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ABSTRACT
We present BAHAMAS-SIDM, the first large-volume, (400 h−1 Mpc)3, cosmological simu-
lations including both self-interacting dark matter (SIDM) and baryonic physics. These
simulations are important for two primary reasons: (1) they include the effects of baryons
on the dark matter distribution and (2) the baryon particles can be used to make mock
observables that can be compared directly with observations. As is well known, SIDM haloes
are systematically less dense in their centres, and rounder, than CDM haloes. Here, we find that
that these changes are not reflected in the distribution of gas or stars within galaxy clusters,
or in their X-ray luminosities. However, gravitational lensing observables can discriminate
between DM models, and we present a menu of tests that future surveys could use to measure
the SIDM interaction strength. We ray-trace our simulated galaxy clusters to produce strong
lensing maps. Including baryons boosts the lensing strength of clusters that produce no critical
curves in SIDM-only simulations. Comparing the Einstein radii of our simulated clusters with
those observed in the CLASH survey, we find that at velocities around 1000 km s−1 an SIDM
cross-section of σ/m � 1 cm2 g−1 is likely incompatible with observed cluster lensing.

Key words: astroparticle physics – galaxies: clusters: general – cosmology: theory – dark
matter.

1 IN T RO D U C T I O N

Self-interacting dark matter (SIDM) has become an attractive
alternative to collisionless cold dark matter (CDM) because it can
alleviate tensions between the results of DM-only simulations, and
observations of dwarf and low-mass galaxies (Spergel & Steinhardt
2000; Vogelsberger, Zavala & Loeb 2012; Rocha et al. 2013; Zavala,
Vogelsberger & Walker 2013; Elbert et al. 2015; Kaplinghat, Tulin &
Yu 2016; Creasey et al. 2017; Kamada et al. 2017). These tensions
arise from the low inferred DM densities at the centre of some
observed galaxies, which are at odds with the CDM-only prediction
of steeply rising central density profiles (for a review see Weinberg
et al. 2015). The extent to which these tensions are indications of
new physics and not simply the result of neglecting (or improperly
treating) baryonic physics when making the theoretical predictions
is hotly debated. For example, DM haloes can be kinematically
heated by rapid fluctuations to the gravitational potential, which
could be produced by feedback from stars driving gas out of galaxies

� E-mail: andrew.robertson@durham.ac.uk

(see Pontzen & Governato 2014, for a review). This heating lowers
the central density of DM haloes in an analogous manner to the
heating of DM particles through self-interactions, though recent
evidence that dwarfs with more extended star formation have lower
central densities is more readily understood if the heating is the
result of baryons (Read, Walker & Steger 2019).

Given the current debate surrounding dwarf galaxies, it is unlikely
that they will provide definitive answers to the nature of DM soon.
However, the rate of DM self-interactions would scale with the local
DM density, and (for the simplest models) with the local velocity-
dispersion of DM particles. This means that more massive systems,
such as galaxy clusters, hold promise as probes of the particle
properties of DM.

For SIDM to explain the distribution of DM in dwarf and low-
surface-brightness galaxy haloes requires a cross-section per unit
mass σ/m � 0.5 cm2 g−1 at DM–DM velocities of 30–100 km s−1

(for a review see Tulin & Yu 2018).1 Current constraints on

1σ (vrel) is the DM–DM scattering cross-section at a relative velocity vrel,
while m is the mass of a DM particle.
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the SIDM cross-section coming from cluster scales (which probe
DM–DM velocities of ∼ 1000 km s−1), include σ/m < 0.1 cm2 g−1

(Meneghetti et al. 2001, strong lensing arc statistics), σ/m <

0.3 cm2 g−1 (Gnedin & Ostriker 2001, subhalo evaporation), σ/m �
1 cm2 g−1 (Peter et al. 2013, cluster ellipticities) and σ/m <

0.47 cm2 g−1 (Harvey et al. 2015, DM-galaxy offsets in merging
clusters, though see Wittman, Golovich & Dawson 2018).

If constraints on σ /m from the literature are taken at face value,
the door has been closed on a velocity-independent cross-section
that can solve the ‘small-scale problems’ with CDM. While a
velocity dependence is naturally achieved in SIDM models where
DM particles scatter through a Yukawa-like potential (Buckley &
Fox 2010; Feng, Kaplinghat & Yu 2010; Ibe & Yu 2010; Loeb &
Weiner 2011; Tulin, Yu & Zurek 2013a,b; Boddy et al. 2014; Ko &
Tang 2014; Kang 2015; Ma 2017), other models of SIDM such
as a self-coupled scalar (Bento et al. 2000; Burgess, Pospelov &
ter Veldhuis 2001; McDonald 2002; Hochberg et al. 2015) have a
cross-section that is necessarily velocity independent. Even those
models for which velocity dependence is possible will typically be
velocity independent in some region of parameter space.2 Assessing
the robustness of constraints that indicate σ/m � 0.5 cm2 g−1 is
therefore of vital importance, because these constraints rule out
a large fraction of SIDM parameter space (and all velocity-
independent cross-sections) from containing a viable explanation of
the behaviour of DM in dwarf and low-surface-brightness galaxies.

SIDM constraints from galaxy clusters have had a chequered past,
with constraints often overstated because of faulty assumptions. As
an example, early work by Miralda-Escudé (2002) argued that inside
the radius at which particles would each interact on average once
per Hubble time, the DM halo should be spherical. Combining this
with a mass model of the galaxy cluster MS 2137−23 (derived
from strongly lensed gravitational arcs), which required the mass
distribution to be aspherical at radii of 70 kpc, a constraint of σ/m �
0.02 cm2 g−1 was obtained. However, a more detailed study that
made use of DM-only simulations with SIDM (Peter et al. 2013)
found that this limit was severely overstated, with a more realistic
limit from halo shapes being σ/m � 1 cm2 g−1. The main drivers
of this weakened constraint were that simulations showed that one
scattering event per particle is not enough to remove all triaxiality
from a DM halo, as well as the fact that lensing depends on the
projected density, such that lensing measurements near the centre
of the halo receive a contribution from large scales that are not
affected by DM interactions.

Even the results of SIDM-only N-body simulations may not be
adequate for making comparisons with observations. Robertson
et al. (2018) showed that baryons can have a significant effect on
the distribution of SIDM within galaxy clusters, presenting high-
resolution simulations of two galaxy clusters (from the C-EAGLE

sample of Bahé et al. 2017; Barnes et al. 2017) with an SIDM
cross-section of 1 cm2 g−1 and EAGLE galaxy formation physics
(Crain et al. 2015; Schaye et al. 2015). The responses of these two
systems to the inclusion of baryons were starkly different. One
of the two SIDM + baryons haloes had a total density profile
almost indistinguishable from the CDM + baryons equivalent,
while in the other system a large constant density core was present
with SIDM + baryons that was virtually unchanged from the

2For example, if DM scatters through a Yukawa potential, then if the
mediator mass (mφ ) is greater than ∼1 per cent of the DM particle mass
(mχ ), the scattering cross-section will be independent of velocity for all
astrophysically relevant DM velocities.

SIDM-only version of this system. These two different responses
to including baryons into simulated SIDM clusters provided the
motivation for performing simulations of large cosmological boxes
with SIDM + baryons presented here. As well as addressing
whether SIDM clusters do exhibit an enhanced diversity over their
CDM counterparts (or whether one or both of the Robertson et al.
(2018) SIDM + baryons clusters were outliers), the presence of
stars and gas in these simulations enables the generation of realistic
mock data sets that can be used going forward to test existing (e.g.
Gnedin & Ostriker 2001; Meneghetti et al. 2001; Randall et al. 2008;
Harvey et al. 2015, 2017; Kim, Peter & Wittman 2017; Taylor et al.
2017) or future methods of constraining the SIDM cross-section.

The paper is organized as follows. In Section 2, we describe
the simulations, including the different SIDM models simulated. In
Section 3, we show the density profiles of our simulated clusters,
showing their shapes in Section 4. In Section 5, we describe our
method for producing strong lensing maps from our simulations,
and then compare the strong lensing properties of our simulated
clusters with an observed sample. Finally, we summarize our results
in Section 6.

2 NUMERI CAL SI MULATI ONS

Our simulations combine the smoothed-particle hydrodynamics
galaxy formation code used for BAHAMAS (McCarthy et al. 2017)
with the SIDM code that was introduced in Robertson, Massey &
Eke (2017a), with a more detailed description of the code available
in Robertson (2017). We refer the reader to these papers for more
details, but outline the most relevant information below.

2.1 Galaxy formation physics

The BAHAMAS project (McCarthy et al. 2017, 2018) consists of a
suite of simulations designed to test the impact of baryonic physics
on the interpretation of large-scale structure tests of cosmology. The
majority of the simulations are of periodic boxes, 400 h−1 Mpc on
a side, with 2 × 10243 particles. While the BAHAMAS simulations
have been run with differing cosmologies, here we use only the
WMAP 9-yr cosmology3 (Hinshaw et al. 2013) simulations, which
have DM and (initial) baryon particle masses of 5.5 × 109 and
1.1 × 109 M�, respectively. The Plummer-equivalent gravitational
softening length is 5.7 kpc in physical coordinates below z = 3 and
is fixed in comoving coordinates at higher redshifts.

BAHAMAS was run using a modified version of the GADGET-3
code (Springel 2005). The simulations include subgrid treatments
for metal-dependent radiative cooling (Wiersma, Schaye & Smith
2009a), star formation (Schaye & Dalla Vecchia 2008), stellar
evolution and chemodynamics (Wiersma et al. 2009b), and stellar
and AGN feedback (Dalla Vecchia & Schaye 2008; Booth & Schaye
2009), developed as part of the OWLS project (see Schaye et al.
2010 and references therein). For BAHAMAS, the parameters of
the stellar and AGN feedback were adjusted so as to reproduce
the observed present-day galaxy stellar mass function and the hot
gas mass within groups and clusters of galaxies. BAHAMAS also
reproduces a large number of observables including the richness,
size, and stellar mass functions of galaxy groups, the dynamics of
satellite galaxies as a function of halo mass, the local stellar mass
autocorrelation function, and the stacked weak lensing and thermal

3With �m = 0.2793, �b = 0.0463, �� = 0.7207, σ 8 = 0.812, ns = 0.972,
and h = 0.700.
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3648 A. Robertson et al.

Sunyaev–Zel’dovich (SZ) signals of systems binned by stellar mass
(McCarthy et al. 2017; Jakobs et al. 2018) suggesting that it employs
a realistic model of galaxy formation.

We found that the galaxy stellar mass function, gas fractions,
and X-ray luminosities of clusters, to which the subgrid model
parameters were calibrated, remain virtually unchanged with the
inclusion of SIDM, such that re-calibration is unnecessary. Nev-
ertheless, some of the properties discussed in this paper may be
sensitive to our adopted model of baryonic physics. We explore
this question further in Appendix A, using the BAHAMAS variation
models (‘low AGN’ and ‘high AGN’) from McCarthy et al. (2018).

2.2 SIDM models

As well as CDM, we simulated three different SIDM models. Two of
the models have velocity-independent cross-sections and isotropic
scattering, with σ /m = 0.1 and 1 cm2 g−1; SIDM0.1 and SIDM1,
respectively. The final cross-section (labelled vdSIDM) is velocity
dependent, and corresponds to DM particles scattering though a
Yukawa potential. This model is described by three parameters: the
DM mass mχ , the mediator mass mφ , and a coupling strength αχ . In
the Born limit, αχ mχ � mφ , the differential cross-section is (Ibe &
Yu 2010; Tulin et al. 2013a)

dσ

d�
= α2

χ

m2
χ

(
m2

φ/m2
χ + v2 sin2 θ

2

)2 , (1)

where v is the relative velocity between two DM particles, and θ

the polar scattering angle in the centre of mass frame of the two
particles. This can be written as (Robertson, Massey & Eke 2017b)

dσ

d�
= σ0

4π (1 + v2

w2 sin2 θ
2 )2

, (2)

where w = mφc/mχ is a characteristic velocity below which the scat-
tering is roughly isotropic with σ ≈ σ 0, and above which the cross-
section decreases with increasing velocity, also becoming more
anisotropic, favouring scattering by small angles. Our velocity-
dependent model has mχ = 0.15 GeV, mφ = 0.28 keV, and αχ =
6.74 × 10−6, corresponding to σ0 = 3.04 cm2 g−1, w = 560 km s−1.
These model parameters were chosen to roughly reproduce the
behaviour as a function of velocity of the best-fitting cross-section
in Kaplinghat et al. (2016), which was shown to successfully explain
the density profiles of systems ranging from dwarf galaxies to galaxy
clusters, though the ≈ 3 cm2 g−1 cross-section at low velocities may
be in tension with a recent analysis of stellar kinematics in the Draco
dwarf galaxy (Read, Walker & Steger 2018).

2.3 SIDM implementation

Our method of simulating SIDM is that described in Robertson et al.
(2017a), which uses a similar Monte Carlo approach to implement
DM scattering as other recent SIDM simulations (Vogelsberger et al.
2012; Peter et al. 2013; Rocha et al. 2013; Vogelsberger & Zavala
2013; Zavala et al. 2013; Vogelsberger et al. 2014; Elbert et al.
2015; Creasey et al. 2017; Di Cintio et al. 2017; Kim et al. 2017;
Brinckmann et al. 2018; Elbert et al. 2018; Sameie et al. 2018). At
each time-step, particles search locally for neighbours, with random
numbers drawn to see which nearby pairs scatter. The probability
for a pair of particles to scatter depends on their relative velocity
and the cross-section for scattering, which itself can be a function
of the relative velocity. The search region around each particle is
a sphere, with a radius equal to the gravitational softening length.

Figure 1. The momentum transfer cross-section for our four simulated DM
models, as a function of the relative velocity between DM particles. This
relative velocity has been roughly converted to a z = 0 halo mass (along the
top of the figure) using vrel = √

GM200/r200. The colour scheme used here
for different DM models is continued throughout the rest of the paper.

For vdSIDM we do not follow the majority of previous work (e.g.
Vogelsberger et al. 2012; Vogelsberger & Zavala 2013; Zavala et al.
2013; Vogelsberger et al. 2014, 2016), where anisotropic cross-
sections were simulated using isotropic scattering and an effective
cross-section, instead implementing the differential cross-section
from equation (2) directly, using the method described in Robertson
et al. (2017b).

In Fig. 1, we plot the cross-section as a function of relative
velocity for our four simulated DM models. Specifically, we plot
the momentum transfer cross-section

σT̃ ≡ 2
∫

(1 − | cos θ |) dσ

d�
d�, (3)

which has been shown to be a more relevant quantity than the
total cross-section for determining the rate at which cores form in
isolated DM haloes (Robertson et al. 2017b).4 The 1 − cos θ term
comes from weighting scatterings by the amount of momentum
they transfer along the collision axis (Kahlhoefer et al. 2014), with
|cos θ | being used because if particles scatter by angles greater than
90◦, then the particles could be re-labelled5 such that the scattering
was by less than 90◦.

When considering a velocity-dependent cross-section, it would be
useful if for a given system this could be mapped on to the velocity
independent and isotropic cross-section that would produce the most
similar DM distribution. One might assume that this cross-section
would be approximately equal to σT̃ (|vrel|), where |vrel| is the mean
pairwise velocity of particles within the halo. Even the definition of
|vrel| has subtleties (do particle pairs receive equal weight, or should
it be weighted by the scattering probability of those pairs), and the
complicated assembly history of haloes means that a halo with some
velocity dispersion now, likely had a lower velocity dispersion in the
past. Nevertheless, in Fig. 1 we crudely relate the pairwise velocity

4This differs by a factor of 2 from the definition in Robertson et al. (2017b),
but has been chosen such that for isotropic scattering, σ = σT̃ .
5As an illustrative example: if two indistinguishable particles scatter by
180◦, then while a large amount of momentum is transferred, the result is
the same as if the two particles had not interacted at all.
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BAHAMAS-SIDM 3649

of particles to a halo mass, using vrel = √
G M200/r200 (at z = 0).6

From Fig. 1, we can expect haloes with M200 ∼ 1014 M� to look
similar with vdSIDM and SIDM1, while in more massive haloes
vdSIDM will behave more like SIDM0.1.

3 D ENSITY PROFILES

The main motivation for SIDM has been the effect that self-
interactions have on DM density profiles, especially for dwarf
galaxies. The primary effect is a reduction in the density of DM in
the central regions of a halo when compared with a CDM equivalent,
though in the presence of a dense baryonic component this effect
can be reversed (Sameie et al. 2018) by decreasing the time-scale on
which haloes undergo core-collapse.7 This same effect is expected
in galaxy clusters, where the larger velocity dispersions lead to
higher rates of scattering than in dwarf galaxies, at least for a
velocity-independent cross-section, making SIDM-induced galaxy
cluster cores more prominent than their dwarf galaxy counterparts.

3.1 Method

In Fig. 2, we plot the z = 0 spherically averaged density profiles of
stars and DM from our simulations with different DM models and
BAHAMAS physics, as well as the density profiles from DM-only
simulations. The centre of the halo is defined by the location of the
most-bound particle, and the density is calculated from the summed
mass of particles within logarithmically spaced spherical shells. The
density profiles shown are the mean density as a function of radius
for haloes within two fairly narrow mass bins centred on M200 =
1014 and 1015 M�. The virial radii of 1014 and 1015 M� haloes at z =
0 are r200 = 0.96 and 2.08 Mpc, respectively. The left-hand panel
corresponds to haloes with 13.9 < log10[M200/M�] < 14.1 and
the right-hand panel to 14.8 < log10[M200/M�] < 15.2, with these
bins containing approximately 1000 and 40 haloes, respectively.
To indicate the typical size of the scatter about these mean density
profiles, the 16–84th percentile regions from the CDM + baryons
and SIDM1 + baryons simulations have also been shown.

Determining the smallest radius at which we should trust our
simulated density profiles is a difficult task. In the case of DM-only
simulations, this radius can be determined by running simulations
at different resolutions and observing the radial range over which
their density profiles agree. This task is considerably more difficult
for simulations that include subgrid models of galaxy formation
physics, as physical properties of the feedback (such as the energy
injected per event or their frequency) depend on the simulation’s
resolution.8 Here, we follow Schaller et al. (2015a) and define the
convergence radius, rconv, as the smallest radius for which

0.33 ≤
√

200

8

√
4πρcrit

3 mDM

√
N (< rconv)

ln N (< rconv)
r3/2

conv, (4)

where ρcrit is the critical density, mDM the mass of the simulation
DM particles and N(< r) the number of DM particles within a
radius r. This criterion relates to the two-body relaxation time-
scale of particles and is inspired by the DM-only convergence

6We define r200 as the radius at which the mean enclosed density is 200 times
the critical density, and M200 as the mass within r200.
7Also referred to as ‘gravothermal collapse’, or the ‘gravothermal catastro-
phe’ and studied in the context of SIDM by Balberg, Shapiro & Inagaki
(2002) and Koda & Shapiro (2011) amongst others.
8For a detailed discussion of convergence in hydrodynamical simulations of
galaxy formation, see Schaye et al. (2015).

studies from Power et al. (2003). We calculated rconv for all of
our simulated haloes, and show the median rconv from the CDM
full physics haloes (in the respective halo mass bins) in Fig. 2.
Note that our convergence radii depend on the distribution and
properties of only the DM particles in our simulations, and that
given the lower densities with SIDM the convergence radius as
defined in equation (4) is formally larger with SIDM than CDM. A
thorough study of convergence of simulated SIDM density profiles
has not been performed, but SIDM-only convergence tests typically
indicate that SIDM density profiles are better converged than their
CDM counterparts (Vogelsberger et al. 2012; Robertson 2017).
This is not surprising given that gravitational two body interactions
that artificially soften simulated central CDM cusps, are relatively
unimportant when simulating a model with physical two body
interactions, as is the case with SIDM.

To compare the relative effect of including baryons with the
different DM models, we plot the ratios of the DM densities from
our simulations with BAHAMAS physics to the DM densities from the
corresponding DM-only simulations in the middle panels of Fig. 2.
Because all of the matter in a DM-only simulation is modelled as
DM, the DM density in a simulated DM-only universe is larger
than in the corresponding DM + baryons universe by a factor of
�m/�DM. We therefore plot a horizontal line at �DM/�m ≈ 0.84.

Finally, in the bottom panels of Fig. 2 we plot the 3D velocity
dispersion profiles of both DM and star particles in our simulations.
These are calculated by taking all N particles within logarithmically
spaced spherical shells (wider than in the case of the density profiles)
and then using

σ 2
3D = 1

N

N∑
i=1

|vi − vCoM|2, (5)

where vCoM is the mass-weighted mean velocity of all particles in
the halo. As in the top panels, we show both the DM-only and
BAHAMAS physics results, and the 16–84th percentile regions for
CDM + baryons and SIDM1 + baryons.

3.2 Results

DM interactions decrease the central density of haloes, with larger
cross-sections leading to greater decreases in density (see the top
panels of Fig. 2). For the vdSIDM model, we find M200 ∼ 1014 M�
haloes with density profiles similar to those with SIDM1, while for
higher halo masses, the behaviour is in between that of SIDM1 and
SIDM0.1. This is expected from Fig. 1, suggesting that density-
profile predictions for a velocity-dependent cross-section can be
made using an appropriately matched velocity-independent one, as
has been assumed in previous work (e.g. Kaplinghat et al. 2016).

For all DM models, we find that baryons increase the density
of DM in the centres of haloes, compared with DM-only runs.
However, this increase occurs over larger scales in SIDM models,
out to ∼ 5 per cent of r200 for SIDM1 – compared with half that
with CDM (see the middle panels of Fig. 2).

The scatter in the logarithm of the central densities is also slightly
larger in SIDM1 than CDM, but this can at least partly be attributed
to the fact that the lower density of SIDM halo centres leads to
fewer particles per radial bin and so increased Poisson noise.9 To
investigate the extent of any enhanced diversity of SIDM clusters,
we plot the DM mass within a 30 kpc spherical aperture as a function

9Given the size of our radial bins, for M200 = 1014 M� at r = 12 kpc the
density at the 16th percentile of the SIDM1 range (∼ 3 × 106 M� kpc−3)
only corresponds to seven DM particles.
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3650 A. Robertson et al.

Figure 2. Top: Stacked radial density profiles of our simulated clusters at z = 0, with the left-hand and right-hand panels showing the results for clusters with
M200 ≈ 1014 and 1015 M�, respectively. The solid lines show the mean density profile of the DM from the full physics runs, while the dashed lines show the
DM-only equivalents. The stars show the stellar density profile from the full physics runs. The black and red shaded regions show the 16–84th percentile ranges
of DM profiles from the CDM and SIDM1 full physics simulations, respectively. The vertical dotted lines show the median convergence radii (equation 4)
calculated from the DM in the full physics CDM simulation. Middle: The mean DM density from simulations with full physics divided by the mean DM
density from the corresponding DM-only simulations. The dotted lines show �DM/�m for our assumed cosmology. Bottom: Mean velocity dispersion profiles,
with the lines and stars referring to the same components as in the top panels.

of halo mass in Fig. 3. While the trends for the different DM
models are starkly different, the spread in log

[
MDM(30 kpc)/M�

]
about the corresponding median relationship is similar between the
different DM models. We show this in Fig. 4 where we plot the
probability density function of � log10

[
MDM(30 kpc)/M�

]
, which

is the difference between the value of log10

[
MDM(30 kpc)/M�

]
and

the median lines in Fig. 3. With vdSIDM and SIDM1 there is a slight

tail towards high values, evident also in Fig. 3 where, for example, at
the high-mass end (M200 > 1014.5 M�) there are red points scattered
up into the black shaded region. While there is a small enhancement
in the scatter of central densities with SIDM, a key prediction from
these simulations is that this scatter is not substantial, so a moderate
number of well-studied clusters may suffice to place robust limits
on the SIDM cross-section.
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BAHAMAS-SIDM 3651

Figure 3. The DM mass within a 30 kpc spherical aperture as a function
of halo mass, for haloes at z = 0. Points show individual haloes, while the
solid lines show the median relations (measured in 0.2 dex M200 bins), with
shaded regions denoting the 16–84th percentile ranges. The squares show
where the two C-EAGLE clusters simulated with CDM and SIDM1 presented
in Robertson et al. (2018) lie in this plot.

Figure 4. The PDF of � log10

[
MDM(30 kpc) M�−1

]
, for all haloes with

14.0 < log10

[
M200/M�

]
< 14.8. � log10

[
MDM(30 kpc)/M�

]
is defined

for each halo as the difference in log10

[
MDM(30 kpc)/M�

]
between that

halo and the corresponding median line shown in Fig. 3.

3.3 Discussion

The two clusters simulated with SIDM + baryons by Robertson
et al. (2018) as part of the C-EAGLE project (Bahé et al. 2017;
Barnes et al. 2017) had starkly different central density profiles. To
understand how these simulated clusters fit in with those presented
here, we plot both the CDM and SIDM1 versions of the two C-
EAGLE clusters in Fig. 3. While the C-EAGLE-SIDM1 haloes lie
within the locus of BAHAMAS-SIDM1 clusters, they are ≈2σ outliers
in the context of the BAHAMAS-SIDM1 simulations. Meanwhile
the C-EAGLE-CDM clusters are more typical of the population of
BAHAMAS-CDM clusters.

It may simply be a coincidence that the two C-EAGLE-SIDM1
clusters ended up being outliers (in different directions) in terms
of their central densities, either due to their particular assembly
histories, or as a result of the chaotic-like behaviour of cosmological

simulations (Genel et al. 2018; Keller et al. 2019). Alternatively,
the hint of increased diversity with SIDM seen in C-EAGLE, but not
BAHAMAS, may depend sensitively on details of the simulations. In
particular, the mechanism to produce centrally dense SIDM clusters
described in Robertson et al. (2018) relied on stars dominating
the gravitational potential on sufficiently small scales. The stellar
masses of central galaxies in C-EAGLE are 0.3–0.6 dex above their
observed counterparts (see the right-hand panel of fig. 4 of Bahé
et al. 2017), so the influence of baryons on the SIDM distribution
at the centre of galaxy clusters is likely overestimated in C-EAGLE.
The stellar masses of BAHAMAS central galaxies are lower than
those in C-EAGLE, in better agreement with observed systems (Mc-
Carthy et al. 2017). The effect of baryons in our BAHAMAS-SIDM
simulations may therefore be more realistic than in C-EAGLE-SIDM.

Another difference between BAHAMAS and C-EAGLE is resolution,
with the scales on which stars dominate the potential (< 10 kpc)
being not well resolved in BAHAMAS. This may be suppressing the
impact of baryons on our SIDM density profiles, though whether
this is happening will be hard to address without a larger number of
clusters simulated at higher resolution with SIDM + baryons.

Aside from changes to the DM density, the different DM models
also lead to different stellar density profiles in the inner regions. The
starkest example is for the 1015 M� haloes, where SIDM1 produces
stellar density profiles which flatten in the centre, with a density at
10 kpc similar to that of the DM. While this could potentially be
used to constrain the SIDM cross-section, the stellar density profiles
of simulated clusters are sensitive to both resolution and the details
of AGN feedback (e.g. Teyssier et al. 2011). In Appendix A, we
show how changing the temperature to which gas is heated by AGN
alters the stellar and DM density profiles (with CDM). We find that
the DM density profiles are relatively unaffected, but that the stellar
density profiles change substantially, confirming that the stellar
density profiles are not robustly predicted from our simulations.

While the DM density profile can in principle be inferred
from observations, these inferences are fraught with difficulty. For
example, Newman et al. (2013) inferred the DM density profiles of
clusters using a combination of strong and weak lensing as well as
stellar kinematics. They found that the DM density profiles in the
inner 30 kpc were significantly shallower than the Navarro–Frenk–
White (NFW) profile (Navarro, Frenk & White 1997) predicted
with CDM. Schaller et al. (2015b) presented a set of simulated
CDM clusters with total density profiles similar to those inferred
by Newman et al. (2013), and also with similar surface brightness
and line-of-sight velocity profiles for the central galaxies. However,
the Schaller et al. (2015b) clusters had DM density profiles that
followed the NFW prediction. Schaller et al. (2015b) suggested
that this discrepancy could result from Newman et al. (2013)
incorrectly assuming stellar orbits to be isotropic, or from using
an incorrect stellar mass-to-light ratio. Whatever the reason for
the discrepancy, this case is a good example of why comparisons
between observations and simulations are often best done in the
observed quantities, i.e. forward modelling, rather than inferring
physical quantities from the observations. We provide an example of
this in Section 5 where we calculate the strong-lensing properties of
our simulated clusters. Another example is in Harvey et al. (2019),
where they looked at the offsets between peaks in the projected
stellar and DM distributions of the simulations we present here.

4 H A LO SH A PES

Aside from re-distributing energy between DM particles, DM self-
interactions change the directions of DM particle orbits, leading
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to more isotropic velocity distributions. This in turn leads to
more spherical DM density distributions, though a system with
an isotropic velocity distribution can still exhibit ellipticity in its
density and resulting potential (Agrawal et al. 2017). As mentioned
in the introduction, early analytical work on the sphericity of
galaxy clusters suggested exceptionally tight constraints on the
SIDM cross-section (Miralda-Escudé 2002), which SIDM-only
simulations have shown to be overstated (Yoshida et al. 2000;
Peter et al. 2013). Recently, Brinckmann et al. (2018) presented
simulations of 28 SIDM-only galaxy clusters, and showed that halo
shapes were affected by SIDM on larger scales than density profiles,
which could make halo shapes a test of DM self-interactions that is
less sensitive to the details of baryonic physics than density profiles.

4.1 Method

Our shape definition uses the location of the most bound particle as
the centre of the halo, with the positions of particles defined with
respect to that point and all spherical/ellipsoidal search volumes
centred there also. To calculate the shape of a halo within a radius r,
we begin by finding all particles in a sphere of radius r. The reduced
inertia tensor10

Ĩij ≡
∑

n

xi,n xj,n mn

r2
n

/ ∑
n

mn (6)

is calculated for this distribution of particles, where (x1,n, x2,n, x3,n)
are the coordinates of the nth particle, which has mass mn. Initially
rn is just the distance of the nth particle from the centre of the halo:

rn =
√

x2
1,n + x2

2,n + x2
3,n. We label the eigenvalues of Ĩij as a2, b2,

and c2, with corresponding eigenvectors e1, e2, and e3, and with a
≥ b ≥ c. The axial ratios are defined by s = c/a and q = b/a.

Our process is iterative, stopping when subsequent iterations
agree on both axial ratios (q and s) to better than 1 per cent.
Specifically, we stop the iteration when(

qi − qi−1

qi−1

)2

+
(

si − si−1

si−1

)2

≤ ε2
conv, (7)

where the subscripts i and i − 1 refer to the current values and the
values from the previous iteration, respectively, and with εconv =
0.01. Each iteration uses the eigenvectors from the previous iteration
as a coordinate basis (i.e. for a particle at xn: x1,n,i = xn · e1,i−1).
The procedure from the first step is repeated, but defining rn as an
ellipsoidal radius

rn =
√

x2
1,n + x2

2,n/q
2 + x2

3,n/s
2 , (8)

and with the sum in equation (6) over all particles with rn <

(q s)−1/3r . Note that this corresponds to keeping the volume within
which particles contribute to Ĩij fixed, while summing over particles
with rn < r would keep the semimajor axis of the ellipsoid within
which particles contribute to Ĩij equal to the radius of the initial
sphere. We found that this distinction made little difference to our
qualitative findings (as also found by Peter et al. 2013), and we use
the rn < (q s)−1/3r definition throughout this work.

4.2 Results

In agreement with previous work (Peter et al. 2013; Brinckmann
et al. 2018), we find that SIDM makes DM haloes rounder,

10We call this an ‘inertia tensor’ for consistency with previous work, though
it is not the tensor relating angular velocities to angular momenta.

especially in the inner regions of haloes where the scattering rates
are highest. In Fig. 5, we plot the median minor-to-major axial
ratios as a function of radius, for haloes with M200 ≈ 1015 M�. The
lines are semitransparent at radii where fewer than 800 particles
contribute to the shape measurement, because we found from tests
described in Appendix B that at least this number of particles was
required for a robust determination of the halo shape. The trend with
cross-section is similar to that for the density profiles in the same
halo mass range, with the behaviour of vdSIDM being intermediate
to SIDM0.1 and SIDM1. The size of the change in median axial
ratio going from CDM to SIDM1 is significantly larger than the
change from DM-only to including the effects of baryons (for more
on the effect of baryons on halo shapes, see e.g. Bryan et al. 2013).

The shape differences persist to radii beyond where there is a
notable change in the density profiles, as shown for the case of
SIDM-only clusters in Brinckmann et al. (2018). While this is partly
driven by our use of all enclosed mass in the reduced inertia tensor
(so the round central regions contribute to the calculation of c/a
even in the outskirts), when redoing our analysis using ellipsoidal
shells (as done in Brinckmann et al. 2018) there is still a clear trend
in c/a with cross-section out to ∼ 1 Mpc.

In the bottom panels of Fig. 5, we show distributions of the two
axial ratios as well as the triaxiality parameter, T = (a2 − b2)/(a2 −
c2),11 for the DM components of our high-mass haloes. These were
measured at r = 200 kpc, for the same set of ≈40 haloes used in the
top panels. Due to the low number of haloes used, these distributions
were smoothed using kernel density estimation.12 Both SIDM and
baryons affect the 3D shapes in a similar manner, in the sense
that they primarily increase c/a, making the haloes not just more
spherical, but also less prolate. We stress that the DM-only lines in
the bottom panels of Fig. 5 are faded only to avoid distracting from
the full physics results, not because we do not trust these results.

We show only the results for the most massive haloes, as these
are the haloes in which the effects of SIDM (at least for velocity-
independent cross-sections) are most pronounced. These also cor-
respond to the haloes that can be best-studied observationally, using
techniques such as weak gravitational lensing to try to infer DM halo
shapes. We also looked at the shapes of M200 ≈ 1014 M� haloes,
finding results that were less pronounced, though qualitatively
similar to the results for the high-mass haloes. As expected, and as
seen for density profiles in Fig. 2, the scale on which SIDM effects
are apparent decreases with decreasing halo mass, and at fixed radius
the differences between CDM and SIDM are larger for more massive
systems (see Fig. 3). This was true also for halo shapes, which given
the relatively low resolution of our simulations, and the requirement
of ∼800 particles to accurately measure shapes, meant that we did
not resolve the scales of interest for the shapes of lower mass haloes.
At the innermost trusted scale (∼ 100 kpc as for the 1015 M� haloes)
the median c/a for our M200 ≈ 1014 M� haloes ranged from 0.56
for CDM + baryons, to 0.67 for SIDM1 + baryons.

4.3 Discussion

While DM self-interactions make the DM halo rounder, the stellar
and gas distributions do not appear to change. This suggests
that attempts to measure halo shapes using the distribution of

11Values of T � 1/3 and T � 2/3 represent oblate and prolate distributions,
respectively.
12We used KernelDensity from scikit-learn (Pedregosa et al. 2011),
using a Gaussian kernel with a bandwidth (i.e. standard deviation) of 0.08.
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BAHAMAS-SIDM 3653

Figure 5. Top: The minor-to-major axial ratios for the DM, gas, and stars from our different simulations at z = 0, with the DM-only results represented by
dashed lines. The lines shown are the medians from the ∼40 haloes (per simulation) in the mass range 1014.8–1015.2 M�, and become faded at radii where
there are an insufficient number of particles to trust the shape measurements. Our definition of halo shape and the method used to calculate it is described in
Section 4. While the DM halo becomes rounder (especially in the inner regions) with increasing cross-section, this is not obviously reflected in the shapes of
either the gas or stars. Bottom: the distributions of DM axial ratios at r = 200 kpc, for the same haloes in the top panel. The triaxiality is defined by T = (a2 −
b2)/(a2 − c2), with values T � 1/3 and T � 2/3 representing oblate and prolate distributions, respectively. The DM-only lines in the bottom panels are faded to
avoid distracting from the full physics results, not because we do not trust them.

cluster galaxies (Shin et al. 2018) or the X-ray shapes of clusters
(Hashimoto et al. 2007) may struggle, at least in the context of
constraints on SIDM. That changes in the DM halo shapes do not
appear to be reflected in changes to the gas shapes is surprising
given that an isothermal gas in hydrostatic equilibrium would have
iso-density surfaces that follow the iso-potential surfaces. A detailed
study of the gas properties is beyond the scope of this work,
but we note here that in the inner regions the gas is likely not
in hydrostatic equilibrium, with additional support from random
motions or rotation (Lau et al. 2011), and that iso-potential surfaces
are rounder than iso-density surfaces, especially in the outskirts
of haloes (Jing 2004). This means that even for CDM the gas is
typically quite round, so changes to the shape of the inner regions
of the DM halo may be washed out when looking at their influence
on the gas shape.

Recently, Sereno et al. (2018) combined strong and weak lensing,
X-ray photometry and spectroscopy, and the SZ effect to measure
the 3D shapes of galaxy clusters. Of their 16 clusters, 11 had c/a <

1/3, which would clearly be at odds with any of our simulations, with

or without baryons, and with any of our DM models (see the bottom-
left panel of Fig. 5). They take the fact that their distribution of axial
ratios has an excess at low values over �CDM predictions (and a
large excess over predictions including baryons) as hinting towards
baryonic physics being less effective at making haloes rounder than
is the case in current hydrodynamical simulations. These results
would clearly be unfavourable to the SIDM hypothesis. The Sereno
et al. (2018) model assumes the total matter distribution to be
ellipsoidal, with constant axial ratios and orientation as a function
of radius. This is not true of our simulated systems (see the top
panels of Fig. 5), and the best-fitting model with a constant axial
ratio would depend on the relative contribution of different cluster
radii to the observed signal. Testing to what extent the differences
in Fig. 5 would show up in the analysis of Sereno et al. (2018)
is therefore a non-trivial task, best done by generating mock X-
ray, SZ, and gravitational lensing observations of our simulated
clusters and running them through the same pipeline as used for
the real observations. We do not do this here, but remark that
this would be useful both as a test of the methods used in Sereno
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et al. (2018), and then also as a method for constraining the SIDM
cross-section.

5 STRONG-LENSING PROPERTIES

Neither the radial density profile nor shape of a DM halo are directly
observable, and inferring them from observations is fraught with
difficulty (see Sections 3.3 and 4.3). A solution to this problem is
to compare simulated haloes with real ones in terms of observed
quantities, by generating mock observations from the simulations.
In this section, we show an example of this by generating mock
strong gravitational lensing maps of our simulated clusters and
comparing the properties of their critical curves with those of
observed clusters. While not strictly an observable, the location
of critical curves can be accurately inferred from the locations of
multiply imaged background galaxies, as demonstrated for example
in Meneghetti et al. (2017).13

5.1 Method

Strong gravitational lensing is the result of the gravity from a
foreground mass distribution bending the path of light emitted by
a background source. This can lead to background galaxies being
stretched out into giant arcs, and/or being multiply imaged (for a
review of lensing by galaxy clusters see Kneib & Natarajan 2011).
Below we describe how we calculate the strong lensing properties
of our simulated clusters, which involves first projecting the matter
distribution on to a 2D surface density map, and then calculating
the deflection angles that result from this 2D mass distribution.
Finally, we use these deflection angles to calculate maps of the
magnification, and focus our attention on the critical curves – the
locations of infinite magnification. The numerical parameters that
we use when making our lensing maps are stated in this section
without justification, but they were chosen to keep the computational
cost low, while having converged results. This is discussed further
in Appendix C.

5.1.1 2D mass maps from a particle distribution

For each friends-of-friends (FOF) group14 from the z = 0.375
snapshot, we start by taking all particles within 5 r200 of the cluster
centre, defined as the location of the most bound particle. We
project this material along a line of sight (the simulation z-axis), and
generate a 2D density map, which is a square with side length 4 Mpc
with 1024 × 1024 pixels, centred on the most bound particle in the
cluster. We used a modified version of the triangular shaped cloud
(TSC; Hockney & Eastwood 1981) scheme, to turn the particle

13The majority of lens modelling techniques return an estimate of the full 2D
mass distribution of the galaxy cluster, and in principle any aspect of these
mass distributions could be compared with our simulations. For example,
we could have compared the surface density well inside of the Einstein
radius, where the differences between our different simulations would be
largest, with the lens models from CLASH. However, this quantity depends
sensitively on choices that went into the lens modelling, such as whether
to use cored or cuspy DM haloes when performing a fit with parametric
mass distributions. A recent comparison of lens modelling techniques using
simulated lensing data showed that while the precise structure of the inferred
critical curves varied between different lens modelling techniques, their size
and overall shape are very similar across different methods, and agree with
the true critical curves (see fig. 22 of Meneghetti et al. 2017).
14For a description of the FOF algorithm, see e.g. More et al. (2011).

distribution into a 2D density field. In standard TSC, the mass of
a particle at a location r is split amongst nearby grid cells, with
the cell at location r + x receiving a fraction of the particle’s mass,
W (x) = ∏

i W (xi), with

WTSC(xi) =
⎧⎨
⎩

0.75 − x2
i , |xi | ≤ 0.5

(1.5 − |xi |)2/2, 0.5 < |xi | ≤ 1.5
0, otherwise

, (9)

where xi is the ith component of x.
In the adaptive TSC (ATSC) scheme that we use,15 an SPH-like

smoothing length was calculated for each particle, based on the 3D
distance to its 8th nearest neighbour, r8, which is done separately for
DM, gas, and star particles. This distance is related to a smoothing
length in pixel coordinates, h = r8/�x, where �x is the side length
of a pixel. The ATSC mass assignment kernel is then defined by

WATSC(xi, h) = 1

h
WTSC(xi/h). (10)

This breaks down for h < 1, and so we set a minimum of h = 1.
Also, large h leads to the particle mass being split between many
grid cells, which is computationally expensive; we therefore set a
maximum of h = 10.

We use the ATSC scheme to make separate maps of the DM,
stars and gas, and sum these together with a black hole map to get
a total projected-density map, �(x, y). For the black hole map we
use standard TSC rather than ATSC, i.e. we set h = 1 for all black
holes.

5.1.2 Ray-tracing through a mass distribution

The projected-density map, is then scaled by the critical surface
density for lensing, to produce a convergence map

κ(x, y) = �(x, y)

�crit
, (11)

where �crit depends on the geometry of the source, observer and
lens through

�crit = c2

4πG

Ds

DlDls
. (12)

Here, Ds, Dl, and Dls are the angular diameter distances between
the observer and the source, observer and lens, and lens and source,
respectively. These in turn depend on the cosmological parameters
and redshifts of the lens (i.e. the simulated galaxy cluster) and
source. We used the same WMAP9 cosmology (Hinshaw et al. 2013)
as used to run the simulations, with an assumed source redshift of
zs = 2, and lens redshift zl = 0.375.

The convergence field is related to the effective lensing potential,
�, through

κ = 1

2
∇2� ≡

(
∂2�

∂x2
+ ∂2�

∂y2

)
. (13)

The deflection angle field can also be related to the effective
potential,

α = ∇� ≡
(
∂2�

∂x2
,
∂2�

∂y2

)
. (14)

15Implemented in the PYTHON package PMESH (Feng, Hand & biweidai
2017).

MNRAS 488, 3646–3662 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/488/3/3646/5530780 by U
niversiteit Leiden / LU

M
C

 user on 08 January 2020



BAHAMAS-SIDM 3655

Equations (13) and (14) lead to a simple relationship between the
Fourier transforms of κ and α (κ̂ and α̂, respectively), namely

α̂ = 2iκ̂

|k|2 k, (15)

where k = (kx, ky) is the wave vector conjugate to x = (x, y). This
allows us to efficiently generate α(x, y) on the same regular grid as
κ(x, y), by performing a discrete Fourier transform on κ to get κ̂ ,
using equation (15) to get α̂, and then taking the inverse discrete
Fourier transform of α̂ to get α. The discrete Fourier transform
implicitly assumes the function to be periodic, which is not the case
for the convergence field of an isolated cluster. To reduce the error
caused by this, we surrounded the cluster by a zero-padded field out
to 4096 × 4096 (i.e. increasing by a factor of 4 along both axes).

5.1.3 Calculating observable properties

The magnification and distortion of a background source can be
computed from the Jacobian matrix, A, of the mapping from the
unlensed to lensed coordinate systems. It can be written in terms of
gradients of the deflection angle field

A = δij − ∂αi(x)

∂xj

. (16)

We interpolate α(x) on to a finer 2048 × 2048 grid,16 in the central
2 Mpc of the field. We then use a finite difference method to find the
derivates of α(x) on this finer grid, from which we construct A(x).

The magnification is given by the inverse of the determinant of
the Jacobian matrix,

μ = 1

detA
. (17)

The critical lines are regions in the lensing plane where detA = 0
and the magnification is formally infinite. Critical lines come in
two varieties, known as radial and tangential. Writing the Jacobian
matrix as

A =
(

1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

)
, (18)

with γ a pseudo-vector known as the shear

γ = (γ1, γ2) ≡
(

1

2

(
∂2�

∂x2
− ∂�2

∂y2

)
,
∂2�

∂x∂y

)
, (19)

we see that the determinant of A can be written as

detA = (1 − κ − γ ) (1 − κ + γ ) , (20)

where γ = |γ |. Radial critical lines appear where 1 − κ + γ = 0,
with images close to this line stretched in the direction perpendicular
to the line. Tangential critical lines occur where 1 − κ − γ = 0, and
lead to images stretched tangentially to the line. For axisymmetric
lenses, the latter of these correspond to the Einstein ring, and it is
these tangential critical curves that are the main focus of the rest of
this section.

There are of course many ways in which the lensing properties of
our simulated clusters could be compared with observed systems.
The location of tangential critical curves is one that can be well
constrained observationally (e.g. Meneghetti et al. 2010; Hoekstra
et al. 2013) owing to the bulk of multiple image systems lying close

16We make use of the SCIPY (Jones et al. 2001) function RectBivariateSpline,
to do bicubic interpolation.

to these curves. An axisymmetric lens will have a circular critical
curve, and the Einstein radius, θE, is defined as the angular radius
of this circle. Extending the definition of the Einstein radius to
cases where the critical curves are no longer circles can be done in
numerous ways, with a good overview of previously used methods
in Meneghetti et al. (2013). We choose to use the effective Einstein
radius, θE,eff, because it correlates tightly with the probability of
producing giant lensing arcs, and is less sensitive to cluster mergers
than other definitions (Redlich et al. 2012). This is defined as

θE,eff =
√

A

π
, (21)

where A is the area enclosed by the tangential critical curve. Clearly
for the case of a circular critical curve this definition agrees with
the definition of θE.

From each of our lensing maps, we extract the tangential critical
curves (1 − κ − γ = 0 contours), using a marching squares
method.17 Each lensing map can have multiple components with
their own tangential critical curves, but we take only the longest
closed tangential critical curve within each map. While this critical
curve generally encloses the halo centre,18 we do not enforce that it
does so. The area enclosed by this curve (defined by a set of points
on the curve) is calculated using Green’s theorem. Specifically, the
area is calculated from an integral along the entirety of the critical
curve:

A =
“

dx dy =
∮

xdy. (22)

Accurately mapping out the critical curves of our clusters requires
that the mass distribution in the inner region of the halo is well
sampled. Owing to the finite resolution of both our simulations
and our lensing procedure, we therefore expect there to be some
minimum halo mass, below which we cease to trust our results. By
running our lensing analysis on mass distributions that sub-sampled
particles from the simulations, we found that whether or not θE,eff

had converged depended more on θE,eff itself than the mass of the
halo. We discuss this further in Appendix C, but note here that we
expect our θE,eff values to be converged when θE,eff � 2 arcsec.

5.2 Results

In Fig. 6, we show maps of the lensing convergence of three fairly
massive galaxy clusters for each of our DM models, with the critical
curves overlaid. The haloes we show are the 1st, 4th, and 16th most
massive FOF groups from the simulation (at z = 0.375), with virial
masses (M200) of ∼1.7, 1.5, and 0.6 × 1015 M�, respectively.19

In Fig. 7, we plot θE,eff against halo mass for haloes at zl = 0.375
with a source plane at zs = 2. While there is substantial scatter in
θE,eff at fixed M200 within each DM model, there are clear shifts in
the θE,eff distributions as the DM model is changed. A change in the
distribution of Einstein radii with SIDM + baryons compared with
CDM + baryons was also recently seen in simulated haloes with
M200 ∼ 1013 M� by Despali et al. (2019), though at that mass scale
the dependence of Einstein radius on DM model is complicated

17Implemented as find contours in scikit-image (van der Walt et al.
2014).
18For CDM (SIDM1), this is true for over 85 (60) per cent of haloes with
M200 > 1014 M�.
19Note that while the M200 values of haloes change depending on the cross-
section, there does not seem to be a systematic shift, and these changes are
typically only at the per cent level.
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3656 A. Robertson et al.

Figure 6. Convergence maps of the 1st, 4th, and 16th most massive FOF groups in the BAHAMAS simulations, simulated with different SIDM cross-sections.
The critical curves (with a lens redshift of zl = 0.375 and a source redshift zs = 2) are plotted in red, with the largest tangential critical curve having a black
outline. The dashed circles contain the same area as this largest tangential critical curve, and therefore represent the effective Einstein radius, θE,eff. The scale
of each panel is the same, covering a field of view of 1 Mpc in the lens plane, corresponding to approximately 3.2 arcmin.

because the strong lensing regions are more baryon dominated than
in clusters.

Aside from changes to the radial density profile, SIDM tends to
make the centre of haloes rounder (as discussed in Section 4). It
might therefore be expected that this roundness is reflected in the
critical curves, and so we calculate their axial ratios. Defining the
furthest distance between two points on the critical curve to be lmax,
we then define the axial ratio as

ζ = 4 A

π l2
max

, (23)

where A is still the area enclosed by the critical curve. For an
elliptical critical curve, this definition of axial ratio is the ratio of
the semiminor and semimajor axes. We show this axial ratio as
a function of halo mass for our different DM models in Fig. 8.
Haloes generally have rounder critical curves with larger SIDM
cross-sections. More massive haloes have more elongated critical
curves. These two effects unfortunately conspire such that at fixed
θE,eff there is no clear trend between the DM model and ζ (not
shown). In other words, the tangential critical curve of an SIDM
halo of a given mass looks similar (in terms of its size and roundness)
to that of a CDM halo that is less massive. While this precludes a

strong-lensing-only test of the DM model, if combined with an
appropriate M200 measurement then θE,eff and ζ can both be used to
constrain the DM model.

5.2.1 CLASH clusters

For comparison with our simulated clusters, we used clusters from
the CLASH survey (Postman et al. 2012). Five of the 25 CLASH
clusters were selected because of their extreme gravitational lensing
properties, making them a highly biased sample that we exclude
from our analysis. Of the other 20, which were selected based on
X-ray luminosity, one had no wide-field weak lensing data suitable
for estimating M200. We therefore use the same sample of 19 X-
ray-selected clusters as used in Merten et al. (2015), taking our
M200 estimates from this paper also. We assume the X-ray selection
criteria used are a suitable proxy for mass-selection, such that the
CLASH clusters have unbiased θE,eff at a given M200. This may not
be strictly true,20 and we would ideally apply the CLASH selection

20One could certainly imagine that at fixed halo mass: more centrally
concentrated clusters, with larger θE,eff, are also brighter in the X-ray.
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Figure 7. The effective Einstein radii of all simulated clusters with M200 >

9 × 1013 M� for our four different DM models. The clusters were taken
from the z = 0.375 snapshot, which was the lens redshift used, while the
source redshift was zs = 2. The dashed lines show the median θE,eff as a
function of halo mass, with the points showing individual haloes. The grey
shaded region indicates where we expect θE,eff to be underestimated due
to the resolution of our simulations (discussed in Appendix C). The cyan
crosses show CLASH clusters scaled to be at z = 0.375 (see Section 5.2.1).

Figure 8. The minor-to-major axial ratios of our simulated clusters’ critical
curves, modelling them as ellipses (described in Section 5.2). The dashed
lines are median axial ratios as a function of M200 for the different DM
models. The cyan crosses show CLASH clusters scaled to be at z = 0.375
(see Section 5.2.1).

function to our simulated clusters. However, at the high-mass end
probed by CLASH we have very few simulated clusters, and cannot
meaningfully replicate the CLASH selection.

For the strong-lensing properties of the CLASH clusters we used
the PIEMD + eNFW mass models constructed by Zitrin et al.
(2015), using the method from Zitrin et al. (2013). These were
obtained through the Hubble Space Telescope Archive as a high-
end science product of the CLASH program. The CLASH sample
spans a range of redshifts from 0.19 to 0.89. In order to compare
directly with our simulated clusters, we re-scale the lensing maps
to common lens and source redshifts of zl = 0.375 and zs =
2. This involves taking the CLASH convergence and shear maps
(expressed on a grid of angular coordinates), and multiplying their

normalization by the ratio of the critical surface density used to
generate them to the critical surface density for our chosen lensing
geometry, and then also re-scaling the angular coordinates by the
ratio of the angular diameter distance to the CLASH cluster to the
angular diameter distance to zl = 0.375. Once we have re-scaled the
convergence and shear maps, we follow the procedure described in
Section 5.1.3 to calculate the tangential critical curves. We apply a
similar re-scaling to the M200 values from Merten et al. (2015). We
take their best-fitting physical parameters that describe the halo (ρs

and rs of NFW profiles), and calculate the corresponding value of
M200 at z = 0.375.

5.3 Discussion

Although large by the standards of hydrodynamical simulations, the
box size of BAHAMAS does not produce many clusters of comparable
mass to the CLASH sample. As such, it is difficult to make firm
statements about the SIDM cross-section from this comparison.
Nevertheless, the fact that only one CLASH cluster lies below the
median line for SIDM1 in Fig. 7 suggests that σ/m < 1 cm2 g−1

at velocities of order 1000 km s−1. A better comparison would
either require a much larger volume simulation, or dedicated
zoom simulations of a reasonable number of CLASH-like clusters.
Alternatively, an observed cluster sample at lower masses would
have a substantial number of simulated counterparts. Unfortunately,
these lower mass systems have smaller θE,eff and correspondingly
smaller cross-sections for producing lensed images. This means that
without exceptionally deep data, most systems with lower masses
will not produce enough lensed images for their strong-lensing
properties to be well constrained, with those that do suffering a bias
towards being the systems with the largest θE,eff.

Another limitation of comparing our simulated clusters with the
observed CLASH clusters to constrain SIDM is our uncertainty
surrounding a ‘correct’ implementation of baryonic physics. We
show in Appendix A that CDM simulations with AGN feedback
model parameters spanning the observationally allowed range are
more similar in their lensing properties than CDM and SIDM1 with
common AGN feedback parameters. If the effects of AGN in an
SIDM1 universe are the same as their effects in a CDM universe
(i.e. they add to or multiply the Einstein radii by the same amount),
then this result will allow us to distinguish between CDM and
SIDM1, even with current uncertainty surrounding subgrid baryonic
physics. However, it is possible that less efficient AGN feedback,
which leads to more massive central galaxies, will have a more
pronounced effect in an SIDM rather than CDM universe (as seen
in the differences between DM-only and full physics density profiles
in the middle panels of Fig. 2). Here, we stress that our forecasts
are contingent upon the fiducial BAHAMAS model being an accurate
description of galaxy formation physics on the scales of interest.

The fact that the simulated clusters produce critical curves is an
interesting result by itself. Using SIDM-only simulations of a galaxy
cluster, Meneghetti et al. (2001) found that even moderate cross-
sections (σ/m ∼ 0.1 cm2 g−1) led to galaxy clusters incapable of
producing critical curves. Ray-tracing our SIDM-only simulations
we find results that agree with Meneghetti et al. (2001), with the bulk
of vdSIDM-only and SIDM1-only systems producing no critical
curves, and SIDM0.1-only haloes having substantially smaller θE,eff

than CDM-only, or often not having any critical curves either. When
including baryons, both the baryonic mass distribution itself and the
effect it has on the DM distribution substantially revise this to the
point where CDM and SIDM0.1 have very similar strong-lensing
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properties, and even SIDM1 produces substantial critical curves,
albeit ones that appear inconsistent with the CLASH sample.

6 C O N C L U S I O N S

SIDM has become an attractive alternative to CDM, due to its ability
to decrease the DM density at the centre of dwarf galaxies, poten-
tially bringing simulated dwarf galaxies into better agreement with
observed ones. SIDM cross-sections that produce significant effects
on dwarf galaxy scales would strongly affect galaxy clusters, unless
the cross-section decreases with increasing DM–DM velocity. We
have therefore simulated the first large cosmological volumes with
both SIDM and baryonic physics, to enable robust constraints
on SIDM from cluster scales. Our simulations used the galaxy
formation code used for the BAHAMAS project (McCarthy et al.
2017), which was specifically calibrated to reproduce observables
relevant to galaxy groups and clutsers, including their gas fraction
and the high-mass end of the stellar mass function.

We have shown that density profiles are substantially affected by
the inclusion of baryons, with SIDM haloes affected by baryons out
to larger radii than their CDM counterparts. However, the relative
increase in DM density when including baryons is not especially
large with SIDM compared with CDM (Fig. 2). We find that the
diverse density profiles found for two high-resolution SIDM C-
EAGLE cluster simulations presented by Robertson et al. (2018) are
most likely a result of being (un)lucky with a small sample size,
or driven by the large stellar masses of their central galaxies. That
being said, we cannot rule out that the lower resolution simulations
shown here do not resolve the appropriate times and scales necessary
to produce this diversity.

One of our simulated SIDM cross-sections was velocity-
dependent. For this cross-section, the density profiles of haloes
of a given mass can be approximately reproduced using a velocity-
independent and isotropic cross-section. This works provided that
the velocity-independent cross-section is equal to the momentum
transfer cross-section of the velocity-dependent one at a velocity
scale typical of the halo in question (∼ √

G M200/r200).
The DM haloes of our simulated clusters were made rounder by

SIDM out to scales comparable with the virial radius (Fig. 5). The
effect of including baryons was roughly independent of the DM
model, and the differences between CDM and our largest SIDM
cross-section were substantially larger than the differences between
DM-only and DM + baryons. Interestingly, while the DM haloes
were rounder with SIDM, this was not reflected in either the gas or
stellar distributions, suggesting that lensing may be the best way to
probe the effects of SIDM on the shapes of haloes.

Density profiles and halo shapes are not directly observable, and
inferring them from observations can be difficult. Especially for
the case of halo shapes, there are many different definitions used
when analysing simulations, and none of them map precisely on to
what one would measure observationally. The density profiles and
halo shapes we show are therefore merely illustrations of an effect,
providing an indication of the magnitude of expected changes when
changing DM model. A comparison with observational data will
require the same method to also be run on simulations, for which
full hydrodynamical simulations – as presented here – are ideal,
because mock data sets can be generated from the different particle
species simulated.

We provided one example of generating observable (or at least
close to observable) quantities from our simulated clusters, pro-
ducing strong gravitational lensing maps of them (see e.g. Fig. 6)
and analysing the properties of their critical curves. While we

did not have a large number of simulated clusters of comparable
mass with well-studied observed clusters, our results suggest that
σ/m = 1 cm2 g−1 is in slight tension with observed cluster strong
lensing. This was because a cross-section of this size leads to clusters
with smaller Einstein radii at a given halo mass than is observed
(Fig. 7). We note that this constraint is substantially weaker than the
Meneghetti et al. (2001) constraint of σ/m � 0.1 cm2 g−1, because
this earlier constraint relied on SIDM-only simulations for which
moderate cross-sections lead to an absence of critical curves. This
highlights the importance of including baryons in simulations with
SIDM, both because of the direct effect of the baryonic distribution
on observable quantities, as well as their indirect effect through
influencing the structure of DM haloes.
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APPENDI X A : THE I MPACTS O F D I FFERENT
SUBGRI D MODELS

As discussed in Section 2.1, our simulations use subgrid models to
implement the baryonic physics associated with galaxy formation.
These models contain free parameters, which in the case of BA-
HAMAS were adjusted so that the simulations adequately reproduced
the observed present-day galaxy stellar mass function and the hot
gas mass within groups and clusters of galaxies. A full investigation
of the impact that different subgrid model choices would have had
on this work is beyond its scope. However, in this appendix we give
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Figure A1. The same as the density panel from the right column of
Fig. 2 but plotting only CDM and our largest SIDM cross-section, and
additionally showing the density profiles of two additional CDM models
with different AGN heating temperatures. While the changes to the stellar
density induced by changing DM model or changing subgrid physics
parameters are comparable, the DM density profile is more sensitive to
the DM model than to changing �Theat.

Figure A2. The same as the top-left panel of Fig. 5 but including the
halo shapes from two additional CDM models with different AGN heating
temperatures. The increase in median c/a with SIDM1 is substantially larger
than the changes when varying �Theat.

an indication of the sensitivity of our results to the subgrid model
used by showing the results of CDM simulations with a couple of
different subgrid model parameter choices.

In Figs A1–A3, we compare the size of effects from changing the
specifics of the subgrid galaxy formation physics with those from
changing DM model. Specifically, we compare three different CDM
+ baryons simulations with SIDM1 + baryons. These different
CDM + baryons simulations vary the temperature to which gas is
heated by AGN. The fiducial model that was used throughout the
rest of this paper increases the temperature of AGN-heated particles
by �Theat = 107.8 K. The two alternative models that we consider
in this appendix have �Theat = 107.6 and 108.0 K. A larger value of
�Theat makes the AGN feedback stronger. McCarthy et al. (2018)

Figure A3. The same as Fig. 7 but including the effective Einstein radii
from simulated clusters with two additional CDM models with different
AGN heating temperatures. The slight changes in median θE,eff with different
�Theat reflect the changes to the stellar and DM densities seen in Fig. A1.

showed that these two models bracket the observed cluster gas
fractions.

We find that the DM density profiles of M200 ≈ 1014 M� clusters
are unaffected by �Theat, while the stellar densities decrease with
increasing �Theat (not shown). In systems with M200 ≈ 1015 M� the
changes in stellar density are more pronounced, and the DM profiles
are also affected. The mean density profiles of these more massive
systems are shown in Fig. A1, where it can be seen that changing
the DM model from CDM to SIDM1 leads to a substantially larger
change in the DM density profile than varying the subgrid physics
(keeping the DM model fixed).

We also investigated how the halo shapes are affected by changing
�Theat. We found that the DM haloes were slightly more spherical
with �Theat = 107.6 K than the other heating temperatures, and that
the gas and stars were not noticeably affected. In Fig. A2, we plot
the minor-to-major axial ratios of the DM haloes with different
�Theat, showing that the halo shape changes induced by an SIDM
cross-section of 1 cm2 g−1 are considerably larger than those from
the changes we make to the subgrid model parameters.

Finally, in Fig. A3, we plot the effective Einstein radii of galaxy
clusters with CDM and SIDM1 (with our fiducial value of �Theat =
107.8 K with the two alternative CDM runs. In a similar manner to
the density profiles and halo shapes, the CDM models with different
�Theat are more similar than CDM and SIDM1 with a common
�Theat. The same is not true, however, if we compared going from
CDM to SIDM0.1 with the different �Theat values. This means
that while uncertainty in the baryonic physics is probably not a
major hurdle for constraining σ/m � 1 cm2 g−1, future experiments
that hope to lower this bound will have to consider how different
models for galaxy formation that span the uncertainties on relevant
observables, as is the case for the models considered here, might
affect their results.

A P P E N D I X B: C O N V E R G E N C E O F H A L O
SHAPES

In order to check where our halo shape measurements (discussed
in Section 4) can be trusted, we tested our shape measurement
algorithm on particle distributions with known axial ratios. We start
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Figure B1. The median minor-to-major axial ratios of shuffle-stretched haloes, with a known true axial ratio of 0.6. The method used to derive halo shapes and
generate the plot was identical to Fig. 5, but with the particle distributions from the simulated haloes altered following the procedure described in Appendix B.
The lines are semitransparent at radii where the median number of particles used for the shape measurement is less than 800. At small radii, where a small
number of particles contribute to the shape measurement, the method is biased towards returning lower c/a than the true value. This bias is not present when
more than 800 particles are used for the shape measurement.

by noting that measuring a halo shape with only a small number of
particles will tend to lead to more extreme axial ratios, as the particle
noise will lead to some axis along which the distribution appears
elongated. To take a simple example, the mean minor-to-major axial
ratio derived from the reduced inertia tensor (equation 6) calculated
from N particles placed randomly on the unit sphere is 0.54, 0.85,
0.95, and 0.98 for N = 10, 100, 1000, and 10 000, respectively.

While we use the reduced inertia tensor (with 1/r2
n weighting),

to which particles at different radii contribute roughly equally, our
method is still sensitive to the radial distribution of particles. This
is because during the iterative procedure only particles near the
boundary of our ellipsoidal search region enter and leave the search
region as it is deformed. In order to test our halo shape algorithm
on particle distributions with known axial ratios and relevant radial
distributions of particles (which differ for the different DM cross-
sections) we take simulated haloes and turn them into shuffle-
stretched versions. What this means is that we take all particles
within a halo and first re-distribute each particle randomly on a
sphere (drawing uniformly in cos θ and φ), keeping its distance
from the halo centre constant. We then stretch the haloes to have
axial ratios s ≡ c/a = 0.6 and q ≡ b/a = 0.8, roughly representative
of the axial ratios of our real haloes (see Fig. 5). Specifically, we
stretch in the x, y, and z directions by factors of (s q)−1/3, q2/3 s−1/3,
and s2/3 q−1/3, respectively, keeping the ellipsoidal radius (equation
8) of each particle equal to its initial spherical radius. We then run
an identical procedure as used for the top panel of Fig. 5 to make
Fig. B1, using the shuffle-stretched haloes.

We find that at small radii, where a low number of particles
contribute to the shape measurement, c/a is systematically underes-
timated. We found with all cross-sections, and for all three different
matter species, that the relative error in the median c/a is never
larger than 5 per cent so long as at least 800 particles are used. We
therefore make the lines in both Figs 5 and B1 semitransparent at
radii where the median number of particles contributing to the shape
measurement is fewer than 800.

At large r there is a slight bias towards measuring haloes to be
more spherical than they truly are, with median values of c/a at large
radii closer to 0.61 than 0.6. We experimented with varying εconv

(equation 7), and found that this bias increased systematically with
increasing εconv. The reason is that our iterative procedure starts from
a sphere, and so we typically converge on a value of c/a from above.
A finite value of εconv means that this procedure stops before it has
fully converged. Using a smaller εconv requires a larger number of
iterations, increasing the required computational resources, and can
also result in a number of haloes failing to converge.21 Our fiducial
value of εconv = 0.01 therefore provides a good trade-off between
accuracy and time, as well as ensuring our algorithm successfully
returns a shape for each halo.

A P P E N D I X C : C O N V E R G E N C E O F E I N S T E I N
R A D I I

The lensing analysis presented in Section 5 relies on various
numerical parameters, which must be sensibly chosen to produce
correct results. These parameters include the total area and pixel
size of the initial convergence map, the amount of zero padding
that we surround this map with when calculating deflection angles
(using DFT-based methods) and the density of grid points at which
we interpolate α(x), where the interpolation is done from an α(x)
grid with the same resolution as the initial convergence map. We
experimented with factor of 2 changes22 to all of these quantities
and found that our lensing results were unchanged.

While it is reassuring that we have chosen the above-mentioned
parameters successfully, this convergence with respect to these
parameters should not come as a surprise, as our method implicitly
smooths the 2D density field through its use of ATSC. This means

21This can happen if, for example, the eigenvalues and eigenvectors of the
inertia tensor from iteration i leads to a search volume for iteration i + 1
that includes the same particles as used in iteration i − 1 (without reaching
convergence in q and s), such that the iteration gets stuck in a loop switching
between two sets of particles with their associated inertia tensors. While we
saw this phenomenon at small radii (with few particles), none of our haloes
failed to converge at the radii we trust (where lines are non-transparent in
Fig. 5).
22Factor of 2 in lengths, meaning a factor of 4 in areas.
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Figure C1. Top: The effective Einstein radius when using only every
4th or 16th particle from the simulations, versus the result using all the
particles. The points show individual haloes when using every 4th particle,
with the dashed lines the median relations (binned by θE, eff when not
subsampling). The dotted lines show the median relations when only a
16th of the simulation particles are used. The colours are for the different
cross-sections as used throughout the rest of this paper. Bottom: The median
lines from the top panel expressed as a relative value, showing the fractional
bias in θE,eff when subsampling.

that the convergence field is smooth on some scale – set by the
density of simulation particles, such that increasing the resolution
of the lensing procedure (i.e. decreasing the pixel size of the
convergence map, or interpolating α(x) on to a finer grid) will
have little effect so long as the resolution of the lensing procedure
is already small compared with the scale on which the density
field is smooth. The question we would like to answer is whether
we would obtain the same results had we run higher resolution
simulations. Although we do not have such simulations, we can
degrade the simulations we do have, and see where we recover
converged results from these degraded simulations.

We generate lower resolution simulation data by subsampling the
particles from our simulations. We randomly select a fraction, fsub, of
the simulation particles and increase their masses by 1/fsub, throwing
away the other particles. We then repeat our lensing analysis using
these subsampled simulations, and compare the results with those
from the full simulation. Unsurprisingly, the most massive haloes
are least sensitive to being subsampled, while results for lower mass
haloes and especially systems with small θE,eff can vary dramatically
after this subsampling procedure. In Fig. C1, we show the extent to
which θE,eff is converged with respect to subsampling, showing the
results with fsub = 1/4 and 1/16. With a lower density of particles,
the ATSC scheme smooths the density on a larger physical scale,
which generally decreases θE,eff. While the extent to which θE,eff is
converged does not depend solely on θE,eff, this is approximately the
case, with the dependence on halo mass or DM model only slight.

We can use the results of Fig. C1 to estimate the level to which
we can trust the results from our full simulation. The median
subsampled θE, eff (using all DM models) drops to 90 per cent of
that from the full simulation at 6.4 and 2.4 arcsec for fsub = 1/16
and 1/4, respectively. The trend in convergence becomes more clear
if we look at the θE,eff at which the median value with fsub = 1/16
drops to 90 per cent of that with fsub = 1/4. This happens at 5.0
arcsec, implying a factor of ≈4 decrease in the area enclosed by
the smallest converged critical curves as the density of simulation
particles is increased by a factor of 4. This suggests that convergence
requires a constant number (≈50) of particles to be enclosed by the
critical curves. Given this, we expect that our lensing results from
the full simulation are trustworthy down to θE,eff ≈ 1.2 arcsec, so
we conservatively claim convergence down to 2 arcsec.

Note that our procedure for generating a convergence map –
using ATSC with the distance to the 8th nearest neighbour used to
determine the smoothing-scale of each particle – was chosen on the
basis of having the best convergence characteristics compared with
TSC, ATSC with a 32nd nearest neighbour distance and a scheme
similar to ATSC but with a Gaussian smoothing kernel. While better
schemes for generating 2D mass maps for lensing may exist (for a
good overview of methods for converting particles into continuous
density fields see Peterka et al. 2016), Fig. C1 demonstrates that our
method is robust, particularly for the most massive haloes in our
simulations.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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