is the shift vector, and hij
is the three-dimensional metric. A unit vector orthogonal
to the constant time hypersurface Σt is given by nμ ¼
N∇μt ¼ ðN; 0; 0; 0Þ. The extrinsic curvature is defined
by Kij ¼ hki∇knj. The internal geometry of Σt is quantified
by the three-dimensional Ricci tensor Rij ¼ ð3ÞRij associ-
ated with the metric hij.
On the flat FLRW background, we consider the line

element containing three scalar metric perturbations δN, ψ ,
and ζ, as

ds2 ¼ −ð1þ 2δNÞdt2 þ 2∂iψdtdxi

þ a2ðtÞð1þ 2ζÞδijdxidxj; ð3:2Þ

where ∂i ≡ ∂=∂xi. We also choose the unitary gauge in
which the perturbation δϕ of the scalar field ϕ vanishes.
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Then, the perturbations of extrinsic and intrinsic curvatures
are expressed as [29,42,83,84]

δKij ¼ a2ðHδN − 2Hζ − _ζÞδij þ ∂i∂jψ ; ð3:3Þ

δRij ¼ −δij∂2ζ − ∂i∂jζ; ð3:4Þ

where ∂2 ≡ δkl∂k∂l, andH ¼ _a=a is the Hubble expansion
rate, and a dot represents a derivative with respect to t. The
perturbations of tracesK ≡ Ki

i andR≡Ri
i are denoted as

δK and δR, respectively, with δg00 ¼ 2δN.
In the ADM language, the Lagrangian of GLPV theories

depends on the scalar quantities N, K, KijKij, R, KijRij,
and t [83]. Expanding the corresponding action up to
second order in scalar perturbations of those quantities, it
follows that

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
m2

0

�
1

2
½1þΩðaÞ�Rþ ΛðaÞ

m2
0

−
cðaÞ
m2

0

δg00

þH2
0

γ1ðaÞ
2

ðδg00Þ2 −H0

γ2ðaÞ
2

δg00δK

−H2
0

γ3ðaÞ
2

ðδKÞ2 −H2
0

γ4ðaÞ
2

δKi
jδK

j
i

þ γ5ðaÞ
2

δg00δR
�
þ SM½gμν; χM�; ð3:5Þ

where m0 is a constant having a dimension of mass, and Ω,
Λ, c, γi are called EFT functions that depend on the
background scale factor a. The explicit relations between
those EFT functions and the functions G2;3;4; F4 in the
action (2.1) are given in Ref. [88].
The first three variables Ω, Λ, c determine both the

background evolution and linear perturbations, whereas the
functions γi solely appear at the level of linear perturba-
tions. For the matter action SM, we take dark matter and
baryons (background density ρm and vanishing pressure)
and radiation (background density ρr and pressure
Pr ¼ ρr=3) into account. Then, the background equations
are expressed as [80,81]

3m2
0H

2 ¼ ρDE þ ρm þ ρr; ð3:6Þ

−m2
0ð2 _H þ 3H2Þ ¼ PDE þ Pr; ð3:7Þ

where

ρDE ¼ 2c − Λ − 3m2
0Hð _ΩþHΩÞ; ð3:8Þ

PDE ¼ Λþm2
0½Ω̈þ 2H _ΩþΩð2 _H þ 3H2Þ�: ð3:9Þ

The density ρDE and pressure PDE of dark energy obey the
continuity equation

_ρDE þ 3HðρDE þ PDEÞ ¼ 0: ð3:10Þ

In GLPV theories, there is the specific relation γ3 ¼ −γ4. If
we restrict the theories to those satisfying c2t ¼ 1, it follows
that γ4 ¼ 0. Then, the model given by the functions (2.7)
corresponds to the coefficients

γ3 ¼ 0; γ4 ¼ 0; ð3:11Þ

so that we are left with three functions γ1, γ2, γ5 at the level
of linear perturbations.
To study the cosmological evolution of our model in

EFTCAMB, we first solve the background equations of
motion and then map to the EFT functions according to the
procedure given in Refs. [43,80–84,88].

A. Background equations in the BH model

For the model (2.7), the background equations are given
by Eqs. (3.6) and (3.7), with

Ω ¼ −
2a4 _ϕ

4

m2
0

; ð3:12Þ

and

ρDE ¼ −a1 _ϕ2 þ 3a2 _ϕ
4 þ 18a3H _ϕ3 þ 30a4H2 _ϕ4; ð3:13Þ

PDE ¼ −a1 _ϕ2 þ a2 _ϕ
4 − 6a3 _ϕ

2ϕ̈

− 2a4 _ϕ
3½8Hϕ̈þ _ϕð2 _H þ 3H2Þ�: ð3:14Þ

The parameters c and Λ in Eqs. (3.8) and (3.9) can be
expressed in terms of quantities on the right-hand sides of
Eqs. (3.13) and (3.14). Following Ref. [61], we define the
dimensionless variables (density parameters):

x1 ¼ −
a1 _ϕ

2

3m2
0H

2
; x2 ¼

a2 _ϕ
4

m2
0H

2
;

x3 ¼
6a3 _ϕ

3

m2
0H

; x4 ¼
10a4 _ϕ

4

m2
0

; ð3:15Þ

and

ΩDE ¼ ρDE
3m2

0H
2
; Ωm ¼ ρm

3m2
0H

2
; Ωr ¼

ρr
3m2

0H
2
:

ð3:16Þ

From Eq. (3.6), we have

Ωm ¼ 1 − ΩDE − Ωr; ð3:17Þ

where the dark energy density parameter is given by

ΩDE ¼ x1 þ x2 þ x3 þ x4: ð3:18Þ
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In terms of x4, the deviation parameter (2.3) from
Horndeski theories is expressed as

αH ¼ 4x4
5 − x4

; ð3:19Þ

and hence αH is of the same order as x4 for jx4j ≤ 1.
The variables x1;2;3;4 and Ωr are known by solving the

ordinary differential equations

x01 ¼ 2x1ðϵϕ − hÞ; ð3:20Þ

x02 ¼ 2x2ð2ϵϕ − hÞ; ð3:21Þ

x03 ¼ x3ð3ϵϕ − hÞ; ð3:22Þ

x04 ¼ 4x4ϵϕ; ð3:23Þ

Ω0
r ¼ −2Ωrð2þ hÞ; ð3:24Þ

where a prime denotes the derivative with respect to
N ¼ lnðaÞ. On using Eqs. (3.6) and (3.7), it follows that

ϵϕ ≡ ϕ̈

H _ϕ

¼ −
1

qs
½20ð3x1 þ 2x2Þ − 5x3ð3x1 þ x2 þ Ωr − 3Þ

− x4ð36x1 þ 16x2 þ 3x3 þ 8ΩrÞ�;

h≡ _H
H2

¼ −
1

qs
½10ð3x1 þ x2 þ Ωr þ 3Þðx1 þ 2x2Þ

þ 10x3ð6x1 þ 3x2 þΩr þ 3Þ þ 15x23

þ x4ð78x1 þ 32x2 þ 30x3 þ 12Ωr þ 36Þ þ 12x24�;

with

qs ≡ 20ðx1 þ 2x2 þ x3Þ þ 4x4ð6 − x1 − 2x2 þ 3x3Þ
þ 5x23 þ 8x24: ð3:25Þ

For a given set of initial conditions x1;2;3;4 and Ωr, we can
solve Eqs. (3.20)–(3.24) to determine the evolution of
density parameters as well as ϕ and H. Practically, we start
to solve the above dynamical system at redshift zs ¼ 1.5 ×
105 and iteratively scan over initial conditions leading to
the viable cosmology satisfying the constraint (3.17) today
(z ¼ 0). Additionally, evaluating Eq. (3.18) at present time,

we can eliminate one model parameter, for example xð0Þ2 ,

as xð0Þ2 ¼ Ωð0Þ
DE − xð0Þ1 − xð0Þ3 − xð0Þ4 , where “(0)” represents

today’s quantities.

B. Mapping

To study the evolution of scalar perturbations and
observational constraints on dark energy models in
EFTCAMB, it is convenient to use the mapping between
EFT functions and model parameters in BH. In Sec. III A,
we already discussed the mapping of the background
quantities Ω, Λ and c. The functions γ1;2;5, which are
associated with scalar perturbations, are given by

γ1 ¼
H2

H2
0

�
1

20
ð24x4 − hx04 þ 3x04 − x004Þ

þ2x2 þ
1

12
fðhþ 9Þx3 þ x03g

�
; ð3:26Þ

γ2 ¼
H
H0

�
1

5
ðx04 − 8x4Þ − x3

�
; ð3:27Þ

γ5 ¼
2

5
x4: ð3:28Þ

The expressions of these EFT functions allow us to draw
already some insight about the contributions of each xi to
the dynamics of linear perturbations. In general, the
variable γ1 cannot be well constrained by data being its
contribution to the observables below the cosmic variance
[89]. The main modification to the evolution of perturba-
tions compared to GR arises from γ2 and γ5, which are
mostly affected by x3 and x4. The variables x1 and x2
contribute to the perturbation dynamics through the Hubble
expansion rate H in γ2.

C. Viability constraints

There are theoretically consistent conditions under
which the perturbations are not plagued by the appearance
of ghosts and Laplacian instabilities in the small-scale limit.
For the BH model (2.7), the conditions for the absence of
ghosts in tensor and scalar sectors are given, respectively,
by [61]

Qt ¼
5 − x4
10

m2
0 > 0; ð3:29Þ

Qs ¼
3ð5 − x4Þqs

25ðx3 þ 2x4 − 2Þ2m
2
0 > 0; ð3:30Þ

where qs is defined in Eq. (3.25). Then, we have the
following constraints:

x4 < 5; qs > 0: ð3:31Þ

The BH model has the property c2t ¼ 1, so there is no
Laplacian instability for tensor perturbations. We note that
the reduced Planck mass Mpl is related to m0 according to
the relation M2

pl ¼ m2
0ð1þ Ω0Þ in the local environment
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with screened fifth forces [33], whereΩ0 is today’s value of
Ω. Then, the Newton gravitational constant GN is given by

GN ¼ 1

8πM2
pl

¼ 1

8πm2
0

�
1 −

xð0Þ4

5

�−1

; ð3:32Þ

which is positive under the absence of tensor ghosts.
For scalar perturbations, there are three propagation

speed squares c2s , c̃2r , and c̃2m associated with the scalar
field ϕ, radiation, and nonrelativistic matter, respectively. In
Horndeski theories, they are not coupled to each other, so
that the propagation speed squares of radiation and non-
relativistic matter are given, respectively, by c2r ¼ 1=3 and
c2m ¼ þ0. In GLPV theories, they are generally mixed with
each other, apart from c̃2m (which has the value c̃2m ¼ þ0)
[26,29–32]. Then, the Laplacian instabilities of scalar
perturbations can be avoided under the two conditions

c2s ¼
1

2
ðc2r þ c2H − βH − γHÞ > 0; ð3:33Þ

c̃2r ¼
1

2
ðc2r þ c2H − βH þ γHÞ > 0; ð3:34Þ

where

c2H ¼ 2

Qs

�
_MþHM−Qt−

3ρmþ 4ρr
12H2ð1þαBÞ2

�
;

βr ¼
4αHρr

3QsH2ð1þαBÞ2
; βm ¼ αHρm

QsH2ð1þαBÞ2
;

M¼Qtð1þαHÞ
Hð1þαBÞ

; βH ¼ βrþ βm; αB ¼−
5x3þ 8x4
2ð5− x4Þ

;

γH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2r − c2Hþ βHÞ2þ 2c2rαHβr

q
: ð3:35Þ

When jαHj ≪ 1 we have c2s ≃ c2H − βH and c̃2r ≃ c2r ¼ 1=3,
so the second stability condition (3.34) is satisfied.

There are also constraints on today’s parameter αð0ÞH (or

equivalently, xð0Þ4 ) from massive astrophysical objects
[35,36,69]. Among those constraints, the orbital period
of Hulse-Taylor binary pulsar gives the tightest bound

−0.0031 ≤ xð0Þ4 ≤ 0.0094 [61,69]. If we literally use the
bound arising from the absence of the GW decay into dark

energy at LIGO/Virgo frequencies, the parameter αð0ÞH
should be less than the order of 10−10 [62]. As we
mentioned in Introduction, it is still a matter of debate
whether the EFT of dark energy is valid around the
frequency f ∼ 100 Hz [65]. In this paper, we will not
impose such a bound and independently test how the

cosmological observations place the upper limit of xð0Þ4 .
In Fig. 1, we show the physically viable parameter space

(blue colored region) for the initial conditions xðsÞ1 , xðsÞ2 , xðsÞ3 ,

xðsÞ4 (at redshift zs ¼ 1.5 × 105) and today’s values

xð0Þ1 ; xð0Þ2 ; xð0Þ3 (at redshift z ¼ 0). We find that xð0Þ1 is

negative, while xð0Þ2 and xð0Þ3 are positive. We note that the
ghost condensate model [76] has a de Sitter solution
satisfying x1 < 0 and x2 > 0. TheGalileon term x3 modifies
the cosmological dynamics of ghost condensate, but there is
also a de Sitter attractor characterized by x1 < 0, x2 > 0, and

x3 > 0 [61].Aswe see in Fig. 1, the parameter xð0Þ3 is notwell
constrained from the theoretically viable conditions alone.

The parameter space of the variable xð0Þ4 is not shown in

Fig. 1, but it is in the range jxð0Þ4 j ≪ 1 to satisfy all the

theoretically consistent conditions. As xð0Þ4 approaches
the order 1, the scalar perturbation is typically prone to
the Laplacian instability associated with the negative value
of c2s [61].
The above results will be used to set theoretical priors for

the MCMC analysis.

IV. COSMOLOGICAL PERTURBATIONS

In this section, we discuss the evolution of scalar
cosmological perturbations in the BH model for the
perturbed line element given by Eq. (3.2). We introduce
the two gauge-invariant gravitational potentials:

Ψ≡ δN þ _ψ ; Φ≡ −ζ −Hψ : ð4:1Þ

For the matter sector, we consider scalar perturbations of
the matter-energy momentum tensor Tμ

ν arising from the
action SM, as δT0

0 ¼ −δρ, δT0
i ¼ ∂iδq, and δTi

j ¼ δPδij.
The density perturbation δρ, the momentum perturbation
δq, and the pressure perturbation δP are expressed in terms

FIG. 1. The viable parameter space (in blue) for the initial

values xðsÞ1 , xðsÞ2 , xðsÞ3 and xðsÞ4 at the redshift zs ¼ 1.5 × 105 (top

panel) and today’s parameters xð0Þ1 , xð0Þ2 and xð0Þ3 (bottom panel). In
these parameter spaces, there are neither ghosts nor Laplacian
instabilities.
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of the sum of each matter component, as δρ ¼ P
iδρi,

δq ¼ P
iδqi, and δP ¼ P

iδPi, where i ¼ m, r. We intro-
duce the gauge-invariant density contrast:

Δi ≡ δρi
ρi

− 3H
δqi
ρi

; ð4:2Þ

where ρi is the background density of each component.
In the BH model, the full linear perturbation equations of
motion were derived in Ref. [61].
In Fourier space with the comoving wave number k, we

relate the gravitational potentials in Eq. (4.1) with the total
matter density contrast Δ ¼ P

iΔi, as [90–92]

−k2Ψ ¼ 4πGNa2μða; kÞρΔ; ð4:3Þ

−k2ðΨþΦÞ ¼ 8πGNa2Σða; kÞρΔ; ð4:4Þ

where GN is the Newton gravitational constant given by
Eq. (3.32), and ρ ¼ P

iρi is the total background matter
density. The dimensionless quantities μ and Σ correspond
to the effective gravitational couplings felt by matter and
light, respectively. For nonrelativistic matter, the density
contrast Δm obeys [61]

Δ̈m þ 2H _Δm þ k2

a2
Ψ ¼ −3ðB̈ þ 2H _BÞ; ð4:5Þ

where B≡ ζ þHδqm=ρm. This means that the matter
density contrast grows due to the gravitational instability
through the modified Poisson equation (4.3). In GR, both μ
and Σ are equivalent to 1, but in the BH model, they are
different from 1. Hence the growth of structures and
gravitational potentials is subject to modifications.
For the perturbations deep inside the sound horizon

(c2sk2=a2 ≫ H2), the common procedure is to resort to a
quasistatic approximation for the estimations of μ and Σ
[93–95]. This amounts to picking up the terms containing
k2=a2 and Δm in the perturbation equations of motion.
InHorndeski theories, it is possible to obtain the closed form
expressions of Ψ, Φ, ζ [19,95]. In GLPV theories, the
additional time derivatives αH _ψ and αH _ζ appear even under
the quasistatic approximation [31,96], so the perturbation
equations are not closed. If jαHj is very much smaller than 1
and x4 is subdominant to x1;2;3, we may ignore the
contributions of the term x4 to the perturbation equations.
In this case,we can estimate μ andΣ in theBHmodel, as [61]

μ ≃ Σ ≃ 1þ 2Qtx23
Qsc2sð2 − x3Þ2

: ð4:6Þ

Since μ and Σ are identical to each other, it follows that
Ψ ≃Φ. Under the theoretically consistent conditions (3.29),
(3.30), and (3.33), we also have μ ≃ Σ > 1 and hence the
gravitational interaction is stronger than that in GR. Let us
note that in the following we will not rely on this

approximation and we will solve the complete linear
perturbation equations.
To understand the evolution of perturbations, we consider

four different cases (BH1, BH2, BH3, GGC) listed in
Table I. The difference between these models is character-

ized by the different choices of initial conditions xðsÞi at the
redshift zs ¼ 1.5 × 105. Among them, BH1 has the largest

initial value xðsÞ4 , while x4 is always 0 in GGC (which
belongs to Horndeski theories). In Fig. 2, we plot the
evolution of xi from the past to today for these four different
cases. In BH1, thevariable x4 dominates over other variables
x1;2;3 for a ≲ 10−2, but it becomes subdominant at low
redshifts with today’s value of order 10−5. Comparing BH1
withBH3,we observe that the initial largeness of x4 does not

necessarily imply the large present-day value xð0Þ4 . At low
redshifts, x4 is typically less than the order 10−3 to avoid
c2s < 0 with the amplitude smaller than x1;2;3, in which case
the analytic estimation (4.6) can be trustable. Indeed, for all
themodels given in Table I, we numerically checked that the
quasistatic approximation holds with subpercent precision
for the wave numbers k > 0.01 Mpc−1 (as confirmed in
Horndeski theories in Refs. [89,97]).
In the top panel of Fig. 3, we plot the evolution of Ψ

normalized by its initial value ΨðsÞ for the four models in
Table I and for the ΛCDM. In the bottom panel, we depict
the percentage difference of Ψ for the chosen models with
respect to ΛCDM. At the late epoch, the deviations from
ΛCDM show up with the enhanced gravitational potential
(around a ∼ 0.2 for the BH2, BH3, GGC models). The
largest deviation arises for BH3, in which case the differ-
ence is more than 75% today. As estimated from Eq. (4.6),

TABLE I. List of starting values of the density parameters xi at
the redshift zs ¼ 1.5 × 105 and corresponding today’s values for
three BH models and the GGC model with x4 ¼ 0. The BH1,

BH2 and BH3 models differ in the starting values xðsÞi . All of
them satisfy theoretically consistent conditions discussed in
Sec. IV. We study these models for the purpose of visualizing
and quantifying the modifications from ΛCDM. The cosmologi-
cal parameters (e.g., H0, Ωm;Ωr) used for these models are the
Planck 2015 best-fit values for ΛCDM [98].

Parameters BH1 BH2 BH3 GGC

xðsÞ1 ð×10−16Þ −1 −0.1 −0.01 −1

xðsÞ2 ð×10−16Þ 5 0.05 0.0001 5

xðsÞ3 ð×10−9Þ 1 1 0.1 10

xðsÞ4 ð×10−6Þ 100 1 1 0

xð0Þ1
−1.37 −1.03 −0.73 −1.23

xð0Þ2
2.03 1.02 0.12 1.63

xð0Þ3
0.03 0.69 1.30 0.29

xð0Þ4
1 × 10−5 5 × 10−6 2 × 10−4 0
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the modified evolution ofΨ is mostly attributed to the cubic

Galileon term x3. For larger today’s values of xð0Þ3 , the
difference of Ψ from ΛCDM tends to be more significant
with the larger deviation of μ from 1. In Fig. 3, we observe
that the deviation from ΛCDM increases with the order of
BH1, GGC, BH2, BH3, by reflecting their increasing

values of xð0Þ3 given in Table I.
In BH1, there is the suppression of jΨj in comparison to

ΛCDM at high redshifts (a≲ 10−2). This property arises
from the dominance of x4 over x1;2;3 at early times, in which

case the relative density abundances between dark energy
and matter fluids are modified. Besides this effect, the
non-negligible early-time contribution of x4 to scalar
perturbations gives rise to a scale-dependent evolution of
gravitational potentials, which manifests itself in the
k-dependent variation of μða; kÞ and Σða; kÞ. In Fig. 4,
we plot the evolution of Ψ in BH1 for three different values
of k. For perturbations on smaller scales, the deviation from

FIG. 2. Evolution of the dimensionless variables defined in
Eq. (3.15) versus the scale factor a (with today’s value 1) for four
test models listed in Table I. In this table, the staring values of
parameters xi at the initial redshift zs ¼ 1.5 × 105 are shown for
each test model. We discuss physical implications for the
evolutions of xi in Sec. IV.

FIG. 3. (Top) Evolution of the gravitational potential Ψ
normalized by its initial value ΨðsÞ for the wave number
k ¼ 0.01 Mpc−1. We show the evolution of Ψ=ΨðsÞ for four
models listed in Table I and also for ΛCDM (black line).
(Bottom) Percentage relative difference of Ψ relative to that in
ΛCDM. The cosmological parameters used for this plot are the
Planck 2015 best-fit values for ΛCDM [98] (which is also the
case for plots in Figs. 5 and 6). The physical interpretation of this
figure is discussed in Sec. IV.

FIG. 4. (Top) Evolution of the gravitational potential Ψ
normalized by its initial value ΨðsÞ for BH1 and ΛCDM with
three different wave numbers: k ¼ 0.01, 0.1, 0.5 Mpc−1. In
Table I, we list the starting values of parameters xi at the initial
redshift zs ¼ 1.5 × 105 for the BH1 model. (Bottom) Percentage
relative difference of Ψ relative to that in ΛCDM for the same
values of k in the top panel.
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ΛCDM tends to be more significant. In models BH2, BH3,
and GGC, the early-time evolution of Ψ is similar to that in
ΛCDM, but they exhibit large deviations from ΛCDM at
late times.
At low redshifts, the lensing gravitational potential

ϕlen ¼ ðΨþΦÞ=2 evolves in a similar way to Ψ,
by reflecting the property μ ≃ Σ for xð0Þ4 ≪ 1. The lensing
angular power spectrum can be computed by using the line
of sight integration method, with the convention [99]

Cϕϕ
l ¼4π

Z
dk
k
PðkÞ

�Z
χ�

0

dχSϕðk;τ0−χÞjlðkχÞ
�
2

; ð4:7Þ

where PðkÞ ¼ Δ2
RðkÞ is the primordial power spectrum of

curvature perturbations, and jl is the spherical Bessel
function. The source Sϕ is expressed in terms of the
transfer function

Sϕðk; τ0 − χÞ ¼ 2Tϕðk; τ0 − χÞ
�
χ� − χ

χ�χ

�
; ð4:8Þ

with Tϕðk; τÞ ¼ kϕlen, χ is the comoving distance with χ�
corresponding to that to the last scattering surface, τ0 is
today’s conformal time τ ¼ R

a−1dt satisfying the relation
χ ¼ τ0 − τ. In Fig. 5, we show the lensing power spectra
Dϕϕ

l ¼ lðlþ 1ÞCϕϕ
l =ð2πÞ and relative differences in units

of the cosmic variance for four models listed in Table I.
Since Σ > 1 at low redshifts in BH and GGC models, this
works to enhance Dϕϕ

l compared to ΛCDM. We note that
the amplitude of matter density contrast δm in these models
also gets larger than that in ΛCDM by reflecting the fact
that μ > 1. In Fig. 5, we observe that, apart from BH1 in

which Σ is close to 1, the lensing power spectra in other
three cases are subject to the enhancement with respect to
ΛCDM. Since today’s values of μ and Σ increase for larger

xð0Þ3 , the deviation from ΛCDM tends to be more significant
with the order of GGC, BH2, and BH3.
Let us proceed to the discussion of the impact of BH and

GGC models on the CMB temperature anisotropies. The
CMB temperature-temperature (TT) angular spectrum can
be expressed as [100]

CTT
l ¼ ð4πÞ2

Z
dk
k
PðkÞjΔT

lðkÞj2; ð4:9Þ

where

ΔT
lðkÞ ¼

Z
τ0

0

dτeikμ̃ðτ−τ0ÞSTðk; τÞjl½kðτ0 − τÞ�; ð4:10Þ

with μ̃ being the angular separation, and STðk; τÞ is the
radiation transfer function. The contribution to STðk; τÞ
arising from the integrated-Sachs-Wolfe (ISW) effect is of
the form

STðk; τÞ ∼
�
dΨ
dτ

þ dΦ
dτ

�
e−κ; ð4:11Þ

where κ is the optical depth. Besides the early ISW effect
which occurs during the transition from the radiation to
matter eras by the time variation of ΨþΦ, the presence of
dark energy induces the late-time ISWeffect. In the ΛCDM
model, the gravitational potential −ðΨþΦÞ, which is
positive, decreases by today with at least more than 30%
relative to its initial value (see Fig. 3). As we observe in
Fig. 6 we have _Ψþ _Φ > 0 in this case, so the ISW effect

FIG. 5. (Top) Lensing angular power spectra Dϕϕ
l ¼ lðlþ

1ÞCϕϕ
l =ð2πÞ for ΛCDM and the models listed in Table I, where

Cl is defined by Eq. (4.7). (Bottom) Relative difference of the
lensing angular power spectra, computed with respect to ΛCDM,
in units of the cosmic variance σl ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ð2lþ 1Þp
CΛCDM
l .

FIG. 6. (Top) Evolution of the time derivative _Ψþ _Φ for
ΛCDM and the models listed in Table I, computed at
k ¼ 0.01 Mpc−1. (Bottom) Relative difference of _Ψþ _Φ,
computed with respect to ΛCDM. See the discussion after
Eq. (4.11) for the physical interpretation of this figure.
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gives rise to the positive contribution to Eq. (4.9). In Fig. 7,
we plot the CMB TT power spectra DTT

l ¼ lðlþ
1ÞCTT

l =ð2πÞ for the models listed in Table I and ΛCDM.
In BH1 the parameter Σ is close to 1 at low redshifts due to

the smallness of xð0Þ3 , so the late-time ISW effect works in
the similar way to the GR case. Hence the TT power
spectrum in BH1 for the multipoles l≲ 30 is similar to that
in ΛCDM.
In the GGC model of Fig. 7, we observe that the large-

scale ISW tail is suppressed relative to that in ΛCDM. This
reflects the fact that the larger deviation of Σ from 1 leads to
the time derivative _Ψþ _Φ closer to 0, see Fig. 6. Hence the
late-time ISW effect is not significant, which results in the
suppression of DTT

l with respect to ΛCDM. In Ref. [71]
this fact was first recognized in the GGC model, which
exhibits a better fit to the Planck CMB data. As the
deviation of Σ from 1 increases further, the sign of
_Ψþ _Φ changes to be negative (see Fig. 6). The BH2
model can be regarded as such a marginal case in which the
large-scale ISW tail is nearly flat. In BH3, the increase of Σ
at low redshifts is so significant that the largely negative
ISW contribution to Eq. (4.9) leads to the enhanced low-
lTT power spectrum relative to ΛCDM.
The modified evolution of the Hubble expansion rate

from ΛCDM generally leads to the shift of CMB acoustic
peaks at high l. In Fig. 8, we observe that the largest
deviation of HðaÞ at high redshifts occurs for BH1 by the
dominance of x4 over x1;2;3. This leads to the shift
of acoustic peaks toward lower multipoles (see Fig. 7).

We also find that BH3 is subject to non-negligible shifts of
high-l peaks due to the large modification of HðaÞ at low
redshifts, in which case the peaks shift toward higher
multipoles. Moreover, there is the large enhancement of
ISW tails for BH3, so it should be tightly constrained from
the CMB data. We note that the shift of CMB acoustic
peaks is further constrained by the datasets of BAO and SN
Ia. For BH2 and GGC the changes of peak positions are
small in comparion to BH1 and BH3, but still they are in

FIG. 7. (Top) CMB TT power spectra DTT
l ¼ lðlþ 1ÞCTT

l =ð2πÞ for the test models presented in Table I, compared with data points
from the Planck 2015 release. (Bottom) Relative difference of TT power spectra, computed with respect to ΛCDM in units of the cosmic
variance σl ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ð2lþ 1Þp
CΛCDM
l .

FIG. 8. Evolution of the relative Hubble rate for the models
listed in Table I compared to ΛCDM. The solid lines correspond
to a positive difference, whereas the opposite holds for the dashed
lines. For BH1 the largest difference from ΛCDM occurs in the
early cosmological epoch, in which case the CMB acoustic peaks
shift toward lower multipoles.
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the range testable by the CMB data. Moreover, the large-
scale ISW tail is subject to the suppression relative to
ΛCDM in BH2 and GGC.
In BH1, we also notice a change in the amplitude of

acoustic peaks occurring dominantly at high l. This
is known to be present in models with early-time mod-
ifications of gravity [101,102]. The modification of gravi-
tational potentials affects the evolution of radiation
perturbations (monopole and dipole) through the radiation
driving effect [101,103], thus resulting in the changes in
amplitude and phase of acoustic peaks at high l.
The modified time variations of Ψ and Φ around the

recombination epoch also give a contribution to the early
ISW effect. This is important on scales around the
first acoustic peak, corresponding to the wave number
k ≃ 0.016 Mpc−1 for our choice of model parameters. To
have a more qualitative feeling of this contribution, we have
estimated the impact of the early ISW effect on DTT

l by
using the approximate ISW integral presented in Ref. [103]:

Z
τ0

τ�
dτ
�
dΨ
dτ

þ dΦ
dτ

�
jl½kðτ0 − τÞ� ≃ ½ΨþΦ�jτ0τ�jlðkτ0Þ;

ð4:12Þ

where τ� is the conformal time at the last scattering. Then,
we find a negative difference of about 4.9% between BH1
and ΛCDM. This is in perfect agreement with the change in
amplitude of the first acoustic peak shown in Fig. 7. Thus,
the BH models in which x4 is the dominant contribution to
the dark energy dynamics at early times can be severely
constrained from the CMB data.
We stress that, in the late Universe, x4 is typically

suppressed compared to x1;2;3 for the viable cosmological
background, so the main impact on the evolution of
perturbations comes from the cubic Galileon term x3.
The analytic estimation (4.6) is sufficiently trustable for
studying the evolution of gravitational potentials and matter
perturbations at low redshifts. However, we solve the full
perturbation equations of motion for the MCMC analysis
without resorting to the quasistatic approximation.

V. OBSERVATIONAL CONSTRAINTS

We place observational bounds on the BH model by
performing the MCMC simulation with different combi-
nations of datasets at high and low redshifts.

A. Datasets

For the MCMC likelihood analysis, based on the
EFTCosmoMC code, we use the Planck 2015 [98,104]
data of CMB temperature and polarization on large angular
scales, for multipoles l < 29 (low-lTEB likelihood) and
the CMB temperature on smaller angular scales (PLIK TT
Likelihood). We also consider the BAOmeasurements from
the 6dF Galaxy Survey [105] and from the SDSS DR7main

galaxy sample [106]. Moreover, we include the combined
BAO and RSD datasets from the SDSS DR12 consensus
release [107] and the JLA SN Ia sample [108]. Wewill refer
to the full combined datasets as “PBRS.”
Finally, we impose the flat priors on the model param-

eters: xðsÞ1 ∈ ½−10; 10� × 10−16, xðsÞ3 ∈ ½−10; 10� × 10−9,

and xðsÞ4 ∈ ½0; 10� × 10−6. Even by increasing the prior
volume by 1 order of magnitude, we confirmed that the
likelihood results are not subject to the priors choice.

B. Constrained parameter space

In this section, we show observational constraints on
model parameters in the BH model. We use the datasets
presented in Sec. VA with two combinations: (i) Planck
and (ii) PBRS. For reference, we also present the results of
the ΛCDM model.
In Table II, we show the marginalized values of today’s

four density parameters xð0Þi with 95% confidence level
(CL) limits. In Fig. 9, we plot the observationally allowed
regions derived by two combinations of datasets with the

68% and 95% CL boundaries. The best-fit values of xð0Þ1

and xð0Þ2 constrained by the Planck data are not affected
much by including the datasets of BAO, SN Ia, and RSDs.

In the observationally allowed region we have xð0Þ1 < 0 and

xð0Þ2 > 0, but there are neither ghosts nor Laplacian insta-
bilities in the constrained parameter space (as in the ghost
condensate model [76]).
With the Planck data alone, the 95% CL upper bound on

xð0Þ3 is close to 1, but the PBRS datasets give the tighter limit

xð0Þ3 ≤ 0.27 at 95% CL. The maximum likelihood value of

xð0Þ3 derived with the Planck data is 0.34, which is similar to
the corresponding value 0.27 constrained with PBRS. The

nonvanishing best-fit value of xð0Þ3 is attributed to the facts
that, relative to ΛCDM, (i) the Galileon term can suppress
the large-scale ISW tale, and (ii) the modified background
evolution gives rise to the TT power spectrum showing a
better fit to the Planck CMB data at high l. In Fig. 10, these
properties can be seen in the best-fit TT power spectrum of

the BH model. Increasing xð0Þ3 further eventually leads to

TABLE II. Marginalized values of the model parameters xð0Þi
and their 95% CL bounds, derived by Planck and PBRS datasets.
In parenthesis, we also show the maximum likelihood values of
these parameters.

Parameters Planck PBRS

xð0Þ1
−1.32þ0.21

−0.12 ð−1.25Þ −1.35þ0.01
−0.06 ð−1.25Þ

xð0Þ2
1.85þ0.33

−0.69 ð1.62Þ 1.98þ0.14
−0.29 ð1.68Þ

xð0Þ3
0.16þ0.54

−0.18 ð0.34Þ 0.07þ0.2
−0.1ð0.27Þ

xð0Þ4 ð×10−6Þ 0.7þ2.2
−1.8 ð0.15Þ 0.3þ0.7

−0.6ð0.54Þ
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the enhancement of the ISW tale in comparison to ΛCDM.

As we see in BH3 of Fig. 7, the models with large xð0Þ3 do
not fit the TT power spectrum well at high l either. Such
models are disfavored from the CMB data (as in the case of

covariant Galileons [109,110]), so that xð0Þ3 is bounded from
above. The RSD data at low redshifts can be also consistent

with the intermediate values of xð0Þ3 constrained from CMB.
In Fig. 11, we show the evolution of wDE for the best-fit

BH model. As discussed in Ref. [61], the existence of x2
besides x3 prevents the approach to a tracker solution
characterized by wDE ¼ −2 during the matter-dominated
epoch. The best-fit background solution first enters the
region −2 < wDE < −1 in the matter era and finally
approaches a de Sitter attractor characterized by
wDE ¼ −1. Thus, the BH and GGC models with x2 ≠ 0
alleviate the observational incompatibility problem of
tracker solutions of covariant Galileons [78]. For the
best-fit BH model, there is the deviation of wDE from
−1 with the value wDE ≈ −1.1 at the redshift 1 < z < 3, so

the model is different from ΛCDM even at the back-
ground level.
From the PBRS datasets, today’s value of x4 is con-

strained to be

xð0Þ4 ¼ 0.3þ0.7
−0.6 × 10−6 ð95% CLÞ; ð5:1Þ

so that jxð0Þ4 j is at most of order 10−6. With the Planck data

alone, the upper bound of jxð0Þ4 j is also of the same order.

This means that the upper limit of xð0Þ4 is mostly determined
by the CMB data. As we discussed in Sec. IV, the CMB TT
power spectrum is sensitive to the dominance of x4 over
x1;2;3 in the early cosmological epoch. Then, today’s value
of x4 is also tightly constrained as Eq. (5.1), which
translates to the bound

jαð0ÞH j ≤ Oð10−6Þ: ð5:2Þ

Apart from the constraint arising from the GW decay to

dark energy [62], the above upper limit on αð0ÞH is the most
stringent bound derived from cosmological observations
so far.

In Table III, we present the values of H0, σ
ð0Þ
8 , and Ωð0Þ

m

constrained from the datasets of Planck and PBRS for the

BH and ΛCDM models. The bounds on H0, σ
ð0Þ
8 , and Ωð0Þ

m

derived with the PBRS datasets are similar to those in
ΛCDM. In Fig. 12, we also plot the two-dimensional
observational contours for these parameters constrained by
the Planck data. The direct measurements of H0 at low
redshifts [111] give the bound H0 > 70 km sec−1Mpc−1,
whereas the Planck data tend to favor lower values of H0.
Thus, as in the case of ΛCDM, the BH model does not
alleviate the tension of H0 between the Planck data and its
local measurements. The similar property also holds for

σð0Þ8 , where the Planck data favor higher values of σð0Þ8 than
those constrained in low-redshift measurements. We can

also put further bounds on σð0Þ8 by using the datasets of
weak lensing measurements, such as KiDS [9–11]. For this
purpose, we need to take nonlinear effects into account in
the MCMC analysis, which is beyond the scope of the
current paper.

C. Model selection

The BH model has three more parameters compared to
those in ΛCDM. This means that the former has more
freedom to fit the model better with the data. In order to
study whether the former is statistically favored over
the latter, we compute the deviance information criterion
(DIC) [112]:

DIC ¼ χ2effðθ̂Þ þ 2pD; ð5:3Þ

FIG. 9. Two-dimensional observational bounds on the combi-

nations of today’s density parameters ðxð0Þ1 ; xð0Þ2 Þ and ðxð0Þ3 ; xð0Þ4 Þ.
The colored regions correspond to the parameter space con-
strained by the Planck (red) and PBRS (blue) datasets at 68%
(inside) and 95% (outside) CL limits.
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where χ2effðθ̂Þ ¼ −2 lnLðθ̂Þ, and θ̂ is a vector associated
with model parameters maximizing the likelihood function
L. The quantity pD is defined by pD ¼ χ̄2effðθÞ − χ2effðθ̂Þ,
where the bar represents an average over the posterior
distribution. From its definition, the DIC accounts for the
goodness of fit, χ2effðθ̂Þ, and the Bayesian complexity of the
model, pD. The complex models with more free parameters
give larger pD. To compare the BH model with the ΛCDM
model, we calculate

ΔDIC ¼ DICBH − DICΛCDM: ð5:4Þ

If ΔDIC is negative, then BH is favored over ΛCDM.
For positive ΔDIC, the situation is reversed.
In Table IV, we present the relative differences of Δχ2eff

and ΔDIC in BH and GGC models, as compared to
ΛCDM. Since Δχ2eff are always negative, these models
provide the better fit to the data relative to ΛCDM. In
particular, we find that Δχ2eff constrained by the Planck data
alone are smaller than those derived with the PBRS
datasets. This preference of BH over ΛCDM by the
Planck data arises from combined effects of the suppressed
large-scale ISW tale caused by the Galileon term and
the modified high-lTT power spectrum induced by the

FIG. 10. (Top) Best-fit CMB TT power spectra DTT
l ¼ lðlþ 1ÞCTT

l =ð2πÞ for BH and ΛCDM, obtained with the Planck dataset.
The model parameters used for this plot are given in Tables II and III. For comparison, we plot the data points from the Planck 2015
release [98]. (Bottom) Relative difference of the best-fit TT power spectra, in units of the cosmic variance σl ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ð2lþ 1Þp
CΛCDM
l .

See Sec. V B for the difference between the best-fit BH and ΛCDM models.

FIG. 11. Best-fit evolution of the dark energy equation of state
wDE for BH and ΛCDM, obtained from the PBRS analysis. The
model parameters used for this plot are given in Tables II and III.
In the best-fit BH, wDE first enters the region wDE < −1 and then
it finally approaches the asymptotic value wDE ¼ −1.

TABLE III. Marginalized values of H0, σ
ð0Þ
8 , and Ωð0Þ

m and their
95% CL bounds in the BH and ΛCDMmodels, derived by Planck
and PBRS datasets. The unit of H0 is km sec−1 Mpc−1. In
parenthesis, we also show maximum likelihood values of these
parameters.

Parameter Model Planck PBRS

H0 BH 68.7þ3.2
−2.8 ð69.6Þ 68.0þ1.1

−1.1 ð68.2Þ
ΛCDM 67.9� 2.0ð67.6Þ 68� 1ð68Þ

σð0Þ8
BH 0.849þ0.037

−0.035 ð0.87Þ 0.84� 0.03ð0.84Þ
ΛCDM 0.841� 0.03ð0.83Þ 0.84� 0.03ð0.84Þ

Ωð0Þ
m

BH 0.300þ0.033
−0.034 ð0.28Þ 0.306þ0.014

−0.014 ð0.30Þ
ΛCDM 0.30� 0.03ð0.31Þ 0.31� 0.01ð0.31Þ
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different background evolution relative to ΛCDM (as
shown in Fig. 10). The former contributes by ∼20% to a
better χ2eff, while the latter to the remaining ∼80%. We note
that a further lowering of the ISW tail is limited by the shift
of acoustic peaks at high l. Such modifications are also
subject to further constraints from the datasets of BAO and
SN Ia, but the values of Δχ2eff constrained with the PBRS
datasets are still negative in both BH and GGC models.

According to theDIC, theBHmodel is slightly disfavored
over ΛCDM with the PBRS datasets. The GGC model,
which has one parameter less than those in BH, is favored
over ΛCDM with both Planck and PBRS datasets. This
implies that the existence of an additional parameter x4 does
not contribute to provide better fits to the data. Indeed,
today’s value of x4 is severely constrained as Eq. (5.1)
mostly from the CMB data. At the same time, this implies
that there are no observational signatures for the deviation
αH from Horndeski theories. It is interesting to note that the
GGC model, which belongs to a subclass of Horndeski
theories, is statistically favored over ΛCDM even with two
additional parameters, but this property does not persist in
the BH model due to the extra beyond-Horndeski term αH
modifying the cosmic expansion and growth histories.

VI. CONCLUSION

We studied observational constraints on the BH model
given by the action (2.1) with the functions (2.7). This model
belongs to a subclass of GLPV theories with the tensor
propagation speed squared c2t equivalent to 1. The deviation
from Horndeski theories is weighed by the dimension-
less parameter αH ¼ 4x4=ð5 − x4Þ, where x4 is defined in
Eq. (3.15). The BH model also has the a2X2 and 3a3X□ϕ
terms in the Lagrangian, which allow the possibility for
approaching a de Sitter attractor from the region −2 <
wDE < −1 without reaching a tracker solution (wDE ¼ −2).
Compared to the standard ΛCDM model, the beyond-

Horndeski term x4 can change the background cosmological
dynamics in the early Universe. Since the Hubble expansion
rate H is modified by the nonvanishing x4 term, this leads to
the shift of acoustic peaks of CMB temperature anisotropies
at high l, see BH1 in Fig. 7. Moreover, as we observe in
Fig. 4, the early-time dominance of x4 over x1;2;3 leads to the
modified evolution of gravitational potentials Ψ and Φ in
comparison to ΛCDM, whose effect is more significant for
small-scale perturbations. This modification also affects the
evolution of radiation perturbations and the early-time ISW
effect. As a result, the amplitude of CMB acoustic peaks is
changed by the x4 term. These modifications allow us to put
bounds on the deviation from Horndeski theories.
The cubic Galileon existing in the BH model leads to the

modified growth of matter perturbations and gravitational
potentials at low redshifts. Provided that x4 is subdominant to
x1;2;3, the dimensional quantities μ and Σ, which characterize
the gravitational interactions with matter and light respec-
tively, are given by Eq. (4.6) under the quasistatic approxi-
mationdeep inside the soundhorizon.Thus, theGalileon term
x3 enhances the linear growth of perturbations without the
gravitational slip (μ ≃ Σ > 1). This enhancement can be seen
in the lensing power spectrum Dϕϕ

l plotted in Fig. 5.
For the CMB temperature anisotropies, the late-time

modified growth of perturbations caused by the cubic
Galileon manifests itself in the large-scale ISW tale. The
ISW effect is attributed to the variation of the lensing

FIG. 12. The 68% and 95% CL two-dimensional bounds on

ðH0;Ω
ð0Þ
m Þ (top) and ðσð0Þ8 ;Ωð0Þ

m Þ (bottom) constrained by the
Planck 2015 data, with the unit km sec−1 Mpc−1 for H0. The
observational bounds on BH and ΛCDM models are shown as
the red and black colors, respectively. In the top panel, the grey
bands represent the 68% and 95% CL bounds on H0 derived by
its direct measurement at low redshifts [111]. See the last
paragraph of Sec. V B for the discussion of likelihood results.

TABLE IV. Model comparisons in terms of Δχ2eff and ΔDIC.
As the reference model, we use the value χ2eff in ΛCDM. The
results for GGC are taken from Ref. [71].

Model Dataset Δχ2eff ΔDIC

BH Planck −4.7 0.25
BH PBRS −1.8 0.1

GGC Planck −4.8 −2.5
GGC PBRS −2.8 −0.6
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gravitational potential ΨþΦ related to the quantity Σ.
Unlike the ΛCDM model in which the time derivative _Ψþ
_Φ is positive, the Galileon term x3 allows the possibility for
realizing _Ψþ _Φ closer to 0. In this case, the large-scale TT
power spectrum is lower than that in ΛCDM, see GGC and
BH2 in Fig. 7. Moreover, the modified background
evolution at low redshifts induced by the Galileon leads
to the shift of small-scale CMB acoustic peaks toward
higher multipoles. If the contribution of x3 to the total dark
energy density is increased further, the ISW tale is subject
to the significant enhancement compared to ΛCDM,
together with the large shift of high-lCMB acoustic peaks
(see BH3 in Fig. 7). These large modifications to the TT
power spectrum also arise for covariant Galileons without
the x2 term, whose behavior is disfavored from the CMB
data [109,110]. In the BH model, the existence of x2
besides x3 can give rise to the moderately modified TT
power spectrum being compatible with the data.
We put observational constraints on free parameters in the

BH model by running the MCMC simulation with the
datasets of CMB, BAO, SN Ia, and RSDs. With the Planck
CMB data, we showed that today’s value of x4 is con-
strained to be smaller than the order 10−6. Inclusion of other

datasets does not modify the order of upper limit of xð0Þ4 , and

hence jαð0ÞH j ≤ Oð10−6Þ. Apart from the bound arising from
the GW decay to dark energy, this is the tightest bound on

jαð0ÞH j derived so far from cosmological observations.

The other dark energy density parameters xð0Þ1 ; xð0Þ2 ; xð0Þ3

are constrained to be in a similar way to those derived in

Ref. [71]. The best-fit value of xð0Þ3 is smaller than jxð0Þ1 j and
xð0Þ2 by 1 order of magnitude. This intermediate value of xð0Þ3

leads to the CMB TT power spectrum with modifications at
both large and small scales, in such a way that the BH
model can be observationally favored over ΛCDM. The
evolution of matter perturbations at low redshifts is not
subject to the large modification by this intermediate value

of xð0Þ3 in comparison to ΛCDM, so the BH model is also
compatible with the RSD data. The best-fit background
expansion history corresponds to the case in which wDE
finally approaches −1 from the phantom region
−2 < wDE < −1, whose behavior is consistent with the
datasets of SN Ia and BAO. We also showed that, as in the

ΛCDM model, the tensions in H0 and σð0Þ8 between CMB
and low-redshift measurements are not alleviated for the
datasets used in our analysis. Future investigations includ-
ing nonlinear effects and additional probes from weak
lensing measurements will allow us to shed light on the
possibility for alleviating such tensions in the BH model.
Tomake comparison betweenBHandΛCDMmodels, we

computed the DIC defined by Eq. (5.3) penalizing complex
models with more free parameters. In BH, there are three
additional parameters than those in ΛCDM. We found that

the effective χ2eff statistics inBH is smaller than that inΛCDM
for two combinations of datasets (Planck and PBRS). This is
mostly due to both the suppressed ISW tail in BH and the
shifts of hgih-l acoustic peaks of the CMB TT power
spectrum. These combined effects allow the BH model to
fit the Planck data better. According to the DIC, however,
there is a slight preference of ΛCDM over BH with both
Planck and PBRS datasets. The beyond-Horndeski term x4
generally works to prevent better fits to the data. The GGC
model, which corresponds to x4 ¼ 0with one parameter less
than those in BH, is statistically favored over ΛCDM even
with the DIC [71]. This means that, at least in the BHmodel,
there is no preference for the departure from Horndeski
theories in cosmological observations.
We have thus shown that the deviation from Horndeski

theories is severely constrained by the current observational
data, especially from CMB. In spite of this restriction, the
best-fit BH model gives the effective χ2eff statistics smaller
than that inΛCDM.Moreover, the GGCmodel with αH ¼ 0
leads to the smaller DIC relative to ΛCDM, even with two
additional parameters. Thus, the BH and GGC models can
be compelling and viable candidates for dark energy. Further
investigationsmaybe performed in several directions. In this
work we considered massless neutrinos, but we plan to
extend the analysis to include massive neutrinos and inquire
about any degeneracy which can arise between such fluid
components and modified gravitational interactions.
Moreover, it is of interest to investigate cross-correlations
between the ISW signal and galaxy distributions, which can
be used to place further constraints on BH andGGCmodels.
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