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Site-occupation embedding theory (SOET) [B. Senjean et al., Phys. Rev. B 97, 235105 (2018)] is an in-
principle exact embedding method combining wave-function theory and density functional theory that gave
promising results when applied to the one-dimensional Hubbard model. Despite its overall good performance,
SOET faces a computational cost problem as its auxiliary impurity-interacting system remains the size of the full
system (which is problematic as the computational cost increases exponentially with system size). In this work,
this issue is circumvented by employing the Schmidt decomposition, thus leading to a drastic reduction of the
computational cost while retaining the same accuracy. We show that this projected version of SOET (P-SOET) is
competitive with other embedding techniques such as density matrix embedding theory (DMET) [G. Knizia and
G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012)]. In contrast to the latter, density functional contributions
come naturally into play in P-SOET’s framework without any additional computational cost or double counting
effect. As an important result, the density-driven Mott-Hubbard transition in one dimension (which is displayed
by multiple impurity sites in DMET or in dynamical mean-field theory) is well described, for the first time, with
a single impurity site.

DOI: 10.1103/PhysRevB.100.035136

I. INTRODUCTION

Due to their unusual and remarkable properties, strongly
correlated materials play an important role in the develop-
ment of innovative technologies, such as photovoltaic cells,
pharmaceuticals and industrial catalysts. These developments
would greatly benefit from an accurate theoretical descrip-
tion. Unfortunately, the infamous exponential wall problem
prevents the use of correlated wave-function methods, and
alternatives must be considered. A major milestone has been
delivered by Kohn-Sham density functional theory (KS-DFT)
[1,2]. Despite its in-principle exact mathematical foundation,
strongly correlated systems still remain challenging for the
present density functional approximations [3–5]. Alterna-
tively, quantum embedding theories [6] have been proposed
and are the main focus of this paper. The strategy of em-
bedding techniques consists in solving only a small part
of the system (referred to as the fragment) by a high-level
method, while a low-level approximation is used for the rest of
the system (referred to as the environment). Green-function-
based methods have been developed, such as the widely used
dynamical mean-field theory (DMFT) [7–13] or the more
recent self-energy embedding theory (SEET) [14–20]. If one
is interested about ground-state properties only, the Green
function can be replaced by frequency-independent variables,
such as the one-particle reduced density matrix (1RDM) or the
electron density. This has led to the density matrix embedding
theory (DMET) [21], the density embedding theory (DET)
[22], and related methods that allow overlapping between
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fragments [23–26]. They rely on the Schmidt decomposition
of the full system wave function. It generates an embedded
problem sufficiently small to be solved by exact diagonal-
ization [21,22,27], density matrix renormalization group [28],
auxiliary-field quantum Monte Carlo [29], and more recently
the complete active space self-consistent field [30,31]. In prac-
tice, the exact wave function of the full system is not known
and has been approximated by Hartree-Fock (HF) [21,27],
spin-unrestricted HF [22], HF-Bogoliubov [32,33], antisym-
metrized geminal power [34], block-product states for spin
lattices [35,36], multiconfigurational self-consistent field [31]
and KS-DFT [26]. Note that DMET has been mostly applied
to model Hamiltonians [21,22,29,32–40] but also to quantum
chemical systems [27,28,30,31]. Extension to excited-state
properties [41,42] and to nonequilibrium electron dynamics
[43] have been investigated, as well as rigorous combinations
of DMET with DMFT [44] and with the rotational invariant
slave bosons theory [45].

In this work, a new method stemming from site-occupation
embedding theory (SOET) [46–50] is proposed and relies on
the Schmidt decomposition. In SOET, only the fragment is
explicitly interacting, in the line of DMET (in its noninteract-
ing bath formulation) and other embedding approaches. But
instead of being approximated, the environment is described
in-principle exactly by a complementary functional of the
density. Still in its early stages, SOET has been applied to
the one-dimensional Hubbard model although an extension
to quantum chemistry is not excluded [46,50]. The attrac-
tiveness of SOET resides in its in-principle exact embedding
framework that combines both wave-function theory (WFT)
and DFT without double counting problem. However, it has
remained prohibitively expensive, as the size of the auxiliary
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impurity-interacting system remained the size of the original
(fully interacting) problem. In this work, we take advantage of
the Schmidt decomposition to rigorously remove most of the
degrees of freedom in the environment, and to replace it by a
bath that is the same size as the fragment (i.e., the impurity-
interacting sites). We refer to this new method as projected-
SOET (P-SOET), and apply it to the one-dimensional uniform
Hubbard model up to 400 sites. We show that P-SOET yields
accurate results at a drastically reduced computational cost.

The paper is organized as follows. After a brief summary
of the key equations of SOET in Sec. II A, P-SOET and its im-
plementation are introduced in Sec. II B. Details on the func-
tionals of the density are given in Sec. II C followed by the
computational details in Sec. III. Results obtained on the one-
dimensional uniform Hubbard model are provided in Sec. IV.
The density-driven Mott transition is studied in Sec. IV D.
Finally, conclusions and perspectives are given in Sec. V.

II. THEORY

A. Site-occupation embedding theory

For the paper to be self-contained, this section summarizes
the key equations of SOET [46–49]. We start with the (not
necessarily uniform) one-dimensional L-site Hubbard model
in an external potential (v ≡ {vi}i),

Ĥ = −t
L−1∑

i=0,σ

(ĉ†
iσ ĉi+1σ + H.c.) + U

L−1∑
i=0

n̂i↑n̂i↓ +
L−1∑
i=0

vin̂i,

(1)

with t > 0 the hopping parameter between first neighbor sites
and U the on-site electronic repulsion. The site-occupation
operator n̂i = n̂i↑ + n̂i↓ (with n̂iσ = ĉ†

iσ ĉiσ ) is expressed us-
ing the creation (ĉ†

iσ ) and annihilation (ĉiσ ) operators of an
electron of spin σ on site i. The ground-state energy of this
model can be expressed in site-occupation functional theory
(SOFT) [51,52] (DFT analog for model Hamiltonians) using
the following variational principle:

E (v) = min
n

{F (n) + (v|n)}, (2)

where

F (n) = min
�→n

{〈�|T̂ + Û |�〉} (3)

is the Levy-Lieb (LL) functional and (v|n) = ∑
i vini. The

idea of SOET relies on mapping the fully interacting problem
onto a partially interacting one. The interacting sites are
referred to as impurities, and M impurities are embedded in
a bath of (L − M ) noninteracting sites. (Note that the term
bath in SOET actually refers to the environment in DMET.)
This is done by decomposing the conventional LL functional
as follows [49]:

F (n) = F imp
M (n) + E

bath
Hxc,M (n), (4)

where

F imp
M (n) = min

�→n
{〈�|T̂ + ÛM |�〉} (5)

is the M-impurity-interacting functional with ÛM =
U

∑M−1
i=0 n̂i↑n̂i↓, and E

bath
Hxc,M (n) is the complementary Hxc

bath energy, functional of the sites occupation. Inserting this
decomposition into Eq. (2) leads to the variational principle
within SOET [49]:

E (v) = min
�

{〈�|T̂ + ÛM |�〉 + E
bath
Hxc,M (n� ) + (v|n� )

}
,

(6)

where n� ≡ {〈�|n̂i|�〉}i. The minimizing M-impurity-
interacting wave function �

imp
M in Eq. (6) reproduces the exact

density profile of the fully interacting system and fulfills the
following self-consistent equation:(

−t
L−1∑

i=0,σ

(ĉ†
iσ ĉi+1σ + H.c.) + ÛM +

L−1∑
i=0

vemb
M,i n̂i

)∣∣� imp
M

〉

= E imp
M

∣∣� imp
M

〉
, (7)

where E imp
M is the impurity auxiliary energy (i.e., the ground-

state energy of the M-impurity interacting Hamiltonian) and

vemb
M,i = vi + ∂E

bath
Hxc,M

(
n�

imp
M

)
∂ni

(8)

corresponds to the embedding potential for the M impurities
embedded into the (L − M ) bath sites. Concerning the com-
plementary Hxc bath functional, it can be shown that [46]

E
bath
c,M (n) = Ec(n) − E imp

c,M (n), (9)

where E imp
c,M (n) is the analog of the correlation functional for

the M-impurity-interacting system. Turning to the uniform
problem investigated in this paper [v = 0 in Eq. (1)], the local
density approximation (LDA) of Ec(n) is exact and reads

Ec(n) =
∑

i

ec(ni ), (10)

where ec(n) is the per-site correlation energy functional. In ad-
dition, the exact per-site energy e = E (v = 0)/L and double
occupation expressions for the uniform Hubbard model have
been derived in Ref. [49] and read

e = 1

M

M−1∑
i=0

[
ts
(
n�

i

) + t
∂ec

(
n�

i

)
∂t

+ U 〈n̂i↑n̂i↓〉�
]∣∣∣∣∣

�=�
imp
M

+ U
∂ebath

c,M (n� )

∂U

∣∣∣∣∣
�=�

imp
M

(11)

and

d = 1

M

M−1∑
i=0

〈n̂i↑n̂i↓〉
�

imp
M

+ ∂ebath
c,M

(
n�

imp
M

)
∂U

, (12)

respectively, where ts(n) = −4t sin(πn/2)/π is the (one-
dimensional) per-site noninteracting kinetic energy functional
and

ebath
c,M (n) = 1

M

[(
M−1∑
i=0

ec(ni )

)
− E imp

c,M (n)

]
(13)

is the per-site analog of the bath correlation energy in Eq. (9).
Interestingly, the per-site energy and the double occupation

035136-2



PROJECTED SITE-OCCUPATION EMBEDDING THEORY PHYSICAL REVIEW B 100, 035136 (2019)

are related to each other as follows:

e = Ud + 1

M

M−1∑
i=0

[
ts
(
n�

i

) + t
∂ec

(
n�

i

)
∂t

]∣∣∣∣∣
�=�

imp
M

. (14)

B. Projected site-occupation embedding theory

In SOET, the auxiliary impurity-interacting problem has
the same size as the full system even though the interactions
are restricted to the fragment of interest. This is the actual
bottleneck of SOET. Indeed, as currently implemented, con-
sidering the kinetic operator in the whole system in Eq. (7)
does not lead to any reduction of the computational cost com-
pared to solving the fully interacting system. In the following,
we describe how the Schmidt decomposition is employed in
P-SOET to drastically reduce the size of the system to which
a correlated wave-function theory is applied. First, we review
the Schmidt decomposition introduced by Knizia and Chan
within the now well-established DMET [21]. We then discuss
how to derive the embedded problem in P-SOET.

1. Review of the Schmidt decomposition

Suppose that the system is divided into a fragment F and
the rest of the system (referred to as the “environment”) E .
For instance, regarding the SOET Hamiltonian in Eq. (7),
the fragment is composed of the M explicitly interacting
impurity sites while the remaining implicitly interacting sites
correspond to the environment. Note that in SOET, the latter
is referred to as the bath, but in this paper we will follow
the DMET nomenclature where the bath states are obtained
after the Schmidt decomposition. The total Hilbert space of
the system is the tensor product of F and E , H = HF ⊗ HE ,
where HF (HE ) has size NF = dLF (NE = dLE ). LF (LE ) is
the number of sites in subsystem F (E ). Given that a site
is equivalent to a spatial orbital, there are d = 4 possible
occupations: empty, singly occupied with spin projection sz =
±1/2, and doubly occupied {|0〉, | ↑〉, | ↓〉, | ↑↓〉}. Let {|Fi〉}i

({|Ej〉} j) denote the many-body basis of size NF (NE ). H is
then spanned by NF NE = 4LF +LE = 4L many-body states de-
noted by {|Fi〉|Ej〉}i j . The ground state in H can be expressed
as

|�0〉 =
NF∑
i=1

NE∑
j=1

Ci j |Fi〉|Ej〉. (15)

Performing the singular value decomposition and assuming
NF < NE leads to

|�0〉 =
NF∑
i=1

NE∑
j=1

NF∑
n=1

UinλnV
†

n j |Fi〉|Ej〉

=
NF∑

n=1

λn|F̃n〉|B̃n〉, (16)

where Uin and V ∗
jn = V †

n j rotate the many-body basis {|Fi〉}i and
{|Ej〉} j into a new many-body basis {|F̃n〉}n and {|B̃n〉}n (where
B̃ now refers to the new bath states, to be distinguished with
the environment states). Equation (16) is called the Schmidt
decomposition of the wave function [21], now expressed

within the reduced Hilbert space spanned by N2
F = 42LF many-

body states (denoted by {|F̃m〉|B̃n〉}mn), thus removing most of
the degrees of freedom in the environment. The corresponding
embedded Hamiltonian is then obtained by projection,

Ĥ emb = P†ĤP, (17)

where P defines the projector onto the Schmidt basis,

P =
NF∑

m=1,n=1

|F̃m〉|B̃n〉〈B̃n|〈F̃m|. (18)

This projector does not affect the exact ground-state wave
function, P|�0〉 = |�0〉, such that

Ĥ |�0〉 = E0|�0〉 → Ĥ emb|�0〉 = E0|�0〉. (19)

The ground state of the embedded Hamiltonian is then also
the ground state of the full system. However, this exact
decomposition requires the a priori knowledge of the exact
wave function, which is of course not known. An approximate
wave function has to be used instead and the single Slater de-
terminant obtained from a KS-SOFT calculation is considered
in this work, thus leading to approximate single-particle bath
states |B̃n〉.

2. P-SOET

Let us consider the fully interacting lattice problem given
by the L-site uniform Hubbard Hamiltonian. The first step is to
obtain the approximate single-particle bath states defining the
projection operator from a noninteracting system as reference.
In DMET, this reference commonly corresponds to the mean-
field approximation of the physical system. In P-SOET, it
makes sense to consider a noninteracting system which has
the same density as the physical one, as this density will
be used in the determination of the per-site energy and the
double occupation [Eqs. (11) and (12)]. Hence, we consider
the KS-SOFT Hamiltonian,

ĥKS = −t
L−1∑

i=0,σ

(ĉ†
iσ ĉi+1σ + H.c.) +

L−1∑
i=0

∂EHxc(n)

∂ni
n̂i, (20)

because its (self-consistently determined) effective potential
reproduces the same density as the physical system, in princi-
ple, exactly. Note that this choice has also been made recently
by Mordovina et al. [26]. The obtained density is then inserted
into Eq. (8) to determine the analytical embedding potential,
used to construct the one-body effective Hamiltonian

ĥeff = −t
L−1∑

i=0,σ

(ĉ†
iσ ĉi+1σ + H.c.) +

L−1∑
i=0

vemb
M,i n̂i, (21)

which is nothing but the one-body part of the SOET Hamilto-
nian in Eq. (7) (ĤSOET = ĥeff + ÛM).

The one-body part of the embedded Hamiltonian is then
obtained by projecting the one-body effective Hamiltonian
[Eq. (21)] as follows:

ĥemb = P†ĥeffP, (22)
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where the projector P [of size (L × 2LF )] comes from the
Schmidt decomposition of the ground state �KS of ĥKS [53]
and reads [54]

P =
[
1 0
0 CBC†

F

]
. (23)

1 denotes the identity matrix of size (LF × LF ) and CBC†
F is

a (LE × LF ) rectangular matrix which is the transformation
from the environment to the bath. The reader is referred
to Ref. [54] for a detailed construction of this projector.
As readily seen in Eq. (23), the transformation of the one-
particle fragment states in the original basis is the identity.
The fragment is therefore invariant under this projection.
The on-site electron repulsion is then added to the fragment
(or impurity) sites thus leading to the following many-body
embedded Hamiltonian:

Ĥ emb =
LF +LB∑

i j

hemb
i j (ĉ†

iσ ĉ jσ + H.c.) + U
LF∑
i

n̂i↑n̂i↓, (24)

where LF (equivalent to M introduced previously) and LB are
the number of fragment sites and bath sites, respectively, and
LF = LB. We refer to �emb

M as its associated ground-state wave
function. The closed embedded subsystem (fragment + bath)
is then twice the size of the fragment and consists of 4LF

spin orbitals (or 2LF sites) with 2LF electrons. One can
therefore see the fragment as being an open system with
the bath playing the role of a reservoir, i.e., the fragment
can contain a fractional number of electrons [27]. This is
a drastic simplification of SOET as well as an alternative
to DMET where the correlation potential is now functional
of the density. From �emb

M , we extract the impurity double
occupations

〈n̂i↑n̂i↓〉�emb
M

, 0 � i � M − 1. (25)

Together with the KS-SOFT density, they are used to deter-
mine the physical per-site energy and double occupation in
Eqs. (11) and (12), respectively. Another significant differ-
ence with DMET is that no matching condition (known to
be a bottleneck of DMET [55]) between the 1RDM of the
low-level and the high-level wave functions is requested in
P-SOET. Instead, only the in-principle exact density (from
the low-level KS determinant) is determined self-consistently,
while the high-level embedded wave function together with
complementary functionals of the density allows for an ac-
curate evaluation of physical observables. Note that one can
determine the density of the impurity sites

n�emb
M

i = 〈n̂i↑ + n̂i↓〉�emb
M

, 0 � i � M − 1 (26)

self-consistently, and use it instead of the KS-SOFT density.
For the sake of conciseness, this alternative procedure is
described in Appendix B.

The procedure detailed in this section can be summarized
as follows: (1) solve the KS-SOFT problem [Eq. (20)], (2)
apply the Schmidt decomposition to the KS determinant
and determine the projection operator P, (3) Determine the
one-body effective Hamiltonian [Eq. (21)] with the density
obtained from step 1, (4) project the effective Hamiltonian

to obtain the one-body embedded Hamiltonian [Eq. (22)], (5)
define the embedded Hamiltonian by adding interaction on the
fragment sites [Eq. (24)], and (6) solve the embedded problem
to get the embedded wave function �emb

M . These steps define
the P-SOET algorithm, pictured in Fig. 1 for a single impurity
site.

C. Approximate functionals

The performance of SOET and P-SOET relies on the accu-
racy of the per-site correlation functional ec(n) and the impu-
rity correlation functional E imp

c,M (n), as well as their derivatives
with respect to U , t and ni [49]. The LDA based on Bethe
ansatz (BA) (so-called BALDA) is used for ec(n) [56–58], and
is exact in the thermodynamic limit for U = 0, U → +∞ and
n = 1 for any U . For the impurity correlation functional, a
two-level (2L) approximation based on the Anderson dimer
has been derived in Ref. [47]. Together with BALDA, it
leads to the so-called 2L-BALDA functional [49], which can
be used in the single-impurity case only. Alternatively, one
can use BALDA for the impurity functional as well. This
simple approximation enables us to consider more impurities
and is called the M-impurity BALDA [iBALDA(M )] [49].
By construction [see Eq. (13)], ebath

c,M (n) and its derivatives
are equal to 0 within iBALDA(M). The reader is referred
to Ref. [49] for more details on these functionals and their
derivations.

In SOET, the exact embedding potential for a finite and
half-filled (n = 1) system,

vemb
M,i (n = 1) = −U

2

M−1∑
j=0

δi j, (27)

has always been used [48,49]. While Eq. (27) is always
fulfilled by the 2L-BALDA functional, it is not by iBALDA.
Indeed, iBALDA has been derived from the thermodynamic
limit (L → +∞), for which a derivative discontinuity in the
correlation energy functional appears at half-filling [48,56,58]
such that the correlation potential is not defined anymore.
Eq. (27) has then been enforced in previous works. In this
work, another choice is made. The BALDA (or equivalently,
iBALDA) correlation potential [56–58],

∂eBALDA
c (n < 1)

∂n
= −2t cos

(
πn

β(U/t )

)

+ 2t cos
(πn

2

)
− Un

2
, (28)

will take the following value at half-filling,

∂eBALDA
c (n = 1)

∂n
= ∂eBALDA

c (n < 1)

∂n

∣∣∣∣
n=1−

= −2t cos

(
π

β(U/t )

)
− U

2
. (29)
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FIG. 1. Representation of the P-SOET algorithm for a single impurity site. In SOET, the auxiliary impurity-interacting problem has to
be solved entirely. In P-SOET, it is projected onto a much smaller embedded problem thanks to the Schmidt decomposition of the auxiliary
noninteracting problem. An optional self-consistent loop can be added to update the impurity occupation obtained by solving the embedded
problem (see Appendix B and Fig. 9).

[Rather than being equal to 0 to fulfill Eq. (27).] This
choice makes the embedding potential smooth in the range
0 � n � 1, instead of 0 � n < 1. We refer to this new
functional with an overbar: iBALDA. The change between
iBALDA and iBALDA operates only at half-filling and is
made clear by representing the correlation potential in Fig. 2.
Note that in contrast to iBALDA, the 2L-BALDA correlation
potential depicts no discontinuity at half-filling (Fig. 9 of
Ref. [49]).

Why have not we made this choice previously? In SOET,
convergence issues may arise around half-filling when either
the impurity or the bath occupations come very close to 1.
These issues appear in iBALDA if the BALDA correlation
potential [Eq. (29)] were used to solve the self-consistent
SOET equation. This problem is due to the presence of the
Mott metal-insulator transition at half-filling, and also arises
in KS-SOFT (for inhomogeneous systems with BALDA)
[57]. In P-SOET, the situation is different. The density is
determined self-consistently from a KS-SOFT calculation
(which is always exact for a uniform system), while the
embedded problem is solved only once. Therefore Eq. (29)
can be used at half-filling in P-SOET without leading to any
convergence issue. We show in Sec. IV that choosing the
iBALDA embedding potential at half-filling instead of the
iBALDA one improves the results drastically, although the

resulting impurity occupation is not exact anymore. (In any
case, the exact KS-SOFT occupations are used to compute the
per-site energy and the double occupation in P-SOET.)

FIG. 2. BALDA correlation potential with respect to n for U =
8t . At half-filling (n = 1), the iBALDA impurity correlation potential
is exact for a finite system and is equal to 0, while the iBALDA
impurity correlation potential is not and is given by Eq. (29).
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TABLE I. Impurity occupation obtained by solving the embedded problem in P-SOET. The exact SOET embedding potential for a uniform
L = 12 sites Hubbard model with one impurity site has been used.

N = 2 N = 4 N = 6 N = 8 N = 10 N = 12

Exact 0.16667 0.33333 0.5 0.66667 0.83333 1
U = t 0.16559 0.33174 0.49883 0.66618 0.83329 1
U = 2t 0.16377 0.32854 0.49613 0.66488 0.83305 1
U = 3t 0.16209 0.32520 0.49296 0.66307 0.83251 1
U = 4t 0.16068 0.32223 0.48990 0.66104 0.83167 1
U = 5t 0.15954 0.31972 0.48719 0.65904 0.83057 1
U = 6t 0.15861 0.31765 0.48489 0.65718 0.82930 1
U = 7t 0.15784 0.31593 0.48296 0.65553 0.82796 1
U = 8t 0.15720 0.31449 0.48134 0.65409 0.82663 1
U = 9t 0.15666 0.31327 0.47997 0.65284 0.82537 1
U = 10t 0.15621 0.31224 0.47881 0.65177 0.82421 1
U = 100t 0.15141 0.30184 0.46785 0.63440 0.81267 1

III. COMPUTATIONAL DETAILS

Three main calculations are performed in P-SOET: (i) the
KS-SOFT calculation of the physical problem to get �KS

[Eq. (20)], (ii) the Schmidt decomposition of �KS, and (iii)
solving the embedded problem [Eq. (24)]. As the uniform
one-dimensional Hubbard model is studied in this paper, the
first step simply consists in a mean-field calculation with no
potential. Indeed, the KS potential is defined up to a constant,
and is also uniform for a uniform system. The second step
follows the implementation detailed in Ref. [54]. Finally, the
embedded problem is solved either analytically for a single
impurity site (see Appendix A) or numerically for multiple
impurities by using the Block code of density matrix renor-
malization group (DMRG) [59–63]. The derivations of the
SOET functionals can be found in Ref. [49], and are imple-
mented in the source code for P-SOET which is freely avail-
able [64]. In this work, the L-site uniform one-dimensional
Hubbard model is studied with an even number N of electrons.
Periodic (ĉLσ = ĉ0σ ) and antiperiodic (ĉLσ = −ĉ0σ ) boundary
conditions have been used when (N/2)mod2 = 1 (i.e., N/2
is an odd number) and (N/2)mod 2 = 0 (i.e., N/2 is an even
number), respectively. Results are compared to the exact BA
results [65–67]. L = 400 sites are considered in this work
and the hopping parameter has been set to t = 1 in all the
calculations.

IV. RESULTS

After evaluating the errors coming from the projection
(constructed from approximate single-particle bath states)
onto the impurity model subspace, the per-site energy
[Eq. (11)] and the double occupation [Eq. (12)] are calculated
within P-SOET as described in Sec. II B. The focus will
be first on the half-filled case, followed by the hole-doping
regime. Finally, the density-driven Mott-Hubbard transition is
investigated and found to be properly described by P-SOET
with a single impurity site, in contrast to DMET [21,22] and
DMFT [68] for which multiple impurities are required.

A. Errors due to the projection

Because the projector is expressed in terms of approximate
single-particle states, P-SOET is no more in-principle exact in

contrast to SOET (providing that exact functionals are used).
It is therefore essential to evaluate the errors due to this projec-
tion, in addition to those introduced in the functionals. Such an
analysis is performed by comparing the impurity occupation
and double occupation within SOET and P-SOET using the
exact SOET embedding potential, obtained by reverse en-
gineering [47] on the uniform L = 12 sites Hubbard model
with a single impurity site. By construction, the impurity
occupation obtained in SOET by using this potential is the
exact one [47]. However, the one obtained after projection is
not exact anymore except in the particular case of half-filling,
as shown in Table I. As readily seen in Table I, the impurity
occupation in P-SOET deviates from the exact occupation as
U/t increases. Nevertheless the error remains relatively low,
of the order of 10−2.

Turning to the impurity double occupation, let us consider
the half-filled case where the exact potential does indeed lead
to the exact impurity occupation, even in P-SOET. In Fig. 3,

FIG. 3. Impurity double occupation d imp = 〈n̂0↑n̂0↓〉�M as a
function of correlation strength. The wave function �M is obtained
by solving the SOET Hamiltonian [Eq. (7)] (� imp

M , full lines), and
the embedded problem in P-SOET [Eq. (24)] (�emb

M , dashed lines).
The uniform and half-filled Hubbard model with L = 12 and a single
impurity site is considered. In both cases, the exact embedding
potential in Eq. (27) has been used.
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FIG. 4. Per-site energy [Eq. (11)] as a function of correlation
strength for different approximations in P-SOET. The uniform and
half-filled L = 400 site Hubbard is considered. The absolute error
with respect to BA is plotted in the bottom panel.

the impurity double occupation is shown for both SOET and
P-SOET with respect to U/(U + 4t ). Note that the range 0 �
U/(U + 4t ) � 1 covers the entire correlation regime, from
the weakly correlated one U < 4t [U/(U + 4t ) < 1/2], to
the strongly correlated one U > 4t [U/(U + 4t ) > 1/2]. The
noninteracting and atomic limits are given by U = 0 [U/(U +
4t ) = 0] and t = 0 [U/(U + 4t ) = 1], respectively. We ob-
serve a very small change between the impurity double oc-
cupations in Fig. 3, and conclude that the projection does
not lead to substantial errors. Therefore the errors will almost
entirely be due to the use of approximate functionals.

The iBALDA and 2L-BALDA results within P-SOET are
then not expected to differ much from the ones obtained with
SOET in Ref. [49], and are mostly plotted for comparison with
the novel iBALDA(M ) approximation introduced in Sec. II C.

B. Half-filled case

Let us first focus on the half-filled Hubbard model, known
to be a Mott insulator for any U > 0. Figure 4 shows the
per-site energy obtained within P-SOET for different approxi-
mations. First of all, all the approximations are exact in the
noninteracting and atomic limits. As already discussed in
Ref. [49], it is clear that the iBALDA(M = 1) is not accurate
enough at half-filling due to the absence of bath correlation
functional, above all in the moderate and strong correla-
tion regimes. Considering a nonzero bath correlation func-
tional like in 2L-BALDA improves over iBALDA(M = 1).
With a single impurity site, 2L-BALDA gives similar results
than iBALDA(M = 4) in the weak and moderate correlation
regime but is less accurate in the strongly correlated one.
Still considering a single impurity, iBALDA(M = 1) is sur-
prisingly significantly more accurate than iBALDA(M = 1)
and 2L-BALDA for U � 4t . By increasing the number of
impurities, iBALDA(M = 4) is now almost on top of the
exact BA per-site energy. In comparison with DMET (Fig. 2 of
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FIG. 5. Double occupation [Eq. (12)] as a function of correlation
strength for different approximations in P-SOET. The uniform and
half-filled L = 400 site Hubbard is considered. The absolute error
with respect to BA is plotted in the bottom panel.

Ref. [22]), iBALDA gives a better per-site energy than the so-
called “NI”, and is even competitive with the so-called “NIF ,”
which are nothing but the noninteracting bath formulations
of DMET where the matching condition is performed on
the 1RDM of the fragment and on the full 1RDM of the
fragment + bath, respectively [22]. We refer the reader to
Ref. [22] for more details about those two versions of DMET.

Let us now turn to the double occupation in Fig. 5.
As expected, the double occupation within iBALDA and
2L-BALDA are similar to the one obtained in SOET [49],
demonstrating again that errors due to the projection are neg-
ligible. Interestingly, the double occupation obtained within
iBALDA(M = 1) is identical to the one of DMET for a single
impurity site [21,22]. This can be explained as follows: for
a single impurity site at half-filling, the iBALDA embedding
potential returns the exact density, exactly like the numerically
optimized correlation potential of DMET. Therefore we see
no reason why the embedded wave function of both theories
should be different in this case, thus leading to the same
impurity double occupation. However, the method overes-
timates the exact double occupation. Just like the per-site
energy, 2L-BALDA improves over iBALDA(M = 1) in the
entire correlation regime. An even better double occupation
is obtained with iBALDA(M = 4) especially in the strongly
correlated regime, but this is at the expense of a much
higher computational cost. Indeed, a single impurity can be
solved analytically (see Appendix A) while four impurities
require to solve a fragment + bath system of eight sites (or
16 spin orbitals) and eight electrons with a high-level wave-
function method. Turning to iBALDA(M = 1), the double
occupation is worse than iBALDA(M = 1) for U � 1.8t ,
but becomes rapidly more accurate than 2L-BALDA or even
iBALDA(M = 4). With four impurity sites, iBALDA(M = 4)
is also not highly accurate in the very weakly correlated
regime, but tends towards the exact double occupation oth-
erwise.
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Finally, the fact that the bare (i.e., without density func-
tional contributions) impurity double occupation changes that
much between iBALDA and iBALDA means that the em-
bedding potential has a strong influence on the embedded
wave function. Although the embedding potential in iBALDA
is no more exact at half-filling for a finite system and does
not lead to the exact density (as discussed in Sec. II C),
it may take into account the so-called exchange-correlation
derivative-discontinuity responsible for the description of the
Mott insulator. This derivative-discontinuity has been dis-
cussed by Capelle et al. for the BALDA functional [56,58]
and in Ref. [48] for SOET functionals. This could explain why
iBALDA is the most accurate approximation at half-filling (in
the moderate and strong correlation regimes).

C. Hole-doped regime

Let us now investigate the hole-doped region (0.4 �
N/L � 1) of the uniform Hubbard model for moderate
(U = 4t) and strong (U = 8t) correlation strengths. Note that
in previous works [48,49], we were limited to L = 32 sites for
computational cost reason. Within P-SOET, L = 400 sites is
easily tractable as the most costly part now consists in solving
an embedded problem of 2LF sites only. As a consequence, we
can get closer to the thermodynamic limit. Because iBALDA
and iBALDA differ at half-filling only, they will give exactly
the same result in the density domain 0.4 � N/L < 1. To have
smooth potentials in the range 0.4 � N/L � 1, iBALDA is
used instead of iBALDA (see Fig. 2).

In the case of U = 4t (top panel of Fig. 6), 2L-BALDA and
iBALDA(M = 1) are already fairly accurate and almost indis-
tinguishable from each other. Nevertheless, they both tends
to overestimate the per-site energy closer they get to half-
filling. Increasing the number of impurities reduces the error
considerably, and iBALDA(M = 4) becomes almost exact for
N/L � 0.7. For stronger correlation strength (bottom panel
of Fig. 6), iBALDA(M = 1) is now much more accurate.
By comparison with Fig. 3 of Ref. [22], the single-impurity
iBALDA(M = 1) gives a better per-site energy than NI and
NIF with two impurities. It is even comparable to DET and
DMET in the broken spin symmetry formalism, also with two
impurities [22]. 2L-BALDA still overestimates the per-site
energy close to half-filling, while iBALDA(M = 4) is again
almost exact.

Turning to the double occupation in Fig. 7, one can
see that the bare impurity double occupation d imp obtained
with 2L-BALDA overestimates the exact double occupation
considerably around half-filling. The physical double oc-
cupation within 2L-BALDA is more accurate as expected.
The analysis of Fig. 7 is then similar to Fig. 6, due to
the relation between the double occupation and the per-
site energy [Eq. (14)]. (The term in square brackets in
Eq. (14) is approximated by BALDA, which is accurate
in all regimes except the very weakly correlated one [48],
not studied here). Therefore the double occupation within
iBALDA(M = 1) is also very accurate, especially for U = 8t .
Increasing the number of impurities does improve the result
slightly, but might not be worth it here considering its higher
computational cost.
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FIG. 6. Per-site energy as a function of the density filling for
different approximations in P-SOET. The L = 400 sites Hubbard
model with U = 4t (top) and U = 8t (bottom) is considered. The
relative error with respect to BA is plotted in the bottom of each
panel.

D. Density-driven Mott-Hubbard transition

The most interesting behavior of the one-dimensional Hub-
bard model is certainly the paramagnetic density-driven Mott-
Hubbard transition. In one dimension, the Hubbard model
describes a paramagnetic metallic state, except at half-filling
where it becomes a paramagnetic Mott insulator (for any
U > 0) manifested by the opening of a charge gap. Therefore
a density-driven Mott metal-insulator transition arises when
passing from the infinitesimally hole-doped case (N/L =
1 − δ, with δ infinitesimal and strictly positive) to the half-
filled case (N/L = 1). Such a transition, which is not a result
of antiferromagnetism, is detected by vanishing compress-
ibility (or charge susceptibility ∂N (μ)/∂μ) [21]. It can be
observed by plotting N (μ) with respect to μ, where N (μ) is
the electron number associated with the chemical potential μ

and is obtained by minimizing the grand canonical energy of
the following Hamiltonian:

Ĥ = Ĥ0 − μN̂, (30)

with Ĥ0 being the Hubbard Hamiltonian and N̂ the counting
operator. Both paramagnetic single-site DMET [21] and para-
magnetic single-site DMFT [68] do not feature the opening
of the charge gap in the one-dimensional Hubbard model.
Interestingly, matching the 1RDM of the fragment only in the
noninteracting bath DMET (NI in Figs. 4 and 5 of Ref. [22])
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does not predict a gap even by considering multiple impurity
sites, while fitting the entire fragment + bath 1RDM does
[21]. To observe this transition, it comes from Eq. (30) that
we have to perform the minimization of the per-site grand
canonical energy:

N (μ) = arg min
N

{e(N/L) − μN/L}, (31)

where e(N/L) is the per-site energy obtained within P-SOET
for a system of N electrons and L sites. The resulting number
of electrons N (μ) with respect to the chemical potential is
given in Fig. 8.

As readily seen in Fig. 8, iBALDA does predict the opening
of the charge gap with high accuracy, for both U = 4t and 8t .
Most impressively, only a single impurity site is sufficient to
describe both the tendency of the exact curve as well as the
actual position of the Mott transition. Increasing the number
of impurities does not lead to any particular change. The tran-
sition seems to be also well reproduced within 2L-BALDA
for U = 4t , but the vanishing compressibility is manifested
at N (μ) = 398 instead of the half-filled value N (μ) = 400.
The same error arises for U = 8t . Besides, the position of the
Mott transition is not anymore correct and the value of the
chemical potential is significantly overestimated compared to
the BA results.
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to U = 8t on the left side and U = 4t on the right side.

This striking result is a first for this type of embedding
methods. It can be attributed to the additional use of accurate
density functionals (BALDA here). Indeed, we can see that
the BALDA curve within SOFT is almost on top of the BA
results. The fact that BALDA is able to describe the opening
of the charge gap (driven by nonlocal correlation effects in 1D
[68]) is due to the presence of a derivative discontinuity in the
functional. This so-called “ultranonlocality” of BALDA (as
opposed to the LDA in the continuum) has been extensively
discussed by Ying et al. in Ref. [69]. To further stress on
the importance of having a derivative discontinuity, we have
proved in Appendix D of Ref. [48] that the impurity correla-
tion functional E imp

c (n) and the per-site correlation functional
ec(n) should manifest a derivative discontinuity at half-filling,
while the bath correlation functional E

bath
c (n) should not.

Even though the proof was derived in the atomic limit, we
still think that the derivative discontinuity can be important
for finite interaction strength. This condition is fulfilled by
iBALDA but not by 2L-BALDA (see the impurity correlation
potential in Fig. 9 of Ref. [49]), thus justifying why the
Mott transition is better described within iBALDA. In DMFT,
nonlocal effects can be described by considering a cluster
rather than a single site [68]. A new formulation of SOET
using the Green’s function formalism could provide a link
between density functional contributions and the self-energy
of the cluster, thus making a clearer connection between
SOET and (cluster) DMFT. This is left for future work.

V. CONCLUSIONS AND PERSPECTIVES

In this work, a new method so-called P-SOET has been
derived from SOET by using the Schmidt decomposition.
P-SOET is shown to give similar results as SOET but at a
drastically reduced computational cost, thus allowing for cal-
culations much closer to the thermodynamic limit. The use of
the Schmidt decomposition makes P-SOET competitive with
DMET [21] and DET [22], with additional density functional
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contributions. As such, the embedding potential in P-SOET is
analytical and is expressed as an energy derivative functional
of the density, instead of being numerically optimized like
in DMET. Accurate per-site energies and double occupations
in the entire correlation regime and density domain have
been obtained on the one-dimensional Hubbard model with
400 sites. As an important result, the density-driven Mott-
Hubbard transition has been accurately predicted with a single
impurity site. As far as we know, this is a first for this kind of
embedding methods.

Note that SOET or P-SOET are not limited to the uniform
one-dimensional Hubbard model and several extensions can
be considered. First of all, (P-)SOET is straightforwardly
applicable to higher-dimensional systems as the theory re-
mains the same. The only requirement is that new appropriate
functionals are needed. A recent work by Vilela et al. [70]
could be used to derive a functional for the two- and three-
dimensional Hubbard models from dimensional scaling of
the BALDA functional. The description of heterogeneous
systems can also be done by dividing the full system into
multiple fragments. A global chemical potential would then
be numerically optimized to ensure that the occupations of
the fragments sum up to the total number of electrons, in the
line of DMET. Magnetic and spin-dependent phenomena can
also be addressed by including dependence on spin [71] and
on the current density [72] in the functional. The treatment of
finite temperature effects would require a state-average theory
and a temperature-dependent functional. While such func-
tional could be relatively easily developed (see for instance
Ref. [73]), and the state-average extension comes naturally
within SOET, P-SOET relies on the Schmidt decomposition
which is state-dependent. Note that the same problem arises
in DMET. Turning to transport properties and the descrip-
tion of systems out of equilibrium, a real-time extension of
P-SOET can be derived in analogy with real-time DMET
[43], together with time-dependent functionals that could be
derived from earlier works on time-dependent lattice DFT
[74–79]. Alternatively, a frequency-dependent formulation of
SOET could be derived using the Green’s function formalism.
Finally, the extension to realistic systems like molecules (as
done in DMFT [80], DMET [27,28], and SEET [15]) is maybe
the most important one. Indeed, embedding approaches are
appropriate to treat large systems in quantum chemistry due to
their good balance between accuracy and computational cost
(see Refs. [81,82] and references therein). By decomposing
the full system into subsystems, they are also promising candi-
dates for solving classically intractable chemistry problems on
near-term quantum devices [83–86] (see Ref. [87] for a review
on quantum computational chemistry). By combining WFT
and DFT, P-SOET would then be an efficient and free from
double counting low cost embedding method able to treat
both dynamical and static correlation effects of large chemical
systems. Unfortunately, this extension is not straightforward
as it faces fundamental issues like the dependence of the
functionals on the molecular orbital basis [50]. Nevertheless,
recent works on extending lattice DFT to quantum chemistry
using localized orbitals [88] or also the domain separation in
DFT [89] could be helpful to generalize (P-)SOET to quantum
chemistry. To get rid of the dependence on the molecu-
lar orbital basis, one could also work with the one-particle

reduced density matrix as a variable instead of the occupation
number only. P-SOET sheds a new light on the treatment of
strongly correlated systems, and could progress in any of these
aforementioned directions, which are under investigation. The
ideas highlighted in this paper could hopefully inspire other
works in the field.
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APPENDIX A: ANALYTICAL SOLUTION FOR THE
ANDERSON DIMER

The ground state of the Anderson dimer is obtained by
solving

Ĥ imp|� imp〉 = E imp|� imp〉, (A1)

where

Ĥ imp = −t
∑

σ

(ĉ†
0σ ĉ1σ + H.c.) + Un̂0↑n̂0↓ + 
v

2
(n̂1 − n̂0)

(A2)

and 
v = v1 − v0. For two electrons, E imp has been shown to
be related to the fully-interacting two-electron Hubbard dimer
by a simple scaling and shifting relation [47]:

E imp(U, t,
v) = E (U/2, t,
v − U/2). (A3)

E (U, t,
v) is the ground-state singlet energy, solution of

−4t2U + (4t2 − U 2 + 
v2)E + 2UE2 = E3, (A4)

and can be expressed analytically as follows [90]:

E (u, t,
v) = 4t

3

[
u − w sin

(π

6
+ θ

)]
, (A5)

where

u = U/(2t ),

w =
√

3(1 + ν2) + u2,

ν = 
v/(2t ),

cos(3θ ) = [9(ν2 − 1/2) − u2]u/w3.

According to the Hellmann-Feynman theorem, it follows
from Eqs. (A1) and (A2) that the impurity occupation reads

n0 = 1 − ∂E imp(U, t,
v)

∂
v
,

= 1 − ∂E (U, t,
v)

∂
v

∣∣∣∣
U=U ,
v=
v

, (A6)

where U = U/2 and 
v = 
v − U/2 are coming from the
scaling and shifting relation in Eq. (A3). Similarly, the off-
diagonal element of the 1RDM of the Anderson dimer is
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given by

γ01 = −1

2

∂E imp(U, t,
v)

∂t

= −1

2

∂E (U, t,
v)

∂t

∣∣∣∣
U=U ,
v=
v

(A7)

as well as the impurity double occupation,

d imp = ∂E imp(U, t,
v)

∂U

= ∂U/2

∂U

∂E (U, t,
v)

∂U

∣∣∣∣
U=U ,
v=
v

+ ∂
v

∂U

∂E (U, t,
v)

∂
v

∣∣∣∣
U=U ,
v=
v

= 1

2

(
∂E (U, t,
v)

∂U

∣∣∣∣
U=U ,
v=
v

− (1 − n0)

)
. (A8)

The derivatives of the ground-state energy of the two-electron
Hubbard dimer can be found by differentiating Eq. (A4), thus
leading to

∂E

∂
v
= 2
vE

3E2 − 4UE + U 2 − 4t2 − 
v2
,

∂E

∂t
= 8t (E − U )

3E2 − 4UE + U 2 − 4t2 − 
v2
, (A9)

∂E

∂U
= 2E (E − U ) − 4t2

3E2 − 4UE + U 2 − 4t2 − 
v2
,

where E is given by Eq. (A5).
In P-SOET with a single impurity site, the embedded

Hamiltonian reduces to the Hamiltonian of an Anderson dimer
with two electrons that reads

Ĥ emb =
1∑

i j=0,σ

hemb
i j (ĉ†

iσ ĉ jσ + H.c.) + Un̂0↑n̂0↓. (A10)

The impurity occupation, the off-diagonal of the 1RDM
and the impurity double occupation are calculating from
Eqs. (A6), (A7), and (A8) by replacing t and 
v by and
t = −hemb

01 = −hemb
10 > 0 and 
v = hemb

11 − hemb
00 .

APPENDIX B: SELF-CONSISTENCY IN P-SOET

1. Self-consistent procedure

SOET is a variational theory with respect to the density
[46–49]. This is different in P-SOET, which is split in two
different part: the KS problem [Eq. (20)] and the embedded
problem [Eq. (24)] obtained by projection of the effective
Hamiltonian [Eq. (21)]. The solution of the KS problem is
already obtained variationally and leads to the (in-principle)
exact density. The latter can be used to compute the embed-
ding potential in the effective Hamiltonian and the expressions
of the per-site energy and the double occupation [Eqs. (11)
and (12), respectively]. This is the strategy employed in the
main text.

In practice, approximate functionals lead to an approx-
imate embedding potential that does not guarantee the

FIG. 9. Self-consistent loop in P-SOET for a single impurity site.
The projector is given by the Schmidt decomposition of the KS wave
function (see Fig. 1).

recovering of the exact impurity occupations. This can be
taken into account by updating the embedding potential self-
consistently with the impurity occupations of the embedded
problem [Eq. (26)]. Note that, for a uniform model, the
knowledge of a single site occupation is in principle sufficient
to determine the embedding potential exactly, providing that
the exact bath Hxc functional (which itself depends on all sites
occupation [47]) is known. One possible and practical way to
reinsert the impurity occupations into the one-body effective
Hamiltonian is to write

ĥeff = T̂ +
L−1∑
i=0

⎡
⎣ ∂E

bath
Hxc,M (n)

∂ni

∣∣∣∣∣
n=

{
n�emb

M ,nbath
M

}
⎤
⎦n̂i, (B1)

where

n�emb
M = {

n�emb
M

0 , n�emb
M

1 , . . . , n�emb
M

M−1

}
(B2)

is the impurity density (vector of size M) and

nbath
M =

{
1

M

M−1∑
i=0

n�emb
M

i

}
(B3)

is the (uniform) bath density (vector of size L − M), deter-
mined by the mean-average of the impurity occupations. Note
that other artificial choices (not considered here) could be
made, like keeping the bath occupations frozen and equal
to the ones obtained from the KS-SOFT calculation. The
embedding potential obtained from the new density defines
a new embedded problem, which we solve to obtain a new
impurity density. This procedure is iterated until convergence
of the impurity density is reached, as described in Fig. 9.
This self-consistent loop can easily be added to Fig. 1 for
completeness.
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FIG. 10. Impurity occupation(s) obtained self-consistently in P-
SOET for different approximations, as a function of the exact uni-
form occupation n = N/L. We consider a system of L = 400 sites
with U = 4t (top panel) and U = 8t (bottom panel).

One drawback of this self-consistent procedure is that the
sum of the occupations in n�emb

M and nbath
M are not constrained

to sum up to the total number of electrons. This could be
fixed by optimizing the embedding potential of the embedded
problem to reproduce the exact uniform density (obtained by
solving the KS problem), in the line of DMET or DET for
the correlation potential. For nonuniform models, one should
divide the full system into multiple fragments, and the density
of the full system would be rebuilt exactly by combining all
the fragment occupations.

2. Self-consistent impurity occupations

The impurity occupations, determined self-consistently as
described in the previous section, are shown in Fig. 10
for U = 4t (top panel) and U = 8t (bottom panel). Due
to the boundary conditions, the impurity occupations in
iBALDA(M = 4) are two-by-two equivalent, e.g., the impu-
rities at the extremities of the fragment (n0 = n3) and the
ones in the middle of the fragment surrounded by the two
other impurities (n1 = n2). Therefore only n0 and n1 are
represented. As readily seen in Fig. 10, the deviation from
the exact density is significant in the vicinity of half-filling.
This would lead to strong density-driven errors in P-SOET
in this regime. Note however that the 2L-BALDA occupation
for U = 4t is accurate in the entire density domain. The
deviations then increase for U = 8t , showing that it is harder
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FIG. 11. Impurity occupation within iBALDA(M = 1) at each
iteration of the self-consistent procedure, starting from different
uniform densities. The L = 400 sites model is considered, with N =
200 electrons and U = 10t .

to converge to the correct density as the correlation strength
increases.

Interestingly, the occupations in Fig. 10 are really similar to
the ones obtained from SOET (Figs. 7 and 8 of Ref. [49]). This
demonstrates the stability of this self-consistent procedure,
which was not obvious considering the results of Table I
showing that the impurity occupation obtained in P-SOET
was not guaranteed to be the same as in SOET. Therefore
it seems that the self-consistent P-SOET is stable and gives
similar results than SOET. To check this stability further, we
start with other initial densities than the one obtained from the
KS-SOFT calculation to determine the embedding potential
in the effective problem [Eq. (21)]. Figure 11 shows the
impurity occupation within iBALDA(M = 1) at each iteration
of the self-consistent procedure, starting from different initial
densities. It is clear that the impurity occupation converges
to the same value irrespective of the initial settings. Also,
only a few number of iterations are needed, just like in self-
consistent DMET but without the expensive fitting of the
correlation potential at each iteration (for which alternatives
have been recently developed [55]). The difference between
the converged occupation and the exact uniform one in Fig. 11
is mainly due to the use of approximate functionals, which
determine the embedding potential [Eq. (8)].

It is worth mentioning that convergence issues arise for
U � 1.8t at half-filling. Indeed, when the occupation is too
close to 1, fluctuations of the occupations around 1 are known
to appear due to the discontinuity in the potential [49,57], as
discussed in Sec. II C. For U � 1.8t the impurity occupations
converge sufficiently far away from 1 to avoid this issue. Apart
from that, we have not observed any convergence problem in
this self-consistent formulation of P-SOET.

[1] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864
(1964).

[2] W. Kohn and L. Sham, Phys. Rev. 140, A1133 (1965).

[3] A. J. Cohen, P. Mori-Sánchez, and W. Yang, Chem. Rev. 112,
289 (2011).

[4] M. Swart, Int. J. Quantum Chem. 113, 2 (2013).

035136-12

https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1021/cr200107z
https://doi.org/10.1021/cr200107z
https://doi.org/10.1021/cr200107z
https://doi.org/10.1021/cr200107z
https://doi.org/10.1002/qua.24255
https://doi.org/10.1002/qua.24255
https://doi.org/10.1002/qua.24255
https://doi.org/10.1002/qua.24255


PROJECTED SITE-OCCUPATION EMBEDDING THEORY PHYSICAL REVIEW B 100, 035136 (2019)

[5] M. Swart and M. Gruden, Acc. Chem. Res. 49, 2690 (2016).
[6] Q. Sun and G. K.-L. Chan, Acc. Chem. Res. 49, 2705 (2016).
[7] A. Georges and G. Kotliar, Phys. Rev. B 45, 6479 (1992).
[8] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.

Mod. Phys. 68, 13 (1996).
[9] G. Kotliar and D. Vollhardt, Phys. Today 57(3), 53 (2004).

[10] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O.
Parcollet, and C. A. Marianetti, Rev. Mod. Phys. 78, 865 (2006).

[11] K. Held, Adv. Phys. 56, 829 (2007).
[12] D. Vollhardt, K. Byczuk, and M. Kollar, in Strongly Correlated

Systems (Springer, Berlin, Heidelberg, 2012), pp. 203–236.
[13] R. M. Martin, L. Reining, and D. M. Ceperley, Interacting

Electrons (Cambridge University Press, Cambridge, 2016).
[14] A. A. Kananenka, E. Gull, and D. Zgid, Phys. Rev. B 91,

121111(R) (2015).
[15] T. N. Lan, A. A. Kananenka, and D. Zgid, J. Chem. Phys. 143,

241102 (2015).
[16] T. N. Lan, A. A. Kananenka, and D. Zgid, J. Chem. Theory

Comput. 12, 4856 (2016).
[17] D. Zgid and E. Gull, New J. Phys. 19, 023047 (2017).
[18] T. N. Lan, A. Shee, J. Li, E. Gull, and D. Zgid, Phys. Rev. B 96,

155106 (2017).
[19] L. N. Tran, S. Iskakov, and D. Zgid, J. Phys. Chem. Lett. 9,

4444 (2018).
[20] A. A. Rusakov, S. Iskakov, L. N. Tran, and D. Zgid, J. Chem.

Theory Comput. 15, 229 (2018).
[21] G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404

(2012).
[22] I. W. Bulik, G. E. Scuseria, and J. Dukelsky, Phys. Rev. B 89,

035140 (2014).
[23] M. Welborn, T. Tsuchimochi, and T. Van Voorhis, J. Chem.

Phys. 145, 074102 (2016).
[24] N. Ricke, M. Welborn, H.-Z. Ye, and T. Van Voorhis, Mol. Phys.

115, 2242 (2017).
[25] H.-Z. Ye, M. Welborn, N. D. Ricke, and T. Van Voorhis,

J. Chem. Phys. 149, 194108 (2018).
[26] U. Mordovina, T. E. Reinhard, H. Appel, and A. Rubio,

arXiv:1901.07658.
[27] G. Knizia and G. K.-L. Chan, J. Chem. Theory Comput. 9, 1428

(2013).
[28] S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan,

J. Chem. Theory Comput. 12, 2706 (2016).
[29] B.-X. Zheng, J. S. Kretchmer, H. Shi, S. Zhang, and G. K.-L.

Chan, Phys. Rev. B 95, 045103 (2017).
[30] H. Q. Pham, V. Bernales, and L. Gagliardi, J. Chem. Theory

Comput. 14, 1960 (2018).
[31] M. R. Hermes and L. Gagliardi, J. Chem. Theory Comput. 15,

972 (2019).
[32] J. P. F. LeBlanc, A. E. Antipov, F. Becca, I. W. Bulik, G. K.-L.

Chan, C.-M. Chung, Y. Deng, M. Ferrero, T. M. Henderson,
C. A. Jiménez-Hoyos, E. Kozik, X.-W. Liu, A. J. Millis, N. V.
Prokof’ev, M. Qin, G. E. Scuseria, H. Shi, B. V. Svistunov, L. F.
Tocchio, I. S. Tupitsyn, S. R. White, S. Zhang, B.-X. Zheng, Z.
Zhu, and E. Gull, Phys. Rev. X 5, 041041 (2015).

[33] B.-X. Zheng and G. K.-L. Chan, Phys. Rev. B 93, 035126
(2016).

[34] T. Tsuchimochi, M. Welborn, and T. Van Voorhis, J. Chem.
Phys. 143, 024107 (2015).

[35] Z. Fan and Q.-l. Jie, Phys. Rev. B 91, 195118 (2015).

[36] K. Gunst, S. Wouters, S. De Baerdemacker, and D. Van Neck,
Phys. Rev. B 95, 195127 (2017).

[37] B.-X. Zheng, C.-M. Chung, P. Corboz, G. Ehlers, M.-P. Qin,
R. M. Noack, H. Shi, S. R. White, S. Zhang, and G. K.-L. Chan,
Science 358, 1155 (2017).

[38] B. Sandhoefer and G. K.-L. Chan, Phys. Rev. B 94, 085115
(2016).

[39] T. E. Reinhard, U. Mordovina, C. Hubig, J. S. Kretchmer, U.
Schollwöck, H. Appel, M. A. Sentef, and A. Rubio, J. Chem.
Theory Comput. 15, 2221 (2019).

[40] S. Mukherjee and D. R. Reichman, Phys. Rev. B 95, 155111
(2017).

[41] Q. Chen, G. H. Booth, S. Sharma, G. Knizia, and G. K.-L. Chan,
Phys. Rev. B 89, 165134 (2014).

[42] G. H. Booth and G. K.-L. Chan, Phys. Rev. B 91, 155107
(2015).

[43] J. S. Kretchmer and G. K.-L. Chan, J. Chem. Phys. 148, 054108
(2018).

[44] E. Fertitta and G. H. Booth, Phys. Rev. B 98, 235132 (2018).
[45] T.-H. Lee, T. Ayral, Y.-X. Yao, N. Lanata, and G. Kotliar, Phys.

Rev. B 99, 115129 (2019).
[46] E. Fromager, Mol. Phys. 113, 419 (2015).
[47] B. Senjean, M. Tsuchiizu, V. Robert, and E. Fromager, Mol.

Phys. 115, 48 (2017).
[48] B. Senjean, N. Nakatani, M. Tsuchiizu, and E. Fromager, Phys.

Rev. B 97, 235105 (2018).
[49] B. Senjean, N. Nakatani, M. Tsuchiizu, and E. Fromager, Theor.

Chem. Acc. 137, 169 (2018).
[50] B. Senjean, Ph.D. thesis, Université de Strasbourg, 2018.
[51] O. Gunnarsson and K. Schönhammer, Phys. Rev. Lett. 56, 1968

(1986).
[52] K. Schönhammer, O. Gunnarsson, and R. M. Noack, Phys. Rev.

B 52, 2504 (1995).
[53] We have tried to use a different projector generated from the

ground-state of the effective Hamiltonian [Eq. (21)] instead
of the KS Hamiltonian [Eq. (20)], but it led to insufficiently
accurate results.

[54] T. Ayral, T.-H. Lee, and G. Kotliar, Phys. Rev. B 96, 235139
(2017).

[55] X. Wu, Z.-H. Cui, Y. Tong, M. Lindsey, G. K.-L. Chan, and
L. Lin, arXiv:1905.00886.

[56] N. Lima, L. Oliveira, and K. Capelle, Europhys. Lett. 60, 601
(2002).

[57] N. A. Lima, M. F. Silva, L. N. Oliveira, and K. Capelle, Phys.
Rev. Lett. 90, 146402 (2003).

[58] K. Capelle, N. Lima, M. Silva, and L. Oliveira, in The Fun-
damentals of Electron Density, Density Matrix and Density
Functional Theory in Atoms, Molecules and the Solid State
(Springer, Dordrecht, 2003), p. 145.

[59] G. K.-L. Chan and M. Head-Gordon, J. Chem. Phys. 116, 4462
(2002).

[60] G. K.-L. Chan, J. Chem. Phys. 120, 3172 (2004).
[61] D. Ghosh, J. Hachmann, T. Yanai, and G. K.-L. Chan, J. Chem.

Phys. 128, 144117 (2008).
[62] S. Sharma and G. K.-L. Chan, J. Chem. Phys. 136, 124121

(2012).
[63] R. Olivares-Amaya, W. Hu, N. Nakatani, S. Sharma, J. Yang,

and G. K.-L. Chan, J. Chem. Phys. 142, 034102 (2015).
[64] B. Senjean, https://github.com/bsenjean/P-SOET.

035136-13

https://doi.org/10.1021/acs.accounts.6b00271
https://doi.org/10.1021/acs.accounts.6b00271
https://doi.org/10.1021/acs.accounts.6b00271
https://doi.org/10.1021/acs.accounts.6b00271
https://doi.org/10.1021/acs.accounts.6b00356
https://doi.org/10.1021/acs.accounts.6b00356
https://doi.org/10.1021/acs.accounts.6b00356
https://doi.org/10.1021/acs.accounts.6b00356
https://doi.org/10.1103/PhysRevB.45.6479
https://doi.org/10.1103/PhysRevB.45.6479
https://doi.org/10.1103/PhysRevB.45.6479
https://doi.org/10.1103/PhysRevB.45.6479
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1063/1.1712502
https://doi.org/10.1063/1.1712502
https://doi.org/10.1063/1.1712502
https://doi.org/10.1063/1.1712502
https://doi.org/10.1063/1.1712502
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1080/00018730701619647
https://doi.org/10.1080/00018730701619647
https://doi.org/10.1080/00018730701619647
https://doi.org/10.1080/00018730701619647
https://doi.org/10.1103/PhysRevB.91.121111
https://doi.org/10.1103/PhysRevB.91.121111
https://doi.org/10.1103/PhysRevB.91.121111
https://doi.org/10.1103/PhysRevB.91.121111
https://doi.org/10.1063/1.4938562
https://doi.org/10.1063/1.4938562
https://doi.org/10.1063/1.4938562
https://doi.org/10.1063/1.4938562
https://doi.org/10.1021/acs.jctc.6b00638
https://doi.org/10.1021/acs.jctc.6b00638
https://doi.org/10.1021/acs.jctc.6b00638
https://doi.org/10.1021/acs.jctc.6b00638
https://doi.org/10.1088/1367-2630/aa5d34
https://doi.org/10.1088/1367-2630/aa5d34
https://doi.org/10.1088/1367-2630/aa5d34
https://doi.org/10.1088/1367-2630/aa5d34
https://doi.org/10.1103/PhysRevB.96.155106
https://doi.org/10.1103/PhysRevB.96.155106
https://doi.org/10.1103/PhysRevB.96.155106
https://doi.org/10.1103/PhysRevB.96.155106
https://doi.org/10.1021/acs.jpclett.8b01754
https://doi.org/10.1021/acs.jpclett.8b01754
https://doi.org/10.1021/acs.jpclett.8b01754
https://doi.org/10.1021/acs.jpclett.8b01754
https://doi.org/10.1021/acs.jctc.8b00927
https://doi.org/10.1021/acs.jctc.8b00927
https://doi.org/10.1021/acs.jctc.8b00927
https://doi.org/10.1021/acs.jctc.8b00927
https://doi.org/10.1103/PhysRevLett.109.186404
https://doi.org/10.1103/PhysRevLett.109.186404
https://doi.org/10.1103/PhysRevLett.109.186404
https://doi.org/10.1103/PhysRevLett.109.186404
https://doi.org/10.1103/PhysRevB.89.035140
https://doi.org/10.1103/PhysRevB.89.035140
https://doi.org/10.1103/PhysRevB.89.035140
https://doi.org/10.1103/PhysRevB.89.035140
https://doi.org/10.1063/1.4960986
https://doi.org/10.1063/1.4960986
https://doi.org/10.1063/1.4960986
https://doi.org/10.1063/1.4960986
https://doi.org/10.1080/00268976.2017.1290839
https://doi.org/10.1080/00268976.2017.1290839
https://doi.org/10.1080/00268976.2017.1290839
https://doi.org/10.1080/00268976.2017.1290839
https://doi.org/10.1063/1.5053992
https://doi.org/10.1063/1.5053992
https://doi.org/10.1063/1.5053992
https://doi.org/10.1063/1.5053992
http://arxiv.org/abs/arXiv:1901.07658
https://doi.org/10.1021/ct301044e
https://doi.org/10.1021/ct301044e
https://doi.org/10.1021/ct301044e
https://doi.org/10.1021/ct301044e
https://doi.org/10.1021/acs.jctc.6b00316
https://doi.org/10.1021/acs.jctc.6b00316
https://doi.org/10.1021/acs.jctc.6b00316
https://doi.org/10.1021/acs.jctc.6b00316
https://doi.org/10.1103/PhysRevB.95.045103
https://doi.org/10.1103/PhysRevB.95.045103
https://doi.org/10.1103/PhysRevB.95.045103
https://doi.org/10.1103/PhysRevB.95.045103
https://doi.org/10.1021/acs.jctc.7b01248
https://doi.org/10.1021/acs.jctc.7b01248
https://doi.org/10.1021/acs.jctc.7b01248
https://doi.org/10.1021/acs.jctc.7b01248
https://doi.org/10.1021/acs.jctc.8b01009
https://doi.org/10.1021/acs.jctc.8b01009
https://doi.org/10.1021/acs.jctc.8b01009
https://doi.org/10.1021/acs.jctc.8b01009
https://doi.org/10.1103/PhysRevX.5.041041
https://doi.org/10.1103/PhysRevX.5.041041
https://doi.org/10.1103/PhysRevX.5.041041
https://doi.org/10.1103/PhysRevX.5.041041
https://doi.org/10.1103/PhysRevB.93.035126
https://doi.org/10.1103/PhysRevB.93.035126
https://doi.org/10.1103/PhysRevB.93.035126
https://doi.org/10.1103/PhysRevB.93.035126
https://doi.org/10.1063/1.4926650
https://doi.org/10.1063/1.4926650
https://doi.org/10.1063/1.4926650
https://doi.org/10.1063/1.4926650
https://doi.org/10.1103/PhysRevB.91.195118
https://doi.org/10.1103/PhysRevB.91.195118
https://doi.org/10.1103/PhysRevB.91.195118
https://doi.org/10.1103/PhysRevB.91.195118
https://doi.org/10.1103/PhysRevB.95.195127
https://doi.org/10.1103/PhysRevB.95.195127
https://doi.org/10.1103/PhysRevB.95.195127
https://doi.org/10.1103/PhysRevB.95.195127
https://doi.org/10.1126/science.aam7127
https://doi.org/10.1126/science.aam7127
https://doi.org/10.1126/science.aam7127
https://doi.org/10.1126/science.aam7127
https://doi.org/10.1103/PhysRevB.94.085115
https://doi.org/10.1103/PhysRevB.94.085115
https://doi.org/10.1103/PhysRevB.94.085115
https://doi.org/10.1103/PhysRevB.94.085115
https://doi.org/10.1021/acs.jctc.8b01116
https://doi.org/10.1021/acs.jctc.8b01116
https://doi.org/10.1021/acs.jctc.8b01116
https://doi.org/10.1021/acs.jctc.8b01116
https://doi.org/10.1103/PhysRevB.95.155111
https://doi.org/10.1103/PhysRevB.95.155111
https://doi.org/10.1103/PhysRevB.95.155111
https://doi.org/10.1103/PhysRevB.95.155111
https://doi.org/10.1103/PhysRevB.89.165134
https://doi.org/10.1103/PhysRevB.89.165134
https://doi.org/10.1103/PhysRevB.89.165134
https://doi.org/10.1103/PhysRevB.89.165134
https://doi.org/10.1103/PhysRevB.91.155107
https://doi.org/10.1103/PhysRevB.91.155107
https://doi.org/10.1103/PhysRevB.91.155107
https://doi.org/10.1103/PhysRevB.91.155107
https://doi.org/10.1063/1.5012766
https://doi.org/10.1063/1.5012766
https://doi.org/10.1063/1.5012766
https://doi.org/10.1063/1.5012766
https://doi.org/10.1103/PhysRevB.98.235132
https://doi.org/10.1103/PhysRevB.98.235132
https://doi.org/10.1103/PhysRevB.98.235132
https://doi.org/10.1103/PhysRevB.98.235132
https://doi.org/10.1103/PhysRevB.99.115129
https://doi.org/10.1103/PhysRevB.99.115129
https://doi.org/10.1103/PhysRevB.99.115129
https://doi.org/10.1103/PhysRevB.99.115129
https://doi.org/10.1080/00268976.2014.993342
https://doi.org/10.1080/00268976.2014.993342
https://doi.org/10.1080/00268976.2014.993342
https://doi.org/10.1080/00268976.2014.993342
https://doi.org/10.1080/00268976.2016.1182224
https://doi.org/10.1080/00268976.2016.1182224
https://doi.org/10.1080/00268976.2016.1182224
https://doi.org/10.1080/00268976.2016.1182224
https://doi.org/10.1103/PhysRevB.97.235105
https://doi.org/10.1103/PhysRevB.97.235105
https://doi.org/10.1103/PhysRevB.97.235105
https://doi.org/10.1103/PhysRevB.97.235105
https://doi.org/10.1007/s00214-018-2368-z
https://doi.org/10.1007/s00214-018-2368-z
https://doi.org/10.1007/s00214-018-2368-z
https://doi.org/10.1007/s00214-018-2368-z
https://doi.org/10.1103/PhysRevLett.56.1968
https://doi.org/10.1103/PhysRevLett.56.1968
https://doi.org/10.1103/PhysRevLett.56.1968
https://doi.org/10.1103/PhysRevLett.56.1968
https://doi.org/10.1103/PhysRevB.52.2504
https://doi.org/10.1103/PhysRevB.52.2504
https://doi.org/10.1103/PhysRevB.52.2504
https://doi.org/10.1103/PhysRevB.52.2504
https://doi.org/10.1103/PhysRevB.96.235139
https://doi.org/10.1103/PhysRevB.96.235139
https://doi.org/10.1103/PhysRevB.96.235139
https://doi.org/10.1103/PhysRevB.96.235139
http://arxiv.org/abs/arXiv:1905.00886
https://doi.org/10.1209/epl/i2002-00261-y
https://doi.org/10.1209/epl/i2002-00261-y
https://doi.org/10.1209/epl/i2002-00261-y
https://doi.org/10.1209/epl/i2002-00261-y
https://doi.org/10.1103/PhysRevLett.90.146402
https://doi.org/10.1103/PhysRevLett.90.146402
https://doi.org/10.1103/PhysRevLett.90.146402
https://doi.org/10.1103/PhysRevLett.90.146402
https://doi.org/10.1063/1.1449459
https://doi.org/10.1063/1.1449459
https://doi.org/10.1063/1.1449459
https://doi.org/10.1063/1.1449459
https://doi.org/10.1063/1.1638734
https://doi.org/10.1063/1.1638734
https://doi.org/10.1063/1.1638734
https://doi.org/10.1063/1.1638734
https://doi.org/10.1063/1.2883976
https://doi.org/10.1063/1.2883976
https://doi.org/10.1063/1.2883976
https://doi.org/10.1063/1.2883976
https://doi.org/10.1063/1.3695642
https://doi.org/10.1063/1.3695642
https://doi.org/10.1063/1.3695642
https://doi.org/10.1063/1.3695642
https://doi.org/10.1063/1.4905329
https://doi.org/10.1063/1.4905329
https://doi.org/10.1063/1.4905329
https://doi.org/10.1063/1.4905329
https://github.com/bsenjean/P-SOET


BRUNO SENJEAN PHYSICAL REVIEW B 100, 035136 (2019)

[65] E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).
[66] H. Shiba, Phys. Rev. B 6, 930 (1972).
[67] E. H. Lieb and F. Y. Wu, Physica A 321, 1 (2003).
[68] M. Capone, M. Civelli, S. S. Kancharla, C. Castellani, and G.

Kotliar, Phys. Rev. B 69, 195105 (2004).
[69] Z.-J. Ying, V. Brosco, and J. Lorenzana, Phys. Rev. B 89,

205130 (2014).
[70] L. N. Vilela, K. Capelle, L. N. Oliveira, and V. L. Campo,

arXiv:1904.10529.
[71] V. V. Franca, D. Vieira, and K. Capelle, New J. Phys. 14, 073021

(2012).
[72] A. Akande and S. Sanvito, J. Phys. Condens. Matter 24, 055602

(2012).
[73] G. Xianlong, A.-H. Chen, I. Tokatly, and S. Kurth, Phys. Rev.

B 86, 235139 (2012).
[74] C. Verdozzi, Phys. Rev. Lett. 101, 166401 (2008).
[75] S. Kurth, G. Stefanucci, E. Khosravi, C. Verdozzi, and E. K. U.

Gross, Phys. Rev. Lett. 104, 236801 (2010).
[76] D. Karlsson, A. Privitera, and C. Verdozzi, Phys. Rev. Lett. 106,

116401 (2011).
[77] S. Kurth and G. Stefanucci, J. Phys. Condens. Matter 29,

413002 (2017).

[78] D. J. Carrascal, J. Ferrer, N. Maitra, and K. Burke, Eur. Phys. J.
B 91, 142 (2018).

[79] S. Kurth and G. Stefanucci, Eur. Phys. J. B 91, 118 (2018).
[80] D. Zgid and G. K.-L. Chan, J. Chem. Phys. 134, 094115 (2011).
[81] T. A. Wesolowski, S. Shedge, and X. Zhou, Chem. Rev. 115,

5891 (2015).
[82] S. J. Lee, M. Welborn, F. R. Manby, and T. F. Miller III, Acc.

Chem. Res. 52, 1359 (2019).
[83] B. Bauer, D. Wecker, A. J. Millis, M. B. Hastings, and M.

Troyer, Phys. Rev. X 6, 031045 (2016).
[84] N. C. Rubin, arXiv:1610.06910.
[85] M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M. Troyer,

Proc. Natl. Acad. Sci. USA 114, 7555 (2017).
[86] T. Yamazaki, S. Matsuura, A. Narimani, A. Saidmuradov, and

A. Zaribafiyan, arXiv:1806.01305.
[87] S. McArdle, S. Endo, A. Aspuru-Guzik, S. Benjamin, and X.

Yuan, arXiv:1808.10402.
[88] J. P. Coe, Phys. Rev. B 99, 165118 (2019).
[89] M. A. Mosquera, L. O. Jones, C. H. Borca, M. A. Ratner, and

G. C. Schatz, J. Phys. Chem. A 123, 4785 (2019).
[90] D. J. Carrascal, J. Ferrer, J. C. Smith, and K. Burke, J. Phys.

Condens. Matter 27, 393001 (2015).

035136-14

https://doi.org/10.1103/PhysRevLett.20.1445
https://doi.org/10.1103/PhysRevLett.20.1445
https://doi.org/10.1103/PhysRevLett.20.1445
https://doi.org/10.1103/PhysRevLett.20.1445
https://doi.org/10.1103/PhysRevB.6.930
https://doi.org/10.1103/PhysRevB.6.930
https://doi.org/10.1103/PhysRevB.6.930
https://doi.org/10.1103/PhysRevB.6.930
https://doi.org/10.1016/S0378-4371(02)01785-5
https://doi.org/10.1016/S0378-4371(02)01785-5
https://doi.org/10.1016/S0378-4371(02)01785-5
https://doi.org/10.1016/S0378-4371(02)01785-5
https://doi.org/10.1103/PhysRevB.69.195105
https://doi.org/10.1103/PhysRevB.69.195105
https://doi.org/10.1103/PhysRevB.69.195105
https://doi.org/10.1103/PhysRevB.69.195105
https://doi.org/10.1103/PhysRevB.89.205130
https://doi.org/10.1103/PhysRevB.89.205130
https://doi.org/10.1103/PhysRevB.89.205130
https://doi.org/10.1103/PhysRevB.89.205130
http://arxiv.org/abs/arXiv:1904.10529
https://doi.org/10.1088/1367-2630/14/7/073021
https://doi.org/10.1088/1367-2630/14/7/073021
https://doi.org/10.1088/1367-2630/14/7/073021
https://doi.org/10.1088/1367-2630/14/7/073021
https://doi.org/10.1088/0953-8984/24/5/055602
https://doi.org/10.1088/0953-8984/24/5/055602
https://doi.org/10.1088/0953-8984/24/5/055602
https://doi.org/10.1088/0953-8984/24/5/055602
https://doi.org/10.1103/PhysRevB.86.235139
https://doi.org/10.1103/PhysRevB.86.235139
https://doi.org/10.1103/PhysRevB.86.235139
https://doi.org/10.1103/PhysRevB.86.235139
https://doi.org/10.1103/PhysRevLett.101.166401
https://doi.org/10.1103/PhysRevLett.101.166401
https://doi.org/10.1103/PhysRevLett.101.166401
https://doi.org/10.1103/PhysRevLett.101.166401
https://doi.org/10.1103/PhysRevLett.104.236801
https://doi.org/10.1103/PhysRevLett.104.236801
https://doi.org/10.1103/PhysRevLett.104.236801
https://doi.org/10.1103/PhysRevLett.104.236801
https://doi.org/10.1103/PhysRevLett.106.116401
https://doi.org/10.1103/PhysRevLett.106.116401
https://doi.org/10.1103/PhysRevLett.106.116401
https://doi.org/10.1103/PhysRevLett.106.116401
https://doi.org/10.1088/1361-648X/aa7e36
https://doi.org/10.1088/1361-648X/aa7e36
https://doi.org/10.1088/1361-648X/aa7e36
https://doi.org/10.1088/1361-648X/aa7e36
https://doi.org/10.1140/epjb/e2018-90114-9
https://doi.org/10.1140/epjb/e2018-90114-9
https://doi.org/10.1140/epjb/e2018-90114-9
https://doi.org/10.1140/epjb/e2018-90114-9
https://doi.org/10.1140/epjb/e2018-90162-1
https://doi.org/10.1140/epjb/e2018-90162-1
https://doi.org/10.1140/epjb/e2018-90162-1
https://doi.org/10.1140/epjb/e2018-90162-1
https://doi.org/10.1063/1.3556707
https://doi.org/10.1063/1.3556707
https://doi.org/10.1063/1.3556707
https://doi.org/10.1063/1.3556707
https://doi.org/10.1021/cr500502v
https://doi.org/10.1021/cr500502v
https://doi.org/10.1021/cr500502v
https://doi.org/10.1021/cr500502v
https://doi.org/10.1021/acs.accounts.8b00672
https://doi.org/10.1021/acs.accounts.8b00672
https://doi.org/10.1021/acs.accounts.8b00672
https://doi.org/10.1021/acs.accounts.8b00672
https://doi.org/10.1103/PhysRevX.6.031045
https://doi.org/10.1103/PhysRevX.6.031045
https://doi.org/10.1103/PhysRevX.6.031045
https://doi.org/10.1103/PhysRevX.6.031045
http://arxiv.org/abs/arXiv:1610.06910
https://doi.org/10.1073/pnas.1619152114
https://doi.org/10.1073/pnas.1619152114
https://doi.org/10.1073/pnas.1619152114
https://doi.org/10.1073/pnas.1619152114
http://arxiv.org/abs/arXiv:1806.01305
http://arxiv.org/abs/arXiv:1808.10402
https://doi.org/10.1103/PhysRevB.99.165118
https://doi.org/10.1103/PhysRevB.99.165118
https://doi.org/10.1103/PhysRevB.99.165118
https://doi.org/10.1103/PhysRevB.99.165118
https://doi.org/10.1021/acs.jpca.9b01173
https://doi.org/10.1021/acs.jpca.9b01173
https://doi.org/10.1021/acs.jpca.9b01173
https://doi.org/10.1021/acs.jpca.9b01173
https://doi.org/10.1088/0953-8984/27/39/393001
https://doi.org/10.1088/0953-8984/27/39/393001
https://doi.org/10.1088/0953-8984/27/39/393001
https://doi.org/10.1088/0953-8984/27/39/393001

