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We discuss the physical mechanisms that promote or suppress the
nucleation of a fluid-filled lumen inside a cell assembly or a tis-
sue. We discuss lumen formation in a continuum theory of tissue
material properties in which the tissue is described as a 2-fluid
system to account for its permeation by the interstitial fluid, and
we include fluid pumping as well as active electric effects. Con-
sidering a spherical geometry and a polarized tissue, our work
shows that fluid pumping and tissue flexoelectricity play a cru-
cial role in lumen formation. We furthermore explore the large
variety of long-time states that are accessible for the cell aggre-
gate and its lumen. Our work reveals a role of the coupling of
mechanical, electrical, and hydraulic phenomena in tissue lumen
formation.

tissue biophysics | lumen formation | continuum theory of tissues | tissue
hydraulics | tissue flexoelectricity

A fundamental problem in biology is to understand the collec-
tive organization of many cells that can give rise to complex

structures and morphologies. Such phenomena can be studied
either in living embryos or developing organisms, but also in
vitro—for example, in organoid systems that recapitulate mor-
phogenetic processes (1, 2) or by studying even simpler cell
assemblies. In these systems, it is often observed that liquid-
filled cavities, or lumens, appear within cell assemblies (3): In
respiratory, circulatory, and secretory organs, it is typically an
interconnected network of tubular lumens that forms (4). Alter-
natively, spherical lumens can also form, such as cysts, acini,
alveoli, or follicles, in mammalian epithelial organs (5, 6). Strik-
ingly, this ability of cell assemblies to self-organize and form
internal fluid cavities is maintained in simpler model systems
such as organoids and even in multicellular spheroids formed
by a single cell type. Examples include Madin–Darby canine
kidney cells and mammary epithelial cells (MCF-10A) that are
observed to form polarized spherical aggregates with liquid-filled
lumen (7, 8).

The formation of a well-delimited cavity surrounded by a
cohesive cellular structure has been observed to rely on vari-
ous mechanisms (4, 7–9). Programmed cell death induced at the
structure center, for instance, leads to lumen formation by a pro-
cess known as cavitation (3, 9). In addition, lumenogenesis must
also rely on cells’ ability to transport water and ions in a collec-
tive fashion to open fluid-filled cavities. This capacity of cells to
pump fluid has, for instance, been quantified in experiments on
rabbit corneal epithelia (10, 11). The ion pumps that are nec-
essary to generate fluid flows also produce ion flows that can
lead to the buildup of an electric field across the tissue. Strong
experimental evidence indeed supports the presence of a voltage
difference across many tissues (12–14). More generally, control
of cell proliferation by electric mechanisms has received increas-
ing attention (15–17) and is, for instance, suspected to play a role
in zebrafish fin growth control (18).

In this paper, we use a continuum theory of radially polar-
ized cell spheroids to reveal key physical mechanisms underlying
lumen formation. This coarse-grained approach is especially

suited to study the combined effects of fluid permeation, elec-
tric fields and currents, as well as mechanical stresses stemming
from cell division and death (19, 20). We show that lumen
formation is an active nucleation problem, governed by tissue
growth, fluid pumping, and active electric effects. In particular,
we discover a surprising role of tissue flexoelectricity in lumen
nucleation. Flexoelectricity was first observed as a bending of the
nematic order of liquid crystals when an external electric field
is applied (21, 22). This also implies that electric fields are gen-
erated when liquid-crystal orientational order is bent. In tissues,
flexoelectricity describes the emergence of electric fields when
cell-polarity orientation is bent or deformed. We also discuss the
state diagram of lumen formation as a function of key parame-
ters and explore the interplay of lumen and spheroid growth at
long time.

The structure of this paper is as follows. We first present the
geometry, boundary conditions, and material properties of a per-
meated tissue in the presence of electric fields. Having derived
the dynamical equations for the inner and outer radii of the
spheroid, we then focus on lumen nucleation, and we show how
lumen formation at early time is influenced by pumping and
active electric effects. We finally explore the long-time states of
the spheroid and its lumen.

Constitutive Equations of a Permeated Tissue in the Presence
of Electric Fields
Tissue Geometry and Notation. Following ref. 20, we adopt in this
paper a coarse-grained, hydrodynamic description of tissues to
study the formation of lumen in a spherical aggregate of cells. In
the simplified model we consider here, the tissue is permeated
by the interstitial fluid and described in a 2-fluid framework. The
cell active pumping as well as the electric field and current are
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introduced in the constitutive equations that describe the tissue
properties.

Although spheroids and lumens are found with a large variety
of shapes, we consider here a simplified geometry with a spheri-
cal symmetry, such that the dynamical quantities only vary along
the radial direction er. The spheroid has an outer radius R2 and
encloses a fluid-filled lumen of radius R1 <R2, as illustrated in
Fig. 1. The spherical aggregate is surrounded on the outside (for
r >R2) by a fluid with a hydrostatic pressure Pext

2 and containing
osmolites that enter neither the tissue nor the interstitial fluid,
such that there exists an osmotic pressure Πext

2 . We define simi-
larly the hydrostatic and osmotic pressures, Pext

1 and Πext
1 , inside

the lumen (r <R1). The precise boundary conditions involving,
in particular, tissue permeation at the inner and outer surfaces as
well as growth rates at the boundaries will be specified later, and
we now focus on the bulk equations describing the cell aggregate.

Permeation of the Spheroid by the Interstitial Fluid. To account for
fluid transport and the formation of a fluid-filled cavity inside the
spheroid, we decompose the total tissue stress as σαβ =σc

αβ +

σf
αβ , where σc

αβ is the stress associated with the cells and σf
αβ is

the stress associated with the interstitial fluid. For simplicity, we,
moreover, consider that the anisotropic stress in the interstitial
fluid vanishes over length scales that are large compared to that
of the cells. In this case, the interstitial fluid flow is driven by
pressure gradient, and the fluid stress is simply σf

αβ =−P fδαβ
(19). Neglecting inertia and in the absence of external forces, the
force balance in spherical coordinates reads:

1

r2

∂

∂r

(
r2σ̃c

rr

)
−
σ̃c
θθ + σ̃c

ϕϕ

r
+
∂σc

∂r
=
∂P f

∂r
, [1]

where we have decomposed the cell stress as the sum of an
isotropic and an anisotropic part: σc

αβ =σcδαβ + σ̃c
αβ , and where

σ̃c
θθ = σ̃c

ϕϕ =−σ̃c
rr/2 because of the spherical symmetry of the

cell aggregate.

Fig. 1. Sketch of the model used for a spheroid enclosing a lumen: The
spherical cell aggregate of radius R2 encloses a spherical cavity of radius R1

filled with fluid, the lumen. In the lumen [respectively (resp.) outside the
spheroid], we denote the fluid pressure as Pext

1 (resp. Pext
2 ) and the osmotic

pressure of ions that cannot enter the tissue as Πext
1 (resp. Πext

2 ). The inner
cyan (resp. outer red) shell indicates a small volume of the tissue close to
the lumen (resp. close to the outside) with a cell-division rate different from
the bulk division rate. Fluid exchange driven by osmotic conditions is also
happening at the inner and outer boundaries; see main text for details on
the boundary conditions.

Isotropic and Anisotropic Cell Stress in a Permeated Cell Aggregate.
We now introduce the constitutive equations for a polar tis-
sue permeated by a fluid and subject to an electric field due
to ion transport. Cells are considered polar—i.e., they exhibit a
structural anisotropy that can be characterized by a unit polar-
ity vector p. This introduces a nematic order parameter for the
cells given by qαβ = pαpβ − δαβ/3. Notice that we consider in the
following that cells are polarized along the radial direction, such
that p = er.

Even though tissues are elastic at shorter time scales, cell divi-
sion and apoptosis enable them to release stress at longer time
scales and to become effectively fluid-like (19, 23). This flu-
idization of the cells is made possible because cells can probe
and sense the local stress and react to it, either by dividing or
starting apoptosis, or by generating active stress (for instance,
in the cytoskeleton) as a result of energy consumption at the
molecular level.

An expansion based on symmetry near the homeostatic pres-
sure Pc

h—defined as the pressure at which cell death exactly
compensates cell division in the isotropic state (24)—allows us to
derive a constitutive equation for the isotropic cell stress σc (see
ref. 20 for more details). In the quasistatic limit, the elastic stress
has relaxed due to cell division and death, and the constitutive
equation for the isotropic part reads:*

σc +Pc
h = η̄vc

γγ − ν0σ̃
c
αβqαβ − ν1pαEα− ν2pα(vc

α− v f
α), [2]

where we have introduced the cell and fluid velocities, vc
α and v f

α.
We have also defined the cell strain-rate tensor vc

αβ = (∂αv
c
β +

∂βv
c
α)/2, and the summation over repeated indices is implied.

We have introduced η̄, the effective bulk viscosity of the tissue
due to the response of cell growth to stress; ν0 is a dimension-
less coefficient that takes into account the possible dependence
of the homeostatic pressure on the anisotropic part of the stress;
ν1 characterizes the influence of the electric field on the homeo-
static pressure; and ν2 is a coefficient accounting for the effects
of the relative motion of the cells and the interstitial fluid to
homeostatic pressure (20).

A similar expansion for the traceless anisotropic part of the
stress tensor reads:

σ̃c
αβ = 2ηṽc

αβ + ζqαβ − ν3[Eαpβ ]st− ν4[vαpβ ]st. [3]

where ṽc
αβ is the traceless part of the cell strain-rate tensor, and

we have, moreover, defined the symmetric traceless part of the
projection of the cell polarity on the electric field: [Eαpβ ]st≡
pαEβ + pβEα− (2/3)pγEγδαβ , and similarly for the projection
of the cell polarity on the velocity difference: [vαpβ ]st≡ pα(vc

β −
v f
β) + pβ(vc

α− v f
α)− (2/3)pγ(vc

γ − v f
γ)δαβ . We introduce η, the

isotropic shear viscosity of the tissue, and we ignore the 4th rank
tensor nature of the viscosity. The coefficient ν3 describes the
coupling of the electric field to the anisotropic cell stress, and ν4

represents the magnitude of the coupling induced by the inter-
stitial fluid flow through the anisotropic cells. The magnitude of
the active anisotropic cell stress ζ can include both a collective
component arising from cell division and death and a contribu-
tion from each cell due to the activity of their cytoskeleton (25).
This active stress can be regulated by the cells, and we therefore
consider that it depends on the local pressure at linear order as:

ζ = ζ0− ζ1(σc +Pc
h), [4]

where ζ0,1 are assumed to be constant. Notice that ζ1 is a
dimensionless parameter.

*Notice that we have added the term ν2 in Eq. 2 and the term ν4 in Eq. 3 that were not
present in ref. 20, although they are allowed by symmetry.

Duclut et al. PNAS | September 24, 2019 | vol. 116 | no. 39 | 19265

D
ow

nl
oa

de
d 

at
 W

A
LA

E
U

S
 L

IB
R

A
R

Y
 o

n 
Ja

nu
ar

y 
8,

 2
02

0 



Fluid Permeation and Electric Currents. To close our system
of equations, we moreover write a constitutive equation for
the momentum exchange fα = ∂βσ

f
αβ between interstitial fluid

and cells (19). This term, which is balanced by the intersti-
tial fluid-pressure gradient −∂rP f in our geometry, can be
expressed as:

fα=−κ(vc
α−v f

α) +λ1pα+λ2Eα+λ3qαβEβ+λ4∂βqαβ . [5]

The coefficient κ describes the friction due to the (relative) flow
of the interstitial fluid in the nanometric cleft between cells and
corresponds to Darcy’s law (26) in the description of porous
media. The second term on the right-hand side represents the
active pumping of fluid by the cells, with λ1 the active pumping
coefficient. The 3rd and 4th terms, proportional to λ2 and λ3,
respectively, represent the isotropic and anisotropic parts of the
force density generated by the electric field. The last term, pro-
portional to λ4, characterizes the sensitivity of the pumping to
the bending of the tissue (27).

Similarly, we can also write a constitutive equation for the
electric current density jα:

jα=−κ̄(vc
α−v f

α) + Λ1pα+ Λ2Eα+ Λ3qαβEβ+ Λ4∂βqαβ , [6]

where κ̄ is the coefficient that characterizes the current due to
the (relative) flow of ions between cells as a consequence of a
reverse electroosmotic effect (28). The coefficient Λ1 charac-
terizes the contribution of ion pumping to the electric current,
while Λ2 and Λ3 are the isotropic and anisotropic part of
the electric conductivity tensor. The coefficient Λ4 is an active
flexoelectric coefficient, indicating that a spatially nonuniform
cell polarity orientation is obtained in response to an electric
field.† This term plays a crucial role in lumen nucleation, as we
explain in the following.

Finally, assuming that cells and interstitial fluid have the same
mass density, and in the limit of an incompressible tissue, that
we consider in the following, mass conservation can be rewrit-
ten in such a way that the total volume flux is divergence-free
(19). Considering that there is no fluid flow inside the lumen,
the incompressibility yields a relation between the cell veloc-
ity and the fluid velocity inside the tissue: v f

r =− φ
1−φv

c
r , where

we have introduced the cell-volume fraction φ that we assume
to be constant in our model. Similarly, the charge conservation
in the quasistatic limit ∂αjα = 0 can be integrated directly in
the absence of external current and yields jr = 0 throughout the
tissue.

Boundary Conditions. The spheroid is surrounded by an external
fluid both inside (in the lumen) and outside. This fluid exerts
a hydrostatic pressure on the tissue that must be balanced by
the tissue surface tension, and by the total normal stress at the
boundaries:

−σc
rr (R1) +P f(R1) =Pext

1 − 2γ1/R1, [7]

−σc
rr (R2) +P f(R2) =Pext

2 + 2γ2/R2, [8]

where we have introduced the inner and outer tissue surface ten-
sions γ1 and γ2. Fluid exchange between the spheroid and the
outside is driven by osmotic conditions:

v f,ext
1 − dR1/dt = +Λf

1

[
(Pext

1 −P f(R1))−Πext
1

]
+ Jp,1, [9]

v f,ext
2 − dR2/dt =−Λf

2

[
(Pext

2 −P f(R2))−Πext
2

]
− Jp,2. [10]

†Notice that bothλ4 and Λ4 were already introduced in ref. 20, but they had a vanishing
contribution.

Here, Λf
i is the permeability of the interface to water flow. The

fluxes Jp,i =−Λf
i (Π

ext,0
i −Πint,0

i ), with Πext,0
i and Πint,0

i denot-
ing, respectively, the outside and inside osmotic pressures of
osmolites that can be exchanged between external fluid and tis-
sue, can be nonzero as a result of active pumps and transporters
that maintain an osmotic pressure difference and act effectively
as water pumps. We have also defined v f,ext

1,2 , the external flows
imposed at the inner and outer boundaries. Consistent with the
assumption made earlier that there is no flow inside the lumen,
we consider in the following that v f,ext

1 = v f,ext
2 = 0.

The normal velocity of the cells at the boundaries has to match
the growth of the spheroid radii. An increased cell proliferation
in a thin surface layer has been observed in growing spheroids
(25, 29, 30). Thus, for the sake of generality, we allow for a
thin surface layer of cells, both facing outside and to the lumen
(Fig. 1), to have a growth rate that differs from the bulk. The
cell-velocity boundary conditions then read:

vc
r (R1) = dR1/dt + v1, [11]
vc
r (R2) = dR2/dt − v2, [12]

where vi = δkin
c
i e/n

c with e the thickness of the boundary lay-
ers, nc

i and δki the cell number density and the cell growth rate
in the surface layers, respectively.

Lumen Nucleation in a Spherical Cell Aggregate
Equations for the Dynamics of the Spheroid and Its Lumen. In the
previous section, we introduced the bulk equations that describe
the properties of the tissue and can be integrated to obtain
the cell-velocity profile. The values of the different phenomeno-
logical parameters that we have defined can be obtained by
using experimental data and order-of-magnitude estimates (see
Table 1, ref. 20, and Appendix C). In particular, for a spheroid
whose typical radius is of the order of the hundreds of microm-
eters 10−6 . r . 10−3 m, our estimates indicate that effects that
are relevant at length scales larger than experimentally accessi-
ble ones can be neglected to obtain a simpler velocity profile (see
Appendix A for details).

The bulk cell-velocity profile together with the boundary con-
ditions introduced in the previous section then allow us to obtain
the dynamics of the inner R1(t) and outer R2(t) radii of the
spheroid in the quasistatic limit. We obtain 2 coupled nonlin-
ear differential equations for the spheroid radii, Eqs. 37 and 38
(Appendix A). In these equations, 6 effective parameters are
introduced. Two effective pressures:

Peff
1,2 = Πext

1,2 −Pc
h −

Jp,1,2

Λf
1,2

− 2

3

(
ζ0ν0 +λ4 +

Λ4λ+ (3ν1/2− 2ν0ν3)Λ1

Λ

)
,

[13]

where Λ = Λ2 + 2Λ3/3 is an effective conductivity and where
λ=λ2 + 2λ3/3. The effective pressure Peff

1 (resp. Peff
2 ) can be

seen as a modification of the homeostatic pressure Pc
h by the

external osmotic pressure Πext
1 (resp. Πext

2 ), the pumping flux
Jp,1 (resp. Jp,2), and electric and active contributions. In par-
ticular, if all other quantities are kept constant, we observe that
a positive effective pressure Peff

1 > 0 indicates a stress on the
spheroid inner boundary, leading to a shrinkage of the tissue,
similar to the increase in cell apoptosis due to a pressure larger
than the homeostatic pressure in simpler settings (19, 23). Three
apparent tension parameters are also introduced:

γapp
1,2 = γ1,2∓ 4ν3Λ4/Λ , γapp

0 = (3ν1/2− 2(2 + ν0)ν3)(Λ4/Λ).

[14]

19266 | www.pnas.org/cgi/doi/10.1073/pnas.1908481116 Duclut et al.
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The apparent tension γapp
1 (resp. γapp

2 ) of the inner (resp. outer)
surface is a modification of the tissue surface tension γ1 (resp. γ2)
stemming from the flexoelectric term proportional to Λ4—which
generates an electric field as a result of curvature—and the field-
induced anisotropic stress characterized by ν3. This modification
can, in principle, lead to a negative apparent surface tension for
the inner or outer part of the spheroid. A negative inner appar-
ent surface tension (γapp

1 < 0) will be shown in the following to
enhance lumen formation and allow for spontaneous nucleation.
The apparent tension parameter γapp

0 is also due to flexoelectric-
ity. It enters the dynamical equations of the inner and outer radii
of the spheroid in a similar way as the apparent surface tensions
(Eqs. 37 and 38 in Appendix A). Finally, an effective pumping
coefficient is introduced:

λeff =λ1−Λ1λ/Λ, [15]

which is a combination of the active pumping term λ1 and of
an electric contribution Λ1λ/Λ to the pumping due to electroos-
motic effects. This term comes as a prefactor of the spheroid
thickness R2−R1, indicating that the whole tissue acts as
a pump.

Lumen Nucleation: A Competition Between Pumping and Electric
Effects. We now discuss lumen formation in spherical cell aggre-
gates. Assuming that the radius of the lumen is small at the early
stage of its formation, we can cast the lumen early dynamics into
the form of a nucleation problem. In particular, we highlight in
the following the crucial role in lumen formation of pumping
and of the active flexoelectricity, which contributes to the appar-
ent surface tension γapp

1 . In the small lumen limit R1�R2, the
equations describing the radii dynamics partially decouple, and
we obtain the following dimensionless equations:

dr1

dt̂
= δ1−

2γ̂1

r1
− a

r2
+

b− δ2 r2 + λ̂ r2
2 /4

r2(3 +χr2)
+

3

4
λ̂ r2, [16]

dr2

dt̂
=

b− δ2 r2 + λ̂ r2
2 /4

3 +χr2
, [17]

where we have introduced dimensionless radii: ri(t̂) =Ri(t)/R0

with R0 = Λf
1η̄ and a dimensionless time t̂ = t/τ0 with τ0 =

η̄/|Peff
1 |. We have also introduced the dimensionless parameters:

γ̂0,1,2 =
γapp

0,1,2

η̄Λf
1|Peff

1 |
, λ̂=

λeff η̄Λf
1

|Peff
1 |

, δ1,2 =
Peff

1,2

|Peff
1 |

, [18]

and χ= Λf
1/Λ

f
2, a = 3v̂2− 2γ̂0, b = 3v̂2− 2(γ̂2 + γ̂0), and v̂2 =

v2/(Λ
f
1|Peff

1 |). Note that the inner surface growth velocity v1

does not contribute to lumen nucleation. Indeed, lumen growth
is mainly fed by inward fluid flow, while an increased cell division
at the inner surface comes as a lower-order effect.

To allow for an analogy with nucleation of a droplet in a fluid,
the equation for the dynamics of r1 can be rewritten as:

dr1/dt̂ = f (r2)− 2γ̂1/r1, [19]

with f (r2) = δ1 − a/r2 + (b − δ2r2 + λ̂r2
2 /4)/(r2(3 + χr2)) +

3λ̂r2/4. In this form, we can make an analogy with the nucleation
of a droplet in a fluid: Lumen nucleation is driven by a compe-
tition between the bulk contribution (first term in Eq. 19) and
the surface term (second term in Eq. 19). To continue the anal-
ogy with droplet nucleation, we also introduce a lumen critical
radius:

rc1 = 2γ̂1/f (r2), [20]
which is the radius above which a lumen starts growing. Notice
that in this nonequilibrium, active system, the lumen critical

radius depends on the value of the outer radius r2, and therefore
on time. Moreover, the (dimensionless) apparent surface tension
γ̂1 can be negative as the result of active flexoelectricity, and in
this case a lumen can open spontaneously, even when starting
from a vanishingly small radius.

Let us now be more specific and consider the case where r2

is kept fixed, and the volume contribution f (r2) is positive. The
phase portrait of the system for this case is plotted in Fig. 2A. Let
us first emphasize that the condition f (r2)> 0 can always be sat-
isfied if the effective pumping term λ̂ is positive (inward pump-
ing) and if r2 is sufficiently large: A signature that the aggregate
acts collectively for providing fluid to the lumen. According to
Eq. 15, a positive effective pumping can be achieved with a pos-
itive active fluid pumping coefficient λ1, indicating an inward
pumping, or with a negative ion pumping coefficient Λ1, indi-
cating an inward pumping of ions, or with both. Because of
this pumping, the larger the spheroid (that is, r2), the more
cells contribute to the inward flow, and therefore the smaller
the critical radius rc1 . This effect is so dramatic that for an
arbitrarily small early lumen r1(t = 0) = ε, one can always find
a large enough spheroid such that ε> rc1 and thus such that the
lumen starts growing. Notice also that a positive effective pres-
sure (Peff

1 > 0, which implies δ1 > 0), which is a modification
of the homeostatic pressure, indicates an unfavorable environ-
ment for cells in the center and is therefore favorable for lumen
formation.

Moreover, when the apparent surface tension is positive
(γapp

1 > 0, which implies γ̂1 > 0), the usual droplet nucleation
picture is preserved in the sense that the system must first
perform work against the apparent surface tension (nucleation
barrier) to effectively form a growing lumen. However, the
value of γapp

1 = γ1− 4ν3Λ4/Λ is a competition between the tis-
sue surface tension γ1 and the active flexoelectric contribution
4ν3Λ4/Λ, which effectively lowers the tissue surface tension. As
γ̂1 is decreased—which can, for instance, be achieved by reduc-
ing the tissue surface tension at the boundary with the lumen γ1

or by increasing the tissue flexoelectric coefficient Λ4—the cost
for nucleation is lowered (black dots in Fig. 2A) until it even-
tually vanishes for γapp

1 ≤ 0 (which implies γ̂1≤ 0). As a result,
the nucleation barrier vanishes as the apparent surface tension
changes sign.

BA

Fig. 2. Phase portrait (r1, dr1/dt̂) for different values of the apparent sur-
face tension γ̂1. (A) The lumen state is favored [f(r2)> 0], and lumens with
radius larger than the critical radius rc

1 (black dots) grow, while lumens with
smaller radius shrink, as indicated by the arrows. However, as the appar-
ent surface tension is lowered (from lower brown to upper blue curve),
the surface cost for creating a lumen is lowered, and eventually vanishes:
A lumen spontaneously forms (uppermost yellow and blue curves without
fixed point). (B) The lumen state is not favored [f(r2)< 0], and a lumen with
a large radius is always prohibited. As long as the apparent surface ten-
sion is positive (lower curves), a lumen is always unstable and shrinks (no
fixed point). However, as the apparent surface tension is lowered (from
lower brown to upper blue curve) and becomes negative, an attractive
fixed point can be found at a finite radius (black dots), which means that
a lumen of finite size spontaneously grows. Plots were obtained by setting
γ̂1 = {0.15, 0.1, 0.05, 0.01,−0.05,−0.1} (from lower brown to upper blue
curve), and f(r2) = 1 (A) or f(r2) =−1 (B).
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The case f (r2)< 0 is also illuminating: In this case, the usual
droplet nucleation picture would indicate that the droplet phase
is not stable, since it does not lower the system energy. The phase
portrait for this scenario is plotted in Fig. 2B: When the apparent
surface tension is positive (γapp

1 > 0, which implies γ̂1 > 0), there
is no fixed point, and the system is always driven to the lumen-
less state, as one would expect in the droplet nucleation picture.
However, as soon as the apparent surface tension becomes nega-
tive, a new attractive fixed point exists at a finite radius, meaning
that a small lumen forms spontaneously. In this case, the nega-
tive surface tension term drives lumen formation, even if a lumen
is disfavored by the volume term.

Whether the volume term favors a lumen state or not, we
find that a lumen spontaneously nucleates whenever its apparent
surface tension becomes negative (γapp

1 < 0)—that is, when

4ν3Λ4/Λ>γ1. [21]

This happens when the flexoelectric effects (proportional to Λ4)
overcome the usual tissue surface tension.

For fixed values of r2, we have seen that lumen formation
can be cast in the form of a nucleation problem. In fact, one
can even introduce the (dimensionless) volume V1 = 4πr3

1 /3
and the function Ψ(r1) = 4πr2

1 γ̂1− (4/3)πr3
1 f (r2), such that

one has dV1/dt̂ =−∂r1Ψ(r1) and the lumen radius is obtained
by minimizing Ψ at fixed r2. The final picture is, however,
more subtle because the outer radius r2 is time-dependent
and evolves, according to Eq. 17. The curl of (dr1/dt̂ , dr2/dt̂)
does not vanish, and the dynamics given by Eqs. 16 and 17
thus does not result from the gradient of an effective poten-
tial. Indeed, the nonpotential nature of the dynamics allows
for thickness oscillations of the spheroid, as we discuss in the
next section.

Spheroid and Lumen Dynamics at Long Time
Spheroid Long-Time States. After lumen nucleation, the spheroid
and its lumen follow a dynamics that depends on the parameters
of the model. The spheroid and its lumen keep evolving accord-
ing to Eqs. 37 and 38, and the diversity of the long-time scenario
is illustrated in Fig. 3, where the time evolution of the spheroid

radius R2 and the lumen radius R1 are plotted for parameter
values, illustrating the different regimes.

In the case where lumen nucleation is favored, which can be
achieved, for instance, with a negative apparent inner surface
tension γ̂, corresponding to conditions where the flexoelectric
coupling overcomes the inner tissue surface tension, several
long-time fates are possible for the cell aggregate. The spheroid
and its lumen can grow (Fig. 3A): This is achieved in this exam-
ple because a positive inner effective pressure δ1 favors lumen
growth and a negative outer effective pressure δ2 favors the
outer radius growth. Switching the inner effective pressure δ1
to negative values, the lumen can reach a steady state while the
spheroid grows (Fig. 3B). Alternatively, both lumen and spheroid
can reach steady states (Fig. 3 C and D). This is, for instance,
seen in the case of an outward effective pumping of fluid (λ̂ < 0),
which limits the spheroid growth. Under conditions where lumen
formation is favored by flexoelectricity while the pumping is
directed outward, the spheroid can even undergo thickness oscil-
lations if the time scales associated with these mechanisms are
sufficiently different (Fig. 3E).

When the lumen is not favored, it shrinks and eventually van-
ishes (Fig. 3F). In this example, the coefficients describing active
pumping and flexoelectricy are zero, and the apparent inner sur-
face tension is positive. Fig. 3G shows an example of a growing
spheroid with growing lumen where the lumen radius approaches
the outer radius. This could correspond to the formation of a
single layer spheroid. Finally, Fig. 3H provides an example of
spheroid where the outer layer shrinks faster than the lumen,
leading to the disappearance of the spheroid when R1 =R2. This
behavior results from a positive outer effective pressure, δ2 > 0.
Similar behavior can also occur when the lumen grows faster than
the outer layer—for example, if both inner and outer surface
growth velocities v̂1,2 are negative.

State Diagram of the Spheroid Dynamics. We now discuss a typi-
cal state diagram to illustrate parameter regions where different
behaviors displayed in Fig. 3 can be found. In the state diagram
shown in Fig. 4, we vary the dimensionless apparent inner surface
tension γ̂1 and the dimensionless effective pumping coefficient λ̂,
while the other parameters are held fixed. We consider the case

A B C D

E F G H

Fig. 3. Examples of different dynamics of cell spheroids. Inner (R1; lower blue curve) and outer (R2; upper red curve) spheroid radii as a function of time
for different values of the parameters, illustrating the long-time states of the system. The plots are obtained by solving numerically Eqs. 37 and 38. (A)
Spheroid and lumen growth. (B) Spheroid growth and lumen steady state. (C) Spheroid and lumen steady state. (D) Spheroid and lumen decay leading to a
steady-state quasi-monolayer. (E) Thickness oscillations of the spheroid. (F) Lumen closure and spheroid growth. (G) Spheroid and lumen growth leading to
a growing monolayer. (H) Spheroid decay is faster than that of the lumen, leading to a collapse of the whole structure. We have rescaled time and length
units using τ0 = η̄/|Peff

1 | and R0 = η̄Λf
1. Refer to Table 2 in Appendix C for the values of the parameters used to obtain these plots.
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where the effective pressure Peff
1 is fixed. The fixed parameters

are chosen as follows. We consider a negative δ2 and positive
δ1, promoting growth of the outer radius R2 and of the lumen
R1, respectively (Eqs. 37 and 38). The values of the surface layer
growth velocities v̂1,2 are chosen positive to match experimen-
tal results (25, 29, 30). Their precise values play a minor role
in the lumen dynamics, which is mostly controlled by the fluid
influx and outflux across the surface of the cellular aggregate.
Inner and outer surface permeabilities are chosen to be equal,
such that χ= 1. The apparent tension γ̂0 is set to 0, as it plays a
marginal role in lumen nucleation (Eqs. 16 and 17). Finally, we
choose the sum of the inner and outer tissue surface tensions,
such that γ̂1 + γ̂2 = 0.1. These dimensionless values correspond
to physical quantities given in Table 1.

For negative apparent inner surface tensions γ̂1 < 0, which
correspond to the left half plane of the state diagram, a lumen
always forms (Eq. 16). If, in addition, the effective pumping
λ̂ is positive (inward pumping), lumen and spheroid grow, and
there is no steady state. If, instead, λ̂ is negative (outward pump-
ing), steady-state spheroids can occur, but also oscillations of the
spheroid in certain parameter ranges. Onset of spheroid oscilla-
tions corresponds to the appearance of a stable limit cycle in the
dynamics and is delimited in the diagram by the solid black curve
between the yellow and red regions in the lower left quadrant.
As discussed in Appendix B, the system undergoes a Hopf bifur-
cation when going from the steady-state region to the oscillation
region. For positive apparent inner surface tensions γ̂1 > 0, the
lumen tends to shrink, with 1 exception. If, in addition, λ̂ is neg-
ative, lumen always shrinks, while the spheroid can be stationary
or growing. Finally, if both γ̂1 and λ̂ are positive, they have oppo-
site effects on lumen size, and the outcome depends on the initial
radii R1 and R2 and on parameter values. If the initial radius of
the lumen is smaller than the critical radius Rc

1 (which is a func-
tion of R2), the lumen shrinks, while if this initial radius is larger
than this critical value, the spheroid and the lumen grow. For
sufficiently large outer radius R2, a lumen always grows.

The values of γ̂1 and λ̂ depend on the physical coefficients
describing fluid and ion pumping, flexoelectricity and surface

tension. In the case where the effective pressure Peff
1 is kept

constant, the apparent inner surface tension γ̂1 depends linearly
on the tissue inner surface tension γ1 and on the flexoelectric
coupling Λ4 (Eq. 14). Similarly, the effective pumping coeffi-
cient λ̂ depends linearly on the fluid pumping coefficient λ1

and on the ion pumping coefficient Λ1 (Eq. 15). For instance,
an increase in the flexoelectric coupling Λ4 can result in a sign
change from positive to negative of the apparent inner surface
tension γ̂1 and thus promote lumen nucleation. Similarly, chang-
ing the direction of fluid or ion pumping from inward to outward,
which corresponds to a sign change of the coefficients λ1 or Λ1,
respectively, can result in a sign change of the effective pumping
coefficient λ̂. In the case of positive apparent inner surface ten-
sion, this sign change leads to lumen suppression. Conversely, in
the case of negative apparent inner surface tension, this leads
to the existence of a steady state with finite radii or to thickness
oscillations.

Notice that spheroid oscillations have been observed both in
vitro (31) and in vivo (32) in the case of monolayers, but, to the
best of our knowledge, this phenomenon has not been observed
in thick spheroids. For monolayered spheroids, oscillations are
usually explained by a cycle of growth of the spheroid that builds
a stress on the shell, which finally burst open and therefore
shrinks due to the outward fluid flow. This is followed by a heal-
ing of the hole, and the whole process repeats (31, 32). For
the thick spheroids we consider here, such a bursting process
cannot take place, but, interestingly, oscillatory regimes can still
be predicted.

In the state diagram shown in Fig. 4, we find most of the
behaviors shown as examples in Fig. 3. However, the behavior
of a steady-state lumen radius while the spheroid grows indefi-
nitely (Fig. 3B) requires a different choice of parameters. Indeed,
a necessary condition to find this specific behavior is δ1 < 0

(together with λ̂= 0, δ2 > 0, and γ̂1 < 0).

Conclusion
Our theoretical work has shown that the formation of a
fluid-filled lumen in cell assemblies is governed by nucleation

Fig. 4. Typical state diagram of spheroid dynamics as a function of the dimensionless effective pumping strength λ̂ and apparent inner surface tension γ̂1.
Several regions with different types of behaviors are displayed. In the upper left region (green), the spheroid and its lumen grow. In the upper right region
(brown), the spheroid lumen may either shrink and eventually close or grow depending on the initial radii. In the lower right region (blue), the lumen
always shrink and disappear. In the lower-left region (yellow), the spheroid and its lumen reach a steady state with finite radii. In the lower-left region
(red), the spheroid undergoes thickness oscillations. Solid black lines (including the x and y axes) indicate boundaries between regions. For details, see State
Diagram of the Spheroid Dynamics. Parameter values are as follows: δ1=1, δ2=−1, v̂1=v̂2=0.1, χ=1, γ̂0 = 0, and γ̂1+γ̂2=0.1.
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Table 1. Experimental and estimated values of the
phenomenological parameters of the model appearing in the
constitutive equations

Parameters Experimental values Estimations

η 104 Pa·s (39)
η̄ 109 Pa·s (29)
γ1,2 10−3 N/m (39)
κ−1 10−13 m2/Pa/s (40)
Πext

1,2 103 Pa (41)
v1,2 10−10 m/s (25)
Pc

h 103 Pa (29)
ζ0 103 Pa (25)
ζ1 −10−1 (25)
κ̄ 103 A·s/m3

λ1 108 N/m3

λ2, λ3 106 N/m2/V
λ4 103 N/m2

Λ1 100 A/m2

Λ2, Λ3 10−2 A/V/m
Λ4 10−5 A/m
ν1 101 N/m/V
ν2 108 Pa·s/m
ν3 100 N/m/V
ν4 108 Pa·s/m
Λf

1,Λf
2 10−11 m/Pa/s

Jp,1,Jp,2 10−10 m/s
1−φ 10−2

ν0 1

equations that resemble those describing the nucleation of
a droplet in a fluid. The nucleation of a lumen, however,
depends on additional effects that are fundamentally active:
tissue response to mechanical stress, tissue fluid and ion pump-
ing, and tissue active flexoelectricity. In the present context,
flexoelectricity describes the ability of a polar tissue to gener-
ate an electric current when the polarity axis is splayed. This
effect could also be observed for nonpolar cells, provided they
have an axis of anisotropy. One might expect that such effects
are small compared to those generated by uniform polarity, but
our findings here show that they can be significant in the nucle-
ation process of lumen. One possible mechanism for generating
a flexoelectric current results from the wedge shape of cells in a
splayed tissue, leading to a difference in ion pumping on basal
and apical sides and thus in electric-current generation.

In addition to exhibiting the role of the coupling between
mechanical, hydraulic, and electrical mechanisms in lumen for-
mation, we have also used our model to explore the role of
this coupling in the long-time dynamics of the aggregate and its
lumen. In particular, tissue active flexoelectricity, associated with
the mechano-electric response of the tissue, is revealed to play a
crucial role in early lumen formation, as it generates a bulk term
in Eq. 14 that acts as a surface tension. Our order-of-magnitude
estimations (Table 1) indicate that this effect is significant, and
the flexoelectric contribution could overcome the tissue surface
tension, leading to a negative apparent surface tension. Such a
negative apparent inner surface tension guarantees the nucle-
ation of a lumen. Note that the negative contribution to the
apparent surface tension stems from a bulk stress proportional to
1/R rather than from a genuine surface tension. Therefore, neg-
ative apparent surface tension should not lead to surface shape
instabilities.

Similarly, we observe that the fluid pumping is also influenced
by electric effects: The effective pumping term that is defined in
Eq. 15 contains a contribution that stems directly from active cell
pumping, but also an additional one, which can be understood as
an electroosmotic contribution to the active pumping. Electroos-

motic flows are generated when an electric field is applied to a
fluid close to a charged surface (33), and recent studies suggest
that these electroosmotic flows could be, for instance, dominant
in the corneal fluid transport (11, 34). In our analysis, an inward
effective pumping ensures lumen nucleation if the spheroid
is large enough. We have, moreover, shown that active tissue
flexoelectricity and pumping can work in concert, in which case
lumen formation is facilitated (or prohibited if both effects tend
to close the lumen). However, if fluid pumping is directed out-
ward, while flexoelectric effects tend to open a lumen, steady
states of lumen and spheroid are observed. This antagonism
between flexoelectric and pumping effects can also give rise to
electrohydraulic oscillations, which are radically different from
the oscillations observed for spherical cell monolayers that rely
on a burst and healing mechanism (31, 32, 35).

Because our framework is based on symmetry considerations
and does not rely on specific cell-based mechanisms, we expect
our results to give a robust qualitative picture of lumen forma-
tion in cell assemblies. Below the cell scale, other approaches
based on similar principles become relevant (36). Lumen nucle-
ation in the mouse embryo has, for instance, been observed to
rely on the nucleation and coarsening of multiple micrometer-
sized lumens (37). Once these micrometer-sized lumens have
fused, our approach should capture its further evolution. Lumen
formation in a cell aggregate can also lead to the formation of
a monolayer spheroid (3, 4, 38). Such monolayers arise in our
analysis in certain regimes; see Fig. 3 D and G, for instance.

Finally, the role of mechanical stress on tissue morphogen-
esis, the importance of electric effects and fluid transport in
cells and tissues are well-known facts. However, we have high-
lighted in this paper the interplay between these effects and how
they need to be combined to understand lumen formation in
cell assemblies. The potential importance of such an interplay is
suggested, for instance, in a recent work on zebrafish fin regener-
ation (18), which shows the importance of potassium channels in
growth phenotypes. This suggests that electric effects may cou-
ple to growth process and size control of tissues (15–17). Such
observations, therefore, open the door to studies of tissue mor-
phogenesis, where hydraulic, electric, and mechanical effects are
brought together.

Appendix A: Derivation of the Dynamics Equations for the
Inner and Outer Radii
Using the constitutive equations introduced in the main text, we
can rewrite the force balance Eq. 1 as a differential equation on
the cell velocity only. The equation we obtain is the starting point
of our study and reads:

η1v(r)

(
1

r2
+

1

L2
0

+
1

L1r

)
+ η2v

′(r)

(
1

L2
− 1

r

)
− η3v

′′(r)

= λ̃1 +
2ζ̃

r
+

2γ̃

r2
, [22]

where here and in the following we drop the superscript c for the
cell velocity. We have introduced the following effective lengths:

L−1
0 =

√
ακeff

η1(1−φ)
, [23]

L−1
1 =

2

η1(1−φ)

(
(ζ1ν1− 2ν3)κ̄

Λ
+ ζ1ν2− 2ν4

)
, [24]

L−1
2 =

1

η2(1−φ)

[
(1− 2ζ1/3)

(
ν1
κ̄

Λ
+ ν2

)
+

4

3
(1− ν0)

(
ν3
κ̄

Λ
+ ν4

)]
, [25]
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we have also defined effective viscosities:

η1 = (2 + 8ζ1/3)η̄+ 4η(2 + ν0)/3, [26]

η2 = (2− 10ζ1/3)η̄+ 4η(2 + ν0)/3, [27]

η3 = (1− 2ζ1/3)η̄+ 4η(1− ν0)/3, [28]

and effective parameters:

λ=λ2 +
2

3
λ3, Λ = Λ2 +

2

3
Λ3, κeff =κ− κ̄ λ

Λ
, [29]

γ̃=

(
4

3
(2 + ν)ν3− (1 + 4ζ1/3)ν1

)
Λ4

Λ
, [30]

ζ̃ = ζ0 + λ̃4 + (2ν3− ζ1ν1)
Λ1

Λ
, [31]

α= 1− 2

3
ν0ζ1, λ̃1 =α

(
λ1−Λ1

λ

Λ

)
, λ̃4 =α

(
λ4−Λ4

λ

Λ

)
.

[32]

Let us now discuss the values of the effective lengths L0, L1 and
L2 that appear naturally in Eq. 22. We focus in this paper on
the dynamics of a spherical cell aggregate, whose typical radius
is of the order of the hundreds of micrometers: 10−6 . r . 10−3

m. Using experimental data and order-of-magnitude estimations
(ref. 20 and Appendix C), we are able to give estimations for the
effective lengths L0, L1, and L2 appearing in Eq. 22. The perme-
ation length L0 is of the order of the millimeter and may become
relevant for larger spheroids, while L1 is of the order of the cen-
timeter and L2 of the order of the decimeter. In the following,
we take the limit r�Li and therefore neglect the contribution
to the dynamics of the terms involving the effective lengths Li . In
this limit, Eq. 22 becomes

−η1v(r)/r2 + η2v
′(r)/r + η3v

′′(r) + λ̃1 +
2ζ̃

r
+

2γ̃

r2
= 0.

[33]

This equation can be solved by using a power-law ansatz:

v(r) =A1r
β1 +A2r

β2 + k0 + k1r + k2r
2, [34]

where A1 and A2 are integration constants to be determined by
the boundary conditions at r =R1 and r =R2 (Eqs. 7–12), while

the coefficients ki are obtained by finding a particular solution to
Eq. 33 and read:

k0 =
2γ̃

η1
, k1 =

2ζ̃

η1− η2
, k2 =

λ̃1

η1− 2(η2 + η3)
, [35]

and where the exponents β1,2 are obtained by solving the
homogeneous equation and read:

β1,2 =
1

2

1− η2

η3
∓

√
1 +

(
η2

η3

)2

+ 4
η1

η3
− 2

η2

η3

. [36]

In order to keep the analysis simpler, we have considered
in the main text the limit where the active stress does not
depend on the cell pressure—that is ζ1→ 0. We have, more-
over, considered the case where the tissue shear viscosity is
small compared to the tissue bulk viscosity (η� η̄), which is
justified by experimental values of these parameters, indicating
η' 104 Pa·s, while η̄' 109 Pa·s. In this limit, we have, in par-
ticular, β1 =−2 and β2 = 1. Using the boundary conditions, we
finally obtain the following dimensionless equations for the radii
dynamics:

dr1

dt̂
+

3(v̂1 + dr1/dt̂)r
2
1

r3
2 − r3

1

+
3(v̂2− dr2/dt̂)r

2
2

r3
2 − r3

1

= δ1

− 2

r1

(
γ̂1− γ̂0

r1(r1 + r2)

r2
1 + r2

2 + r1r2

)
+ λ̂(r2− r1)

r2
1 + 2r1r2 + 3r2

2

4(r2
1 + r2

2 + r1r2)
,

[37]

−χdr2

dt̂
+

3(v̂1 + dr1/dt̂)r
2
1

r3
2 − r3

1

+
3(v̂2− dr2/dt̂)r

2
2

r3
2 − r3

1

= δ2

+
2

r2

(
γ̂2 + γ̂0

r2(r1 + r2)

r2
1 + r2

2 + r1r2

)
− λ̂(r2− r1)

3r2
1 + 2r1r2 + r2

2

4(r2
1 + r2

2 + r1r2)
,

[38]

where we have introduced dimensionless radii: r1(t̂) =R1(t)/R0

and r2(t̂) =R2(t)/R0 with R0 = Λf
1η̄ and a dimensionless time

t̂ = t/τ0 with τ0 = η̄/|Peff
1 |. The dimensionless parameters have

been defined in Eq. 18 (and v̂1 = v1/Λ
f
1|Peff

1 |).

Appendix B: Bifurcations and Thickness Oscillations
We discuss here the bifurcations between the different regions
of the state diagram displayed in Fig. 4 and indicated by solid

A B C D

Fig. 5. (A) Eigenvalue µ [with Im(µ)> 0] of the Jacobian of Eqs. 37 and 38 evaluated at the fixed point, plotted in the complex plane as one varies γ̂1 at
fixed value of λ̂=−2 in Fig. 4. As the control parameter γ̂1 is varied from γ̂1=−0.2 to γ̂1=−2.5, the eigenvalue follows the colored curve. Labeled dots
along the curves indicate the value of the control parameter at these locations. The eigenvalue first crosses the imaginary axis at γ̂−

1 '−0.22, indicating a
Hopf bifurcation and the entrance in the oscillating region. The eigenvalue crosses again the imaginary axis at γ̂+

1 '−1.5, which indicates the exit of the
oscillating region. For a finite range of the control parameter inside the oscillating region, the eigenvalues are real (and the eigenvalue µ plotted here is
the largest one in this case). For this range of parameters, the system, however, still reaches a stable limit cycle, indicating a strongly nonlinear behavior.
The dynamics of the inner and outer radii (R1 and R2) at 3 different points in the oscillating regions (red dots) are displayed in B–D. (B) Oscillations for
γ̂1=−0.218. The amplitude of the oscillations is small, and the spheroid thickness does not change significantly. (C) γ̂1=−0.28. Oscillations are strongly
nonlinear, and the spheroid thickness changes dramatically during 1 cycle. (D) γ̂1=−1.43. The spheroid oscillations are almost sinusoidal. The proximity to
the bifurcation point γ̂+

1 induces a slow damping of the initial amplitude of the oscillations to the stationary amplitude.
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Table 2. Dimensionless parameter values used for plotting the figures

Parameter values

Figure δ1 δ2 χ γ̂0 γ̂1 γ̂2 λ̂ v̂1 v̂2

3A 1 −5 1 0 −0.01 0.02 0 0.1 0.5
3B −1 −0.83 1 0 −1.3 10−4 9.6 10−4 0 8.3 10−3 8.3 10−3

3C 1 −0.1 1 0 −0.05 0.15 −5 0.1 0.1
3D −1 33 1 0 −0.03 0.037 0 0.33 −0.13
3E 1 −1 1 0 −0.3 0.4 −4 0.1 0.1
3F 1 −0.9 10 0 0.4 0.4 0 0.01 0.3
3G 1 0.1 1 0 −4 10−3 6 10−3 0 −0.05 0.05
3H 1 1 1 0 −0.4 0.6 0 −2 −1
5B 1 −1 1 0 −0.218 0.318 −2 0.1 0.1
5C 1 −1 1 0 −0.28 0.38 −2 0.1 0.1
5D 1 −1 1 0 −1.43 1.53 −2 0.1 0.1

black lines (including the x and y axes). In the yellow region of
the lower left quadrant, the inner and outer radii reach a stable
steady state (R∗1 ,R∗2). As one goes from the lower left quadrant
to the upper left quadrant, the fixed point existing in the lower
quadrant moves progressively to larger values and is eventually
sent to infinity as one crosses the λ̂= 0 axis. Going from the lower
left quadrant to the lower right quadrant, the value of the fixed
point radius R∗1 is sent progressively to 0 as γ̂1 increases. The
fixed point radius eventually goes to negative R∗1 values when
the γ̂1 = 0 axis is crossed. Finally, the onset of spheroid oscilla-
tions (solid black curve between the yellow and red regions in
the lower left quadrant) corresponds to the appearance of stable
limit cycles through a Hopf bifurcation, as we discuss more in the
following paragraphs.

We now focus our attention on the spheroid thickness oscilla-
tions (see Figs. 3E and 5 for illustration) and on the characteri-
zation of the bifurcation between these oscillating states and the
stable steady states. Spontaneous thickness oscillations are espe-
cially interesting in our model, as they appear as a fine interplay
between pumping and active electric effects (see state diagram
in Fig. 4). These electrohydraulic oscillations are indeed possi-
ble when flexoelectric effects spontaneously nucleate a lumen,
while an outward pumping of fluid acts for shrinking the cavity.
If these 2 antagonistic processes are not balanced, which is the
case when the system lies inside the red region in Fig. 4, then
the dynamics obeys a limit cycle around an unstable fixed point,
and thickness oscillations are predicted. Notice that the existence
of such a limit cycle is not surprising, since, as discussed in the
main text for a small lumen, the radii dynamical equations have
a nonvanishing curl in phase space.

The bifurcation leading to limit cycles and oscillatory solu-
tions in Fig. 4 is found to be a Hopf bifurcation. Indeed, let
us define µ and µ′, the 2 eigenvalues of the Jacobian associ-
ated to Eqs. 37 and 38 evaluated at the fixed point of these
equations. We also define the control parameter Γ (for instance,
Γ = γ̂1 for a fixed value of λ̂ < 0 in Fig. 4), such that the system
oscillates for Γ−c ≤Γ≤Γ+

c . For Γ<Γ−c (or Γ>Γ+
c ), the eigen-

values of the system have a negative real part, such that the
system reaches a stable steady state at long time. Close to the
boundary with the oscillating region, the eigenvalues are com-
plex conjugated and the system spirals toward its fixed point.
Precisely at the bifurcation (Γ = Γ±c ), these eigenvalues cross
the imaginary axis—a signature of a Hopf bifurcation—and the
fixed point becomes unstable. The system is then driven to a
limit cycle and displays periodic oscillations in time. We illus-
trate the crossing of the imaginary axis by the eigenvalues in
Fig. 5A, for which we have chosen the control parameter to
be Γ = γ̂1.

To illustrate the behavior of the system when varying γ̂1, we
have plotted the dynamics of the spheroid and of the lumen

radii as a function of time in Fig. 5. Various kind of oscillations
can be observed while γ̂1 is varied: Small-amplitude oscillations
around the unstable fixed point as displayed in Fig. 5B; large-
amplitude oscillations, strongly nonlinear and during which the
lumen almost closes (Fig. 5C); or quasi-sinusoidal oscillations
with a very thin thickness of the spheroid, as shown in Fig. 5D.

Appendix C: Estimation of the Parameter Values
Estimation of the different phenomenological parameters used
in this coarse-grained spheroid model is essential in order to
study the model in a biologically relevant regime and to simplify
analytic computations. Some of the parameters (such as the cell
shear and bulk viscosities, the surface tension, etc.) have already
been estimated in experiments. However, for most of the remain-
ing phenomenological parameters, such experimental values are
not yet available, and we therefore used order-of-magnitude
estimations to obtain them. Experimental and estimated values
are gathered in Table 1. Most of the parameters of our model
were already estimated in a previous work (20), and we detail
here only the estimation of those that were not estimated—
namely, the coupling of the isotropic and anisotropic stresses
to the velocity difference ν2 and ν4, the coupling of curva-
ture and pumping parameter λ4, and the active flexoelectricity
parameter Λ4.

The coefficient ν2 is estimated by assuming that ν2pα(vc
α− v f

α)
is the stress due to the hydraulic friction force density κ(vc

α− v f
α),

such that we obtain ν2∼ `κ' 108 Pa · s/m, where `∼ 10 µm is the
typical size of a cell. The coefficient ν4 is estimated by assuming
that its contribution to the anisotropic cell stress is of the same
order of magnitude as the viscous stress in the cleft between
cells—that is, σ̃xz ∼ ηfδvx/w , where the interstitial fluid chan-
nels width is w ∼ 50 nm and we have introduced the viscosity of
the interstitial fluid ηf ∼ 100 mPa·s. We then obtain the estimate
ν4∼ ηf`/w2' 108 Pa · s/m.

The coupling of curvature and pumping parameter λ4 is
estimated by noticing that, for in a flat geometry, a cell pro-
duces a flow v ∼κ−1λ1 due to pumping. Bending this cell
implies an extra flow v ′∼ vδA/A, where A is the cell area
and δA/A∼ `C (with C the curvature of the bent cell) is the
extra area due to bending and which contributes to the extra
flow. This extra pumping due to curvature produces a flow
which is by definition of the order v ′∼κ−1Cλ4. We therefore
obtain λ4∼λ1`∼ 103 N ·m−2. The flexoelectricity parameter
Λ4 is obtained by using the a similar argument, and we obtain
Λ4∼Λ1`∼ 10−5 A ·m−1.
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