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In the context of the effective field theory of dark energy (EFT) we perform agnostic explorations of
Horndeski gravity. We choose two parametrizations for the free EFT functions, namely, a power law and a
dark energy density-like behavior on a nontrivial Chevallier-Polarski-Linder background. We restrict our
analysis to those EFT functions which do not modify the speed of propagation of gravitational waves.
Among those, we prove that one specific function cannot be constrained by data since its contribution to the
observables is below the cosmic variance, although we show it has a relevant role in defining the viable
parameter space. We place constraints on the parameters of these models by combining measurements from
present-day cosmological data sets, and we prove that the next-generation galaxy surveys can improve such
constraints by 1 order of magnitude. We then prove the validity of the quasistatic limit within the sound
horizon of the dark field, by looking at the phenomenological functions μ and Σ, associated, respectively,
with clustering and lensing potentials. Furthermore, we notice up to 5% deviations in μ, Σ with respect to
general relativity at scales smaller than the Compton one. For the chosen parametrizations and in the
quasistatic limit, future constraints on μ and Σ can reach the 1% level and will allow us to discriminate
between certain models at more than 3σ, provided the present best-fit values remain.

DOI: 10.1103/PhysRevD.99.063538

I. INTRODUCTION

The attempt to find a definite theory of gravity able to
explain the late-time acceleration of the Universe has
resulted in a wide selection of dark energy (DE) and
modified gravity (MG) models [1–6]. When exploring the
cosmology of these models, it is very useful to employ a
unified approach to describe in amodel-independent fashion
any departure from general relativity (GR). Among the
many approaches presented in the literature, a popular
framework is the one based on the μ, Σ parametrization
[7,8], according towhich deviations fromGR in the Poisson
and lensing equations are encoded, respectively, in the μ and
Σ phenomenological functions. However, one has to rely on
the quasistatic (QS) approximation in order to express these
functions in an analytical form for a chosen theory. For this
reason, the approach has a limitation given by the break-
down scale of the QS assumption. Such a scale, usually
identified with the cosmological horizon, has been claimed
to be instead the sound horizon of the dark field [9].
Another general framework, encompassing theories with

one additional scalar degree of freedom (DOF), is the
effective field theory of dark energy (EFT) [10,11]. Such a
description parametrizes the evolution of linear cosmologi-
cal perturbations in terms of a few free functions of time,

dubbed EFT functions. The benefit of using the EFT
approach relies on a direct connection with the underlying
theory of gravity. Indeed, each EFT function multiplies a
specific geometrical operator in the action: Thus, picking
out a set of EFT functions translates into selecting a class of
DE/MG models. Moreover, the mapping procedure, which
allows us to translate a specific theory in the EFT language,
does not rely on any QS approximation [10–16]. An
resembling basis of the EFT functions is the α-basis
[16–18]. In the latter, the free functions can be directly
related to some phenomenological aspects of the DE field,
such as the running of the Planck mass, braiding and
kineticity effects, and deviation in the speed of propagation
of tensor modes [17].
In the present work, we perform a cosmological inves-

tigation by means of agnostic parametrizations in terms of
the EFT functions. We select the subset of EFT functions
describing the Horndeski theory [19] (or generalized
Galileon [20]). In particular, we consider the class of
models satisfying the condition c2t ¼ 1, which accommo-
dates the stringent bound on the speed of propagation of
tensor modes placed by the LIGO and VIRGO collabora-
tions after the detection of the gravitational wave (GW)
event GW170817 and its optical counterpart [21–23].
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The implication of this result on modified gravity theories
has been discussed in several works [24–34] and, in the
case of Horndeski theory, the surviving viable action
involves a reduced number of free functions [24]. In
particular, the quintic Lagrangian is removed, and the
coupling with the Ricci scalar in the quartic Lagrangian
reduces to a general function of the scalar field. Hereafter,
we refer to such an action as the “surviving” Horndeski
action (sH). Very recently it has been shown that it is
possible to build a class of theories where the GW speed is
set to unity dynamically when the scalar is decoupled from
the matter sector [35]. However, it is worth noticing that the
applicability of the GW constraint is still the subject of
debate since, as pointed out in Ref. [36], the energy scales
detected by LIGO lie very close to the typical cutoff of
many DE models.
In the next decade, several large-scale surveys, such as

DESI, Euclid, SKA and LSST, are planned to start, and
they will cover the entire redshift range over which dark
energy played a significant role in the accelerated expan-
sion. Looking forward to having real data, forecasts
analysis is improving our knowledge of cosmology by
looking at specific gravity models as well as model-
independent parametrizations [37–41]. In this work we
provide cosmological constraints on sH theories using both
present data sets and future spectroscopic galaxy clustering
(GC) and weak lensing (WL) observables. We show how
the latter are able to set tighter constraints on the parameters
entering the sH action.
The paper is organized as follows. In Sec. II, we give an

overview of the sH theory and its parametrizations in the
EFT formalism. In Sec. III, we introduce the agnostic
parametrizations defining the sH models, the codes and
data sets used for the Monte Carlo Markov chain analysis,
as well as WL and GC forecasts. In Sec. IV, we discuss the
results and present the constraints on the model parameters
from present and future surveys. Finally, we conclude
in Sec. V.

II. THEORY

A. Horndeski theory and its parametrizations

Horndeski theory has become very popular, as it is the
most general scalar tensor theory in four dimensions con-
structed from the metric gμν, the scalar field ϕ and their
derivatives, giving second order field equations. Its general-
ity relies on a certain number of free functions in the action,
namely, fK; G3; G4; G5g½ϕ; X�, where X ¼ ∂μϕ∂μϕ. The
number of these functions was reduced after the detection of
the GW170817 event. Indeed, the stringent constraint on the
speed of propagation of the tensor modes disfavors the
presence of the G5 term and reducesG4 to solely a function
of the scalar field [24]. Thus, the sH action, which assumes
an unmodified speed of propagation of gravitational waves
(c2t ¼ 1), takes the following form:

SsH ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½Kðϕ; XÞ þG3ðϕ; XÞ□ϕþ G4ðϕÞR�;

ð1Þ

where g is the determinant of themetric gμν andR is theRicci
scalar. Even though the Horndeski action drastically sim-
plifies, a high degree of freedom in choosing the above
functions still remains.
We are interested in investigating the linear cosmological

perturbations; thus, in the following we focus on a
complementary framework to describe the sH action,
i.e., the EFT approach [10,11]. Within this framework
we can write the corresponding linear perturbed action
around a flat Friedmann-Lemaître-Robertson-Walker
(FLRW) background and in unitary gauge, which reads

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
m2

0

2
½1þΩðaÞ�RþΛðaÞ−cðaÞa2δg00

þm2
0H

2
0

γ1ðaÞ
2

ða2δg00Þ2−m2
0H0

γ2ðaÞ
2

a2δg00δK

�
; ð2Þ

where m2
0 is the Planck mass, δg00 and δK are the

perturbations, respectively, of the upper time-time compo-
nent of the metric and the trace of the extrinsic curvature,
H0 is the Hubble parameter at present time, and a is the
scale factor. Here, fΩ; c;Λ; γ1; γ2g are the so-called EFT
functions. Note thatΛ and c can be expressed in terms ofΩ,
the conformal Hubble function H, and the densities and
pressures of matter fluids by using the background field
equations [10,11]. Thus, we are left with only three free
EFT functions. While Ω acts at both background and
perturbation levels, γ1 and γ2 contribute only to the linear
perturbation evolution.
The EFT functions can be specified for a chosen theory

once the mapping has been worked out [10–16]. For action
(1), the mapping simply reads

1þΩ ¼ 2

m2
0

G4;

m2
0H

2
0γ1 ¼ KXXX2 − 3

H
a6

G3XX
_ϕ5 − G3ϕX

_ϕ4

2a4

þ G3X

_ϕ2

2a4
ðϕ̈þ 2H _ϕÞ;

m2
0H0γ2 ¼ −2G3X

_ϕ3

a3
; ð3Þ

where dots are derivatives with respect to conformal
time, τ, and the subscripts X and ϕ are, respectively, the
derivatives with respect to X and ϕ. Therefore, the EFT
approach practically translates the problem of choosing
appropriate forms for the K, Gi-functions into choosing
specific forms of the EFT functions.
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Let us now comment on the functional dependence of the
K, Gi-functions. All of them can modify the expansion
history regardless of their specific dependence on ϕ or X.
However, this is not true at the level of perturbations. The
following are some examples:

(i) G3-function. G3 ¼ G3ðϕÞ: This function solely
affects the expansion history in the form of a
dynamical DE. Indeed, it can be recast as an
equivalent contribution of K in the form K ¼
FðϕÞX by integration by parts (with F ∝ G3ϕ)
[42]. G3 ¼ G3ðϕ; XÞ: This function gives nonvan-
ishing γ1 and γ2. Note that if γ2 ≠ 0, the function γ1
is forced to be nonzero from Eq. (3) (except in the
case of fine-tuning). The opposite does not hold.
This is an important aspect when selecting the
combinations of nonvanishing EFT functions.
Finally, G3X ≠ 0 has been identified as responsible
for the braiding effect or mixing of the kinetic terms
of the scalar and metric [42]. For this reason, γ2 can
be interpreted as a braiding function. Thus, in order
to parametrize for, e.g., the so-called kinetic gravity
braiding models (KGB) [42], both γ1 and γ2 need to
be active.

(ii) G4-function. When G4 ≠ m2
0=2, it is the only func-

tion which can modify the coupling, i.e., Ω ≠ 0.
The function m2

0ð1þΩÞ can be interpreted as an
effective Planck mass, and its evolution rate can be
defined as αM ¼ _Ω=Hð1þΩÞ [17]. A running
Planck mass also contributes to the braiding effect:
In particular, in the case G3X ¼ 0, the running
Planck mass is solely responsible for the braiding
effect [17].

(iii) K-function. When K is only a function of ϕ, it does
not give any contribution to the perturbations: In
fact, γ1 does not depend on KðϕÞ. On the contrary,
when K ¼ Kðϕ; XÞ, it contributes both to the back-
ground equations and to the perturbations through
γ1 (the latter if KXX ≠ 0). In particular, in the case
fG4ðϕÞ; G3 ¼ 0;KðXÞg and KXX ≠ 0, the form of
γ1 is fixed in terms of background functions as
γ1 ¼ c

m2
0
H2

0

ð _c_Λ − 1Þ.
In the regime in which the QS approximation

holds, it has been found that γ1 is negligible
for linear cosmological perturbations [11,12]. In
Sec. III A, we show that although γ1 is unlikely to
be constrained by cosmological data, it still plays a
relevant role in defining the stable parameter space
of the theory.

In order to study the cosmological signatures of each
EFT function, we introduce the μ, Σ parametrization, which
allows us to encode all possible deviations from GR at the
level of the linear perturbed field equations [7,8]. They are
defined, respectively, as the deviations from the GR
Poisson equation and the GR lensing equation and, in
Fourier space, they read

−k2ψ ¼ 4πGNa2μða; kÞρΔ;
−k2ðψ þ ϕÞ ¼ 8πGNa2Σða; kÞρΔ; ð4Þ

where fψðt; xiÞ;ϕðt; xiÞg are the gravitational potentials,
GN is the Newtonian gravitational constant, and ρΔ ¼P

iρiΔi includes the contributions of all fluid components.
GR is recovered for μ ¼ Σ ¼ 1.
Although their definition is very general, their explicit

and analytical expressions can be found by considering a
specific Lagrangian describing a chosen gravity theory with
one extra scalar DOF, in the QS approximation [17,43].
In such an approximation and for the case under analysis,
they read

μða; kÞ ¼ 1

1þΩ
1þM2 a2

k2

g1 þM2 a2

k2
;

Σða; kÞ ¼ 1

2ð1þ ΩÞ
1þ g2 þ 2M2 a2

k2

g1 þM2 a2

k2
; ð5Þ

where gi and M are functions of a and can be expressed in
terms of EFT functions, i.e., Ω and γ2. As anticipated
before, γ1 does not enter into these expressions because
they have been derived in the QS approximation (see
Ref. [43] for their explicit expressions and a general
discussion; here we address the specific case c2t ¼ 1).
Note that M represents the mass of the dark field and,
from Eq. (5), we see that it is responsible for the scale
dependence of the phenomenological functions: It defines a
new scale associated with the extra DOF, i.e., the Compton
scale (λC ∼ 1=M). In the super-Compton limit, i.e.,
k=a ≪ M (subscript “0”), one gets μ0 ¼ 1=ð1þ ΩÞ,
Σ0 ¼ μ0. In this limit, the only signature of modification
to gravity comes from the coupling function Ω. Such a
function impacts the clustering and lensing potentials and
has effects on the cosmic microwave background (CMB)
lensing and galaxy weak lensing. Additionally, because of
the late time integrated Sachs-Wolfe (ISW) effect, it affects
the amplitude of the low-multipole CMB anisotropies.
Finally, because of stability conditions (i.e., avoidance of
ghost instability for tensor modes [16]), we have
1þ Ω > 0; thus, both μ0 and Σ0 are positive. In the sub-
Compton limit (subscript “∞”) both the expressions
involve γ2 and Ω. As in the previous case, μ∞ and Σ∞
are modified, and if γ2 ≠ 0 it follows that μ∞ ≠ Σ∞. In this
case, the effects on the observables are the same as in the
previous limit, but they are the results of the combination of
both Ω and γ2. At these scales, the gravitational slip
parameter, η ¼ 2Σ=μ − 1, is modified only if γ2 ≠ 0,
allowing for the presence of an anisotropic stress term
related to the viscosity of a DE fluid [44]. On the other
hand, if γ2 ¼ 0 it follows that μ∞ ¼ Σ∞ and η∞ ¼ 1. For
stability requirements [17], μ∞ is positive, while a
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conclusion about Σ∞ is not straightforward. In this regard,
it has been shown in [45] that ðμ − 1ÞðΣ − 1Þ ≥ 0.
In Sec. IV, we verify the applicability of the QS

approximation within the sound horizon of the dark field
for the specific models analyzed in this work.

III. METHOD

A. Models

In this section, we present two agnostic parametrizations
of the EFT functions along with that of the equation of state
parameter, wDE, which fixes the expansion history. Then,
the underlying theory is fully specified [46].
We employ the DE equation of state given by the

Chevallier-Polarski-Linder (CPL) parametrization [47,48]:

wDEðaÞ ¼ w0 þ wað1 − aÞ; ð6Þ

where w0 and wa are constants and indicate, respectively,
the value and the time derivative of wDE today. According
to this choice, the density of the DE fluid evolves as

ρDEðaÞ ¼ 3m2
0H

2
0Ω0

DEa
−3ð1þw0þwaÞe−3wað1−aÞ; ð7Þ

where Ω0
DE is the density parameter of DE today.

For the functional forms of the EFT functions, we choose
the following cases:

(i) M1a:

ΩðaÞ ¼ Ω0as0 ; γiðaÞ ¼ 0; ð8Þ
where fs0;Ω0g are the constant parameters defining
the Ω function.

(ii) M1b:

ΩðaÞ ¼ Ω0as0 ; γiðaÞ ¼ γ0i a
si ; ð9Þ

where fsi; γ0i g are the parameters defining γi, with
i ¼ 1, 2.

(iii) M2a:

ΩðaÞ ¼ Ω0a−3ð1þw0þwaÞe−3wað1−aÞ;

γiðaÞ ¼ 0; ð10Þ
whereΩ0 is a constant. This parametrization follows
the DE density behavior, as shown in Eq. (7).

(iv) M2b:

ΩðaÞ ¼ Ω0a−3ð1þw0þwaÞe−3wað1−aÞ;

γiðaÞ ¼ γ0i a
−3ð1þw0þwaÞe−3wað1−aÞ; ð11Þ

where γ0i (i ¼ 1, 2) are constants.
We now focus on γ1 and, in particular, on the its effects

on the observables. As illustrated in the previous section, in
the QS limit γ1 does not appear in either μ or Σ; thus, it is

hard to know a priori which role it plays at the perturbation
level. In Ref. [49], in the context of the α-basis, it has been
shown that the kinetic function αK , when parametrized as a
function of the DE density parameter on a ΛCDM back-
ground, is hard to constrain with cosmological data. We
thus expect a similar result for γ1 since the two functions
are related [17].
For our study we consider the M1a model, and then we

solely add γ1, parametrized as in Eq. (9). We compute the
difference ΔCTTðlÞ between the temperature-temperature
power spectra for the two models, in units of cosmic
variance σl ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ð2lþ 1Þp
CTTðlÞ, where for the latter

CTTðlÞ is the power spectra of the model with γ1 ¼ 0.
We perform such a procedure for a sample of ∼103 models,
and we plot the results in Fig. 1. In such a sample, we
have varied the background parameters in the ranges
w0 ∈ ½−1.5; 0�, wa ∈ ½−1; 0.5�, and the EFT functions
parameters Ω0 ∈ ½0; 3�, s0 ∈ ½0; 3�, γ01 ∈ ½0; 3�, and
s1 ∈ ½−3; 3�. Let us note that these ranges have been
chosen by requiring the viability of the model against
ghost and gradient instabilities [17,50–57].
Analogously, in Fig. 2, we plot the deviations in CTTðlÞ

when both Ω and γ1 are parametrized as in M2, Eq. (11),
considering the combinations fΩ; γ1 ¼ 0g and fΩ; γ1g. In
this case, we consider a similar sample of ∼103 models,
where w0, wa,Ω0, and γ01 are varied in the same ranges as in
the previous case.
From Figs. 1 and 2, we can infer that the effects of γ1 on

the TT power spectrum become significant for l≲ 100,
due to the late-time ISW effect. However, such contribu-
tions are always within the cosmic variance limit: We find
that they never exceed 40% and 90% of comic variance for
M1 and M2, respectively. For this reason, we conclude that

FIG. 1. Effects of γ1 in M1 on the TT power spectrum. We plot
the deviation on the CTTðlÞ, in units of cosmic variance
σl ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ð2lþ 1Þp
CTTðlÞ. We consider a sample of ∼103

models, where both Ω and γ1 are parametrized as in M1. Here,
ΔCTT is obtained as the difference between the model with
Ωþ γ1 and the one with solely Ω.
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it is unlikely that present surveys can constrain γ1 or even
that next-generation experiments will gain constraining
power on such an operator. We show the results for the TT
power spectrum, while we check that, for other observ-
ables, we get similar results. Nevertheless, γ1 still plays an
important role in the stability criteria of Horndeski theories.
This means that, even if it does not directly modify the
cosmological observables in a sizable way, γ1 has a strong
effect on the allowed parameter space for the other EFT
functions (see Refs. [49,58] for the analogous case of αK).
In particular, it enters in the condition for the avoidance of
ghosts in the scalar sector [55].
As an illustrative example of the relevance of γ1 in the

stability, we consider the model described solely by γ1
(fΩ; γ2g ¼ 0Þ, when γ1 is parametrized as in Eq. (11) on a
CPL background. We show in Fig. 3 how drastically γ1
changes the stable w0 − wa parameter space, for different
values of γ01. We see that changing the value of the latter
parameter has a clear impact on the stability of the CPL
parameters: A positive value enlarges the stable parameter
space, while a negative γ01 shrinks it. Thus, we conclude
that although γ1 does not give any sizable effect on the
observables, it cannot be neglected from the cosmological
analysis because of its important role in the stability
conditions. Moreover, as already pointed out in Sec. II A,
when γ2 ≠ 0 it immediately follows that γ1 ≠ 0. For this
reason, it is worth including such EFT functions in the
present cosmological analysis.

B. Codes and data sets

For the present analysis, we employ the EFTCAMB/

EFTCOSMOMC codes [46,59,60].1 The reliability of
EFTCAMB has been tested against several Einstein-

Boltzmann solvers, and the agreement reaches the subper-
cent level [61].
We analyze Planck measurements [62,63] of CMB

temperature on large angular scales, i.e., l < 29 (low-l
likelihood), the CMB temperature on smaller angular scales,
30 < l < 2508 (PLIKTT likelihood), and theCMB lensing
map [64]. We also include baryonic acoustic oscillation
(BAO) measurements from BOSS DR12 (consensus
release) [65], local measurement ofH0 [66], and supernovae
(SN) data from the Joint Light-curve Analysis “JLA” SN
sample [67]. Along with the former data set, we consider
measurements from weak gravitational lensing from the
Kilo Degree Survey (KiDS) Collaboration [68–70]. In this
case, we make a cut at nonlinear scales, by following the
prescription in Refs. [71,72]. Practically, one performs a cut
in the radial direction k ≤ 1.5 hMpc−1, and one removes the
contribution from the ξ− correlation function. In this way,
the analysis has been shown to be sensitive only to the linear
scales [72].
We list the flat priors used for the model parameters

presented in the previous section: w0 ∈ ½−5; 0�, wa ∈
½−2; 4� and fΩ0; s; γ01; s1; γ

0
2; s2g ∈ ½−10; 10�.

C. Forecast analysis

We use the Fisher matrix approach [73–75], which is an
inexpensive way of approximating the curvature of the
likelihood at the peak, under the assumption that it is a
Gaussian function of the model parameters. The main
cosmological observables of next-generation galaxy red-
shift surveys, such as Euclid2 [76,77], DESI3 [78,79],

FIG. 2. Effects of γ1 in M2 on the TT power spectrum. We plot
the deviation on the CTTðlÞ, in units of cosmic variance
σl ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ð2lþ 1Þp
CTTðlÞ. We consider a sample of ∼103

models, where both Ω and γ1 are parametrized as in M2. Note
that ΔCTT is obtained as the difference between the model with
Ωþ γ1 and the one with solely Ω.

FIG. 3. Effects of γ1 on the stable CPL parameter space. We
consider the parametrization of γ1 defined in Eq. (11) and
compute the parameter space allowed by stability conditions,
for different values of γ01. The blue region represents the stable
parameter space when γ01 ¼ 0.1, the horizontal grey lines refer to
the case γ01 ¼ 0, and the vertical black lines to γ01 ¼ −0.1.

1See http://www.eftcamb.org.

2See http://www.euclid-ec.org.
3See https://www.desi.lbl.gov.
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LSST4[80], and SKA5 [81–84], are galaxy clustering (GC)
and weak lensing (WL). WL can be measured with
photometric redshifts and galaxy shape (ellipticity) data,
while GC needs the position of galaxies in the sky and their
redshifts to yield a three-dimensional map of the large-scale
structure of the Universe. Though photometric GC can also
give us some complementary information, especially in
cross-correlation with WL, we use here only the more
precise spectroscopic GC probe, which we assume to be
independent of WL observables. This is a rather
conservative approach, meaning that our constraints might
be weaker than in the full case with cross-correlations,
as it has been shown with present surveys such as DES
[85]. Moreover, we do not have a generally valid approach
to calculate the nonlinear matter power spectrum for
models within the EFT formalism; thus, we cannot include
nonlinear scales in our modeling of the Fisher matrix.
Therefore, we need to limit ourselves to linear scales,
which might yield to large forecasted errors, especially
for the WL analysis which is very sensitive to nonlinear-
ities. In practice, the largest scales we take into account
correspond to kmin ¼ 0.0079 h=Mpc−1 and, since we want
to restrict ourselves to linear scales, we use a hard cutoff
at kmax ¼ 0.15 h=Mpc−1 and at a maximum multipole of
lmax ¼ 1000. Finally, we perform the forecast analysis
only for the cases without massive neutrinos for the
following reasons: First, we cut our analysis at nonlinear
scales, and this is the regime where the larger effects
coming from the presence of the neutrinos are expected;
second, the results we get from cosmological data show that
massive neutrinos do not considerably affect the constraints
(see Sec. IV).

1. Galaxy clustering

In order to compute the predictions for galaxy clustering,
we need to compute Pobs, which is the Fourier transform of
the two-point correlation function of galaxy number counts
in redshift space.6 The observed galaxy power spectrum
follows the matter power spectrum of the underlying dark
matter distribution PðkÞ up to a bias factor bðzÞ and some
effects related to the transformation from configuration
space into redshift space. We assume the galaxy bias to be
local and scale independent, though modified gravity
theories might, in general, predict a scale dependence
[89]. To write down the observed power spectrum, we
neglect other relativistic and nonlinear corrections, and we
follow Ref. [74], so that we end up with

Pobsðk; μ̃; zÞ ¼
D2

A;fðzÞHðzÞ
D2

AðzÞHfðzÞ
B2ðzÞe−k2μ̃2σ2totPðk; zÞ; ð12Þ

with

σ2tot ¼ σ2r þ σ2v; BðzÞ ¼ bðzÞð1þ βdðzÞμ̃2Þ; ð13Þ

where BðzÞ contains the so-called Kaiser effect [90,91],
βdðzÞ≡ fðzÞ=bðzÞ, and f ≡ d lnG=d ln a is the linear
growth rate of matter perturbations. In this equation, μ̃ is
the cosine of the angle between the line of sight and the 3D
wave vector k⃗. Every quantity in this equation depends on
all cosmological parameters and is varied accordingly,
except for those with a subscript f, which denote an
evaluation at the fiducial value. In particular, we margin-
alize over the galaxy bias parameter for each redshift bin.
Here, DAðzÞ is the angular diameter distance, and the
exponential factor represents a damping term with σ2r þ σ2v,
where σr is the error induced by spectroscopic redshift
measurements and σv is the velocity dispersion associated
with the Finger of God effect [74]. We marginalize over this
last parameter [92] and take a fiducial value σv ¼
300 km=s compatible with the estimates in Ref. [93].
See Refs. [74,94,95] for further details.
The Fisher matrix is then computed by taking derivatives

of Pobs with respect to the cosmological parameters and by
integrating these together with a Gaussian covariance
matrix and a volume term, over all angles and all scales
of interest [94,96].
The galaxy number density nðzÞ we use here peaks at a

redshift of z ¼ 0.75, and it is similar to the spectroscopic
DESI-ELG survey found in [78]. We also use their expected
redshift errors and bias specifications, but a slightly larger
area of 15 000 square degrees. Such specificationswill allow
us to make predictions on cosmological and model param-
eters which can soon be comparedwith real data. Let us note
that using specifications closer to the SKA-2 survey would
probably result in stronger constraints than those we will
obtain with DESI-like specifications. However, data from
SKA-2 will not be available in the next decade. In this
regards, our results can provide a better insight on the
constraining power of a near future survey on MG theories.

2. Weak lensing

Weak lensing is the measurement of cosmic shear, which
represents the ellipticity distortions in the shapes of galaxy
images. This in turn is related to deflection of light due to
the presence of matter in the Universe. Therefore, WL is a
very powerful probe of the distribution of large-scale
structures, and due to its tomographic approach, it provides
valuable information about the accelerated expansion of the
Universe. Assuming small gravitational potentials and large
separations, we can link cosmic shear to the matter power
spectrum, giving direct constraints on the cosmological

4See https://www.lsst.org.
5See https://www.skatelescope.org.
6It has been shown in previous works that a Fisher matrix

forecast analysis which makes use of the full shape of the Pobs
allows us to obtain very similar constraints to those obtained by
using the multipole method [86–88].
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parameters. In this case, we use tomographic WL in which
we measure the cosmic shear in a number of wide redshift
bins, given by a window function WiðzÞ at the bin i, which
is correlated with another redshift bin j. The width of these
window functions depends on a combination of the photo-
metric redshift errors and the galaxy number densities. The
cosmic shear power spectrum can thus be written as a
matrix with indices i, j, namely,

CijðlÞ ¼
9

4

Z
∞

0

dz
WiðzÞWjðzÞH3ðzÞΩ2

mðzÞ
ð1þ zÞ4 Σ2ðk; zÞPm;

ð14Þ

with Pm evaluated at the scale l=rðzÞ, where the comoving
distance is rðzÞ. In modified gravity, the lensing equation is
modified by the term Σ in Eq. (4); thus, it turns out that such
a term also appears in the evaluation of the power spectrum.
For the Fisher matrix, we follow the same procedure as in
Refs. [39,94], where for the actual unconvoluted galaxy
distribution function, we have assumed

nðzÞ ∝ ðz=z0Þ2 exp ð−ðz=z0Þ3=2Þ; ð15Þ

and SKA-like specifications for WL [97]. Although these
are rather futuristic specifications, we choose them in order
to improve our WL constraints, which otherwise would not
be very informative since we consider only linear scales.

IV. RESULTS

In addition to thementioned variety of gravitymodels, we
also consider two different cosmological scenarios: onewith
massless neutrinos and the other with a massive neutrino
component. In Table I, we show the results for the cosmo-
logical parameters for the models M1a/b, M2a/b, with and
without massive neutrinos. In the same table, we added, for
comparison, the ΛCDM results. In Table II, we show the
constraints on the corresponding model parameters.
We also studied the effects of giving different hierarchies

to the massive neutrino species, considering the normal
(NH), inverted (IH), and degenerate (DH) hierarchy sce-
narios. The impact of different hierarchies on cosmological
constraints was first considered both in ΛCDM [98–100]
and alternative cosmologies [101,102], and it is expected
that the probability of breaking the degeneracy between
them increases as the bound on the total mass of neutrinos
becomes tighter [98]. Nevertheless, we find that such
different scenarios are indistinguishable when using this
combination of data. The reason can be found in the
following argument: In order to get any insight on a
preferred hierarchy, one should get a sensitivity on the
sumof neutrinomasses ofΣmν < 0.2 eV at 2σ; in particular,
to exclude the IH, it has to beΣmν < 0.1 eV, as discussed in
Ref. [98]. For the data sets and models considered in the
presentwork,Σmν never goes below this threshold at 2σ (see
Table I).
We find that, regardless of the model considered, the

cosmological parameters fAs; ns; H0;Ωm;Σmνg are all
consistent with the ΛCDM scenario at 2σ. Furthermore,
we do not find relevant differences when considering
different combinations of the data sets; for such a reason,

TABLE I. The 2σ marginalized constraints on cosmological
parameters. These values are obtained through the analysis of the
full data set presented in Sec. III B.

Model 109As ns Ωm H0 Σmν

ΛCDM 2.11þ0.12
−0.12 0.969þ0.009

−0.009 0.297þ0.013
−0.013 68.7þ1.1

−1.0

ΛCDMþν 2.22þ0.23
−0.19 0.974þ0.012

−0.011 0.300þ0.015
−0.014 68.4þ1.2

−1.2 <0.288

M1a 2.21þ0.21
−0.21 0.974þ0.012

−0.012 0.295þ0.017
−0.016 68.7þ1.8

−1.7

M1a þν 2.29þ0.25
−0.22 0.976þ0.013

−0.013 0.298þ0.017
−0.018 68.4þ1.8

−1.6 <0.281

M1b 2.19þ0.24
−0.23 0.973þ0.013

−0.012 0.293þ0.017
−0.017 68.9þ1.8

−1.8
M1b þν 2.28þ0.25

−0.25 0.975þ0.013
−0.015 0.295þ0.018

−0.016 68.8þ1.8
−1.7 <0.347

M2a 2.27þ0.21
−0.20 0.972þ0.010

−0.010 0.302þ0.015
−0.014 68.1þ1.3

−1.4

M2a þν 2.35þ0.24
−0.22 0.975þ0.011

−0.011 0.303þ0.016
−0.014 67.9þ1.3

−1.4 <0.236

M2b 2.20þ0.28
−0.26 0.968þ0.013

−0.013 0.300þ0.016
−0.016 68.6þ1.8

−1.6

M2b þν 2.30þ0.29
−0.29 0.970þ0.014

−0.014 0.304þ0.017
−0.017 68.5þ1.7

−1.6 <0.543

TABLE II. The 2σ marginalized constraints on model parameters. These values are obtained through the analysis of the full data set
presented in Sec. III B. Here, −− means that the parameter is left unconstrained.

Model w0 wa Ω0 s0 γ01 s1 γ02 s2

M1a −1.04þ0.14
−0.16 0.22þ0.46

−0.39 −0.07þ0.17
−0.18 >0.435

M1a þν −1.02þ0.13
−0.18 0.12þ0.49

−0.37 −0.04þ0.15
−0.21 >0.240

M1b −1.07þ0.15
−0.16 0.30þ0.47

−0.42 0.03þ0.31
−0.25 >0.215 >0.217 −− −0.9þ1.3

−2.0 >0.330

M1b þν −1.08þ0.16
−0.15 0.24þ0.49

−0.48 0.01þ0.33
−0.33 >0.296 >0.103 −− −1.9þ2.3

−5.0 >0.147

M2a −0.946þ0.090
−0.060 −0.098þ0.25

−0.28 0.018þ0.032
−0.019

M2a þν −0.950þ0.087
−0.056 −0.11þ0.23

−0.30 0.019þ0.037
−0.020

M2b −0.94þ0.15
−0.13 −0.31þ0.48

−0.63 0.047þ0.068
−0.051 >0.295 −0.23þ0.26

−0.32

M2b þν −0.93þ0.15
−0.14 −0.61þ0.66

−0.66 0.080þ0.099
−0.081 >0.151 −0.36þ0.36

−0.47
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we only show the results for the full data set analysis.
Such constraints are not considerably affected by the
presence of massive neutrinos or by the modifications to
gravity introduced through Ω; γ1, and γ2. Finally, as shown
in Table II, γ1 is really weakly constrained by the data, and
the results are mostly compatible with the prior we used.
The cut in the negative prior range is due to the requirement
of avoiding ghost instability which enforces a positive γ01.
The same happens for the exponent parameter s1 which is
left totally unconstrained. This result is expected and in line
with the discussion presented in Sec. III A.
Let us now move to the forecasts. We use the best-

fit parameters of the corresponding model from Tables III
and IV as fiducial values for the following reasons: (1) To
avoid unconstrained parameters. In the M1 case, the
ΛCDM limit corresponds to Ω0 ¼ γ0i ¼ 0. Using these
values would distort the results on the exponentials si,
which then will be unconstrained. Such results would
depend only on the choice of the fiducial values and will
not be informative on the constraining power of the next-
generation-like survey. (2) As can be noticed from Table II,
we obtained lower limit bounds on the γ01 parameter. The
value expected for γ01 in the ΛCDM limit is 0, and it is
excluded by our constraints. Thus, we deduced that the
best-fit parameters are more representative as fiducial
values for these models than those of ΛCDM. For the
models with γ1, we have used γ01 ¼ 5.0 and s1 ¼ 1.4 for
M1b, while forM2bwe used γ01 ¼ 4.4. We considered these
values as fixed since we proved that the effect of γ1 is
negligible on the cosmological observables, even for next-
generation surveys. Let us stress that the results we obtain
stay as long as the present best-fit values remain.

In Fig. 4, we show the forecasted 1σ and 2σ constraints,
for the model parameters of M1a, for different combina-
tions of the next-generation data sets. From such plots, we
can see the effect of the different data sets: We find a
common feature in the w0–wa plane, where the GC analysis
removes the degeneracy coming from the Planck measure-
ments; analogously, we can appreciate how the inclusion of
WL in the CG analysis considerably increases the con-
straints on Ω0.
In Figs. 5 and 6, we compare the forecasted marginalized

distribution for the models M1b-M2b and M1a-M2a,
respectively, obtained through the analysis with the full
CGþWLþ Planck data set. From these results, we can
see that theM1b-M2bmodels have the fiducial values ofΩ0

compatible within the error bars, while in the w0 − wa
parameter space, the models could be distinguished at more
than 5σ. Alternatively, in the M1a-M2a comparison plot,
while the constraints on cosmological parameters, H0 and
Ωm, are very similar, the constraint on Ω0 for the model
M2a is much stronger (GC and Planck). This is due to the
fact that inM2a the parameter Ω0 is related to w0 − wa and
therefore can be measured indirectly by measuring the
equation of state of dark energy. In the marginal likelihood
of Ω0, both models could be distinguished at almost the
3σ level.
In Tables III and IV, we list the forecasted 2σ errors,

respectively, on the cosmological and model parameters
obtained with the GCþWLþ Planck combination, for a
future next-generation galaxy survey. Compared to present
data, we find that future surveys, in general, will slightly
improve the constraint on cosmological parameters;

TABLE III. Forecasted 2σ errors on the cosmological param-
eters for a next-generation spectroscopic galaxy clustering
measurement plus a photometric weak lensing experiment, using
Planck priors.

Model 2σð109AsÞ 2σðΩmÞ 2σðH0Þ 2σðnsÞ
M1a 4.0% 1.9% 1.0% 0.8%
M1b 4.2% 2.2% 1.1% 0.9%
M2a 0.02% 1.4% 0.8% 0.7%
M2b 4.4% 1.7% 1.0% 0.8%

TABLE IV. Forecasted 2σ marginalized constraints on model
parameters. These values are obtained with the combination of
GCþWLþ Planck for a future next-generation galaxy survey.

Model 2σðw0Þ 2σðwaÞ 2σðΩ0Þ 2σðs0Þ 2σðγ02Þ 2σðs2Þ
M1a 2.0% 50% 110% 68% – –
M1b 2.2% 40% 128% 96% 240% 136%
M2a 1.9% 44% 22% – – –
M2b 2.6% 18% 48% – 40% –

FIG. 4. Forecast for model M1a for the equation of state
parameters w0, wa and the model parameter Ω0. In purple, we
have GC, in green GCþWL (assuming they are independent), in
blue the Planck prior from our MCMC, and in orange the
combination of GCþWLþ Planck.
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notably, for the As parameter inM2a, the error reduces by 2
orders of magnitude in the forecasts. Such an improvement
is due to the WL which breaks the degeneracy with CG and
Planck. Furthermore, future surveys will improve the
constraints on the model parameters by 1 order of magni-
tude. Even better, they will set constraints of order ≲100%
on s0, s2 parameters for which the present data adopted in
this work are only able to set lower bounds.

We also explore the deviations from GR of the μ and Σ
functions, and we test the goodness of their QS approx-
imations. For these purposes, we compare the QS expres-
sions for μ and Σ, as reported in Eq. (5), with those obtained
by using their exact expressions as in Eq. (4) (hereafter, we
will use the superscript “ex”). These are computed by
evolving the full dynamics of perturbations with EFTCAMB.
Finally, we show the deviations of the exact solutions with
respect to GR. The cosmological/model parameters are
chosen according to the best-fit values in Tables I and II.
We did not include the case of massive neutrinos since their
presence does not make any consistent difference.
For the M1a/b models, we find that the QS approxima-

tion is a valid assumption at the values of z and k
considered, being the difference between μ=Σ QS and
exact ∼10−3ð0.1%Þ, and μ=Σ are also compatible with GR
(jμ − 1j and jΣ − 1j ∼ 10−3).
For the M2a/b cases, we find different results, as we

show in Fig. 7. In the top panels, we plot the difference
between the QS and exact solutions. We can see that the QS
approximation is a valid assumption within the sound
horizon (ks ¼ cskH, black line). Indeed, for both M2a
and M2b, the quantity ΔΣ ¼ jΣex − ΣQSj reaches around
0.1% deep inside the ks, while outside, it grows to a few

FIG. 6. Forecasts comparing models M1a (purple) and M2a
(green) for the model parameter Ω0 and the cosmological
parameters H0 and Ωm. Both Fisher matrices in this plot are
computed for the combined GCþWLþ Planck case.

FIG. 5. Forecasts comparing models M1b (blue) and M2b
(orange) for the equation of state parameters w0, wa and the
model parameter Ω0. Both Fisher matrices are computed for the
combined GCþWLþ Planck case.

FIG. 7. Top panels: Absolute relative differences between the
exact (“ex”) and QS calculations of Σ for theM2amodel (top left)
and the M2b model (top right). The black line corresponds to the
dark energy sound horizon scale. Bottom panels: Absolute
relative differences between exact Σ in models M2a (bottom
left) and M2b (bottom right) and the general relativity value. The
white line corresponds to the Compton scale associated with the
extra scalar DOF. In all panels, we have used the best-fit values
for the parameters in Tables I and II. For reference, we checked
that such results show a behavior similar to what we obtain for the
μ function.
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percent, reaching around 10% at small z. Finally, we explore
the deviations of the M2 model from GR. From the bottom
panels in Fig. 7, one can clearly see that the Compton
wavelength (kC, white line) associated with the extra scalar
DOF actually introduces a transition between two regimes.
In fact, the large deviations fromGR at k > kC can reach 5%
at all redshifts (M2a) or for z > 1 (M2b). On the other hand,
at larger scales (k < kC),Σ gets closer to its GR value, with a
relative difference which is always below 1%.
Such results are particularly interesting when we want to

extend the forecasts and analyze the constraining power of
future surveys on the phenomenological functions Σ, μ.
Using the QS expressions in Eq. (5) and the Fisher matrices
obtained for the model parameters, we can calculate a
derived Fisher matrix F̃ for the forecasted errors on the
derived quantities μ and Σ as follows:

F̃ ¼ JTFJ; ð16Þ

with

J≡ Jij ¼
∂pi

∂q̃j ; ð17Þ

where pi is a vector containing all the parameters of the
model [standard cosmological parameters (Ωm, H0, As, ns,
w0 and wa) together with EFT parameters (Ω0; γ02; si;…)]
and q̃ is a vector containing the standard cosmological
parameters plus μ and Σ. Through the QS limit, we can
compute ∂q̃j=∂pi since we know the functions Σðk; z; piÞ
and μðk; z; piÞ. So, in order to compute the Jacobian J, it
can be shown that its inverse is equal to J−1ij ¼ ∂q̃j=∂pi.
We compute the derived Fisher matrices at a fixed scale,

i.e., k ¼ 0.01 h=Mpc, which is well inside the Compton
scale, for which the QS approximation is valid and where
linear structure formation still holds. We do the same for six
redshift bins, between z ¼ 0.5 and z ¼ 2.0, which cover
typical redshift ranges of future surveys. We report in Fig. 8

the 2σ error on ΣðzÞ after marginalizing over all other
parameters. We obtain the same errors for μðzÞ since, for
our models, this function behaves extremely similarly
to ΣðzÞ.
For models M1a and M1b, the errors obtained are

of the order of 10−3, decreasing towards 10−4 for higher
redshifts (z > 1.5), since there the functions μðzÞ and
ΣðzÞ asymptotically tend to 1, independent of the cosmo-
logical parameters, which then implies very small predicted
errors. For models M2a and M2b, the forecasted errors are
constant in redshift, approximately 4 × 10−3 and 2 × 10−1,
respectively.

V. CONCLUSION

In this work, we have explored the phenomenology of
the class of Horndeski theory compatible at all redshifts
with the gravitational wave constraints, which we called
surviving Horndeski (sH). For this class of modified gravity
models, we have provided cosmological constraints from
present-day and upcoming large-scale surveys. We per-
formed the study by means of the EFT framework: Thus,
we moved the problem of choosing the sH functions
fK; G3; G4g to selecting the free functions in the EFT
formalism fΩ; γ1; γ2g. For this particular class of models,
the mapping procedure becomes quite straightforward, and
there exists a one-to-one correspondence between each
EFT function and the Horndeski ones. Modeling the EFT
functions instead of the Gi functions could, in some cases,
result in oversimplified descriptions of the evolution of the
Universe, which might miss a significant signature of
modified gravity [103], even though model-independent
descriptions led to some relevant and novel predictions
about modifications of gravity [45,57,104–108].
We found that the main contribution of the EFT function

γ1 dwells in the late-time ISW effect, but always within the
cosmic variance limits. We could then infer that neither
present nor future surveys can constrain the evolution
of γ1: This is confirmed by the results of our cosmological
analysis in Table II, which left the γ1 parameters completely
unconstrained. However, let us note that the use of sophis-
ticated multitracer techniques could allow us to overcome
the cosmic variance limitations [109].Moreover, we showed
that γ1 still has an important role in defining the viable
parameter space of the theory; thus, it cannot be neglected in
the cosmological analysis.
We provided a constraint analysis of the sH models,

using present-day data and forecasts from combinations of
GC and WL for a generic next-generation galaxy survey.
We found that future surveys will be able to increase the
precision on the model parameter constraints by 1 order of
magnitude. In the forecast analysis, we did not notice any
peculiarity at the level of the cosmological parameters,
whose error bars are compatible among all models; we
highlighted many features related to the model parameters
for the single cases. For example, we were able to show that

FIG. 8. Forecasted 2σ errors on the ΣðzÞ parameter, for all four
models considered in this work. The errors turn out to be quite
small since the parameter dependence of Σ is very mild in the QS
limit. We fix k ¼ 0.01 h=Mpc.
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the correlation between γ02 and wa in M2b translates into
tighter constraints on the latter parameter. Furthermore, in
Figs. 5 and 6 we showed the M1b/M2b and M1a/M2a
model comparisons for the forecasted marginalized results.
From such comparisons, we are able to state that, given
these fiducials, we will be able to distinguish M1b from
M2b at the 5σ level in the w0 − wa parameter space and,
analogously, M1a from M2a at 3σ in the marginal like-
lihood of Ω0.
We studied the deviations ofM1 and M2, with respect to

GR, in terms of the phenomenological functions μ and Σ.
We found that M1 is compatible with GR within 0.1%,
while M2a/b show a 5% departure from GR, at scales
smaller than the Compton scale. We then tested the validity
of the QS approximation, and we found that it is a valid
assumption for theM1model regardless of the scale, while,
in the case of M2, we numerically checked that the validity
of the QS limit is deeply connected with the definition of
the dark energy sound horizon scale: Within this scale, the
approximation holds at the subpercent level, while it breaks
down at larger scales. This result concretely proves what
was found in [9]. Finally, we propagated the forecasted
errors on the model parameters into μ and Σ, and we found
that for models M1a/b the forecasted 2σ errors, despite
being very small (∼10−3), will not be able to discriminate
these models from GR at more than 1σ because both μ, Σ
are close to the GR values, i.e., μ ¼ Σ ¼ 1. On the contrary,
for modelsM2a/b the discrepancy from GR is large, and the
errors are small enough, such that, provided the same best-
fit values hold, we could distinguish these models from
standard GR at more than 3σ in the derived quantities μ and
Σ, using future galaxy surveys combined with CMB priors.
We conclude that the surviving class of Horndeski theory

offers an interesting cosmological phenomenology, even

after the c2t ¼ 1 constraint, and it is worth further inves-
tigating with the upcoming observational data. Future
surveys will provide a large amount of high precision
data, not only limited to the galaxy clustering and weak
lensing observables considered here, and the inclusion in
the data analysis of a proper treatment of nonlinear scales
will further improve their power in constraining [39]. Such
high sensitivity will set tiny constraints on any signature of
deviations from GR, allowing us to discriminate among
gravity models, and it will represent the ultimate test for the
ΛCDM scenario.
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