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The transition from monolayers to multilayered structures in bacterial colonies is a fundamental step in
biofilm development. Observed across different morphotypes and species, this transition is triggered within
freely growing bacterial microcolonies comprising a few hundred cells. Using a combination of numerical
simulations and analytical modeling, here we demonstrate that this transition originates from the
competition between growth-induced in-plane active stresses and vertical restoring forces, due to the
cell-substrate interactions. Using a simple chainlike colony of laterally confined cells, we show that
the transition sets when individual cells become unstable to rotations; thus it is localized and mechanically
deterministic. Asynchronous cell division renders the process stochastic, so that all the critical parameters
that control the onset of the transition are continuously distributed random variables. Here we demonstrate
that the occurrence of the first division in the colony can be approximated as a Poisson process in the limit
of large cell numbers. This allows us to approximately calculate the probability distribution function of the
position and time associated with the first extrusion. The rate of such a Poisson process can be identified as
the order parameter of the transition, thus highlighting its mixed deterministic-stochastic nature.
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Bacteria dividing on a substrate first give rise to an
exponentially growing flat monolayer of packed and
partially aligned cells, which, upon reaching a critical
population size, invades the third dimension resulting in
a growing colony of multiple bacterial layers [1–5]. While
the viability of bacterial populations over these stages is
determined by a complex interplay of biochemical cues, the
colony structure and dynamics are mediated by biophysical
factors, including the division rate, cell-to-cell and the cell-
to-surface interactions within bulk [3,6], and bounded
[7–9] or free boundary conditions [10,11].
Transitions from mono- to multilayered structures have

recently drawn significant attention in the biophysical
literature, being a universal step toward the formation of
multicellular biofilm structures, as well as a process where
mechanical forces are likely to play a leading role. Grant
et al. [3] investigated the mono- to multilayer transition in
E. coli colonies confined between glass and agarose and
found that the size of the colony at onset is affected by the
substrate stiffness and friction. More recently, Beroz et al.
[5] demonstrated that, in V. cholerae biofilms, escape to the
third dimension is mediated by a verticalization of the
longer cells. Similar mechanisms are also found in con-
fluent monolayers of eukaryotic cells [12–16] and are
believed to regulate cell extrusion and apoptosis.
Despite these works having greatly contributed to shed

light on the nature of the transition, some aspects are still
debated [17]. Is there a well-defined critical size, stress, and
time at which extrusion is first triggered? Is the mono- to

multilayer transition a deterministic process, or does it
result from an interplay of deterministic and stochastic
effects? To what extent can this process be likened to a
nonequilibrium phase transition?
In this Letter we address these questions theoretically,

using a combination of numerical and analytical methods.
We show that the mono- to multilayer transition in a system
of growing rodlike cells results from a competition between
the in-plane active stresses, that compress the cells laterally,
and the vertical restoring forces, owing to the cell-substrate
interactions (e.g., cell-substrate adhesion). As the colony
expands the internal stress increases until it is sufficiently
large to cause extrusion of the first cells. In the ideal case of
a laterally confined chainlike colony of nongrowing cells
subject to axial compression, the transition is entirely
deterministic and the critical stress at which extrusion
initiates can be calculated analytically. Asynchronous cell
division, however, renders the transition stochastic. In this
case, the critical stress is a continuously distributed random
variable and the first extrusion does not necessarily occur at
the colony center, despite this being the region of maximal
stress. Upon modeling cell division as a Poisson process,
we can approximately calculate the probability distribution
function (PDF) of the position and time associated with the
first extrusion. Finally, we show that the rate of the Poisson
process is analogous to an order parameter and that, in this
respect, the mono- to multilayer instability is likened to a
continuous phase transition.
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We employ a toy model of duplicating bacteria
[10,18,19], where cells are represented as spherocylinders
with a fixed diameter d0 and a time-dependent length l
(excluding the caps on both ends), growing in three-
dimensional space and subject to Brownian motion [20].
Whereas cells in bacterial colonies are potentially subject to
a large variety of mechanical and biochemical stimuli, here
we focus on three types of forces: the repulsive forces
associated with cell-cell and cell-substrate steric inter-
actions and a vertical restoring force, representing either
the attractive force due to adhesion of the cells with the
extracellular matrix (ECM) [5], or a mechanical compres-
sion from above [3,4]. All forces are treated as Hookean.
For simplicity, we assume cell-cell and cell-substrate
repulsive interactions to be characterized by the same
elastic constant k ¼ 10 MPa μm, while we set the elastic
constant associated with adhesion to be kal, to mimic the
dependence of the restoring forces on the contact area. The
length li of the ith cell increases in time with rate gi and,
after having reached the value ld, the cell divides into two
identical daughter cells. To avoid synchronous divisions,
the growth rate of each cell is randomly chosen in the
interval g=2 ≤ gi ≤ 3g=2, with g the average growth rate.
Our results remain unchanged in the case of Gaussianly
distributed growth rate [20]. In-depth studies and more
realistic models of bacterial growth can be found, e.g., in
Refs. [22–24]. We stress that our model does not aim to
accurately reproduce the traits of a specific bacterial family,
but rather to abstract the essential features that all bacterial
species undergoing the mono- to multilayer transition have
in common. Figure 1 shows typical configurations of our
in silico colonies at different time points. Consistent with
the experimental evidence [2,3], the colony initially
expands as a perfect monolayer [Figs. 1(a) and 1(b)]
and, once it is sufficiently large, some cells are extruded
and originate a second layer [Figs. 1(c) and 1(d)]. See
Ref. [20] for time-lapse animations showing the growth
dynamics of the colonies.
As a starting point, we look at a simplified chainlike

colony, consisting of a row of cells confined in a channel

[Fig. 2(a)]. The cells have identical length l and do not
grow, but are compressed by a pair of forces f applied at the
two ends of the channel. As in the case of planar colonies
(Fig. 1), cells remain attached to the substrate for small
compressive forces and are extruded to the second layer
for large f values. In this case, the transition is entirely
deterministic and there exists a well-defined critical force,
f�, at which the monolayer becomes unstable. This can
be calculated analytically upon balancing the torques
associated with cell-cell and cell-substrate interactions,
about the lower end of the cell axis. Calling p ¼
ðcos θ; 0; sin θÞ the orientation of the first extruded
cell and f c ¼ fcð− cos θ0; 0; sin θ0Þ, with fc ¼ f= cos θ0,
the contact force exerted by the nearby cell [Fig. 2(b)],
the lifting torque can be calculated in the form τc ¼
lðpxfz − pzfxÞ ¼ lf cos θðtan θ þ tan θ0Þ. Analogously,
the restoring torque resulting from the adhesive force is
τa ¼ kal3 sin θ cos θ. In a perfectly horizontal monolayer,
θ ¼ θ0 ¼ 0 and both torques vanish. In order for such a
configuration to be stable against slight orientational fluctu-
ations of magnitude δθ ≪ 1, τcðθ0 þ δθÞ < τaðθ0 þ δθÞ.
Upon expanding τc and τa at the linear order in δθ and
approximating θ0 ≈ ðl=d0Þθ, one can verify that such a
stability condition breaks down when f > f�, with

f� ¼ kal2

1þ l=d0
; ð1Þ

in excellent agreement with the result of our numerical
simulations [Fig. 2(c)]. The existence of a well-defined
critical force resulting from the competition between
compression and rotation is vaguely reminiscent of
Euler’s buckling in elastic rods. However, while buckling
is a system-wide instability, the mono- to multilayer
transition is determined by torque balance at the length
scale of a single cell.
Next we explore the effect of asynchronous cell division.

Cells are again confined in the channel and, unlike the
previous case, they are not subject to lateral compression,
but elongate and divide. To investigate the effect of the key
parameters, ka, ld, and g, we perform four sets of 104

(a) (b)

(c) (d)

FIG. 1. (a)–(d) Snapshots of a simulated growing colony at
different ages to show the mono- to multilayer transition. The
lower image in each panel shows the side view. In panels (c) and
(d), the extruded cells are highlighted as red.

(a) (c)

(b)

FIG. 2. (a) Schematic diagram of the chainlike colony.
(b) Schematics of torque balance about the lower end of the
cell. (c) Critical force as a function of the cell length, for various
ka values. The dots and lines represent respectively the simulation
and analytical results as in Eq. (1).
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simulations, starting from a single cell at the equilibrium
configuration. In the “control” set, we fix ka ¼ 25 kPa,
ld ¼ 4 μm, and g ¼ 2 μm=h. In each of the remaining three
sets we change one of the parameters.
As the colony expands, the longitudinal stress (calcu-

lated via the virial construction [20]) progressively builds
up, while preserving a simple parabolic profile of the form

σxxðxÞ ¼ σm

�
1 −

�
2x
L

�
2
�
; ð2Þ

where σm and L represent, respectively, the maximum
stress and the colony length [Fig. 3(a)]. One can show that
σm ¼ aN2 and L ¼ bN (Fig. S3), where N is the total

number of cells and a and b are constants depending on the
mechanical properties of the cells and the substrate [20].
Because the stress is maximal at the center of the colony,
one would expect the first extrusion to occur here. Our
simulations, however, show a dramatically different behav-
ior. Specifically, the position of the first extruded cell x�
follows a broad distribution, whose spread is comparable to
the size of the colony itself [Fig. 4(a)]. Remarkably, this
distribution depends on the material parameters only
through the size L of the colony and all the data collapse
onto the same curve upon rescaling x� by the average
colony size hLi [Fig. 4(a) inset]. Analogously the transition
time t� [Fig. 4(b)] and the critical stress σ� experienced by
cells at the verge of extrusion [Fig. 4(c)], are continuously
distributed random variables.
In the following, we demonstrate that, in our model of

bacterial colonies, this behavior results from the combined
inherent randomness of the division process and the local
nature of the instability. According to Eq. (1) a cell is
unstable to extrusion if subject to a critical force whose
magnitude increases with the cell length. In a growing
colony, a division event introduces a sudden drop in the
cell length and this can, in turn, trigger an extrusion
instability, as long as the cell is subject to a stress larger
than that required to extrude a cell of minimal length
lm ¼ ðld − d0Þ=2. We denote such a minimal critical stress
σ�m. As the stress is spatially inhomogeneous and increasing
in time, there will be a whole region, symmetric with

(a) (b)

FIG. 3. (a) The spatial distributions of stress in a growing
chainlike colony at different ages. (b) Rate λðtÞ of the Poisson
process at Δt ¼ 0. The black and red dashed lines represent,
respectively, Eq. (5) and λðtÞ ≈ kλ

ffiffiffiffiffiffiffiffiffiffiffi
t − t0

p
. The inset shows the

same plot in a log-log scale. Both panels are obtained using the
“control” parameters.

(a) (b) (c)

(d) (e) (f)

FIG. 4. (a)–(c) Probability densities of (a) the extrusion positions jx�j (inset shows that of the rescaled position j2x�j=hLi), (b) the
extrusion time t�, and (c) the critical stress σ�, for chainlike colonies of asynchronously dividing cells. (d) Probability density of the
extrusion position r� in planar colonies, normalized by r�, the distance from the point of extrusion to the centroid of the colony. (e),(f)
Same as panels (b),(c), but for planar colonies. In all panels, dots and dashed lines correspond to the simulation results and the solid lines
to the analytical predictions. The statistical results are collected at four sets of parameters, whose values are shown in panels (b) and (e).
At each set of parameters, there are 104 runs for chainlike colonies, and 2 × 103 runs for planar colonies.
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respect to the center of the colony and whose length
increases in time, where the local stress exceeds σ�m and
cell division can trigger the first extrusion. We call this
region the P zone. The probability associated with the first
extrusion is then equal to the probability of having a
division within the P zone. This can be calculated as
follows.
Let us consider a colony of n cells with growth rate g and

assume that, at an arbitrary time, their lengths are inde-
pendent and uniformly distributed in the interval
lm ≤ l ≤ ld. After a time t, the probability that no division
has yet occurred equates the probability that none of the
cells is initially longer than ld − gt:

PðtÞ ¼
�
ld − gt − lm
ld − lm

�
n
≈ e−λðnÞt; ð3Þ

where λðnÞ ¼ ng=ðld − lmÞ and the approximation holds
for large n values. Equation (3) defines a Poisson process of
rate λðnÞ [25]. If n is time dependent, the process becomes
inhomogeneous, but the probability preserves the same

structure, with λðtÞ ¼ λ½nðtÞ� and PðtÞ ¼ e−
R

t

0
dt0λðt0Þ. The

PDF associated with observing the first division at time t is
then

fðtÞ ¼ d
dt

½1 − PðtÞ� ¼ λðtÞe−
R

t

0
dt0λðt0Þ: ð4Þ

Interestingly, an analogous Poissonian PDF has been also
postulated by Allen and Waclaw in a recent review article
[17]. Equation (4) supports this conjecture and further
provides it with a mechanistic interpretation. To make
progress, one needs to calculate the number of cells n
within the P zone. This is, on average, n ¼ L�=ðhli þ d0Þ,
where L� is the length of the P zone and hli ¼ ðld þ lmÞ=2
the average cell length. L� can be calculated by solving
σxxðL�=2Þ ¼ σ�m [red dashed line in Fig. 3(a)]. This yields:
L� ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2ðtÞ − N2

0

p
, while N0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
σ�m=a

p
is the minimal

number of cells required for the P zone to exist. From this
and Eq. (3), we can calculate the rate λðtÞ as

λðtÞ ¼ gb
ðld − lmÞðhli þ d0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2ðtÞ − N2

0

q
∼ ½NðtÞ − N0�1=2:

ð5Þ

Equation (5) highlights the role of λ as order parameter for
the mono- to multilayer transition. For NðtÞ < N0, λ is
imaginary and the probability of observing an extrusion
vanishes identically. On the other hand, for NðtÞ > N0, λ is
real and the probability of observing an extrusion increases
in time. The transition is continuous in this case, but other
scenarios are likely possible.
To make the time dependence explicit in Eq. (5), we need

to calculate NðtÞ. Evidently, the average number of cells in
the colony grows exponentially in time. Because cells have

random growth rates, the time t taken for the colony to
attain a given population size NðtÞ, is a random variable of
the form t ¼ t̄þ Δt (Fig. S4 in Ref. [20]). Numerically, we
find that Δt approximately follows a Gaussian distribution,
N ð0; δ2ΔtÞ, having zero mean and whose variance, δ2Δt,
depends on ld and g [20]. Taking NðtÞ ¼ exp½ωðt − ΔtÞ�,
with ω a constant, and using Eq. (5), yields an expression
for λðtÞ, hence for fðtÞ ¼ fðtjΔtÞ. A plot of the rate λðtÞ is
shown in Fig. 3(b) for Δt ¼ 0. Shortly after the transition
time t0 ¼ logðN0Þ=ω, λðtÞ has square-root time depend-
ence. By Taylor-expanding Eq. (5) about t0 to the lowest
order, one can show that λðt;ΔtÞ ≈ kλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t − t0 − Δt

p
, where

kλ ¼ gbN0

ffiffiffiffiffiffi
2ω

p
=½ðld − lmÞðhli þ d0Þ� [20]. This allows us

to approximate fðtjΔtÞ as a Gaussian

fðtjΔtÞ ≈N ½t00 þ Δt; σ2t �; ð6Þ

havingmean t00 þ Δt, with t00¼ t0þΓð5=3Þð2kλ=3Þ−2=3, and
variance σ2t ¼ ð2kλ=3Þ−4=3½Γð7=3Þ − Γ2ð5=3Þ�. Integrating
the joint PDF fðtjΔtÞN ð0; δ2ΔtÞ over Δt yields the PDF
associated with observing the first extrusion at time t�:

pðt�Þ ¼ N ½t00; σ2t þ δ2Δt�: ð7Þ

This is displayed in Fig. 4(b) (solid lines) and is in excellent
agreement with the numerical data. Similarly, we can
calculate the probability distribution associated with the
extrusion occurring at position x�. From previous consid-
erations, one can reasonably assume the extrusion location
to be uniformly distributed within the P zone. Thus the
conditional PDF associated with observing the first extru-
sion at time t and position x is fðx; tjΔtÞ ¼ fðtjΔtÞ=L�, with
−L�=2 ≤ x ≤ L�=2. Integrating over t and Δt yields:

pðjx�jÞ ¼
�
2

3
kλk3x

�1
3

Γ
�
2

3
;
2

3
kλk3xjx�j3

�
; ð8Þ

which again agrees well with the numerical data [Fig. 4(a)].
Here, kx ¼ 2=ðbN0

ffiffiffiffiffiffi
2ω

p Þ and Γ½·; ·� is the incomplete
Gamma function. A detailed derivation of Eqs. (7) and
(8) can be found in Ref. [20]. Finally, Figs. 4(d)–4(f) show
the probability distributions of the extrusion position,
extrusion time, and critical stress for the original planar
colonies (e.g., Fig. 1). Despite the mechanical interactions
beingmore complex in planar colonies [10,20], the physical
picture emerging from the simulations is nearly identical to
that discussed for chainlike colonies.
In this work, we have proposed a theoretical picture for

the mono- to multilayer transition in sessile bacterial
colonies, using a toy model of growing spherocylindrical
cells. In particular, we have focused on the interplay
between stress distribution and the inherent randomness
of cell division and demonstrated how this leads to a hybrid
deterministic-stochastic transition, characterized by an
ensemble of critical states emerging above a deterministic
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stress threshold. Whereas this transition originates from
mechanisms similar to those investigated in Refs. [3,5],
some notable differences must be highlighted. In Ref. [3],
colonies are sandwiched between agar and glass and the
restoring forces, competing with the growth-induced in-
plane stresses, arise from the vertical compression of
the agar instead of molecular adhesion. This results in
the appearance of radial frictional forces that render the
transition less stochastic, while introducing a sensitive
dependence on the agar material properties. Conversely,
Beroz et al. [5] focus mainly, but not exclusively, on the
post-transitional dynamics and illustrate how, once a cell is
extruded form the first layer, can serve as a fulcrum for the
rotation of neighboring cells. This gives rise to an inverse
domino effect that results in the formation of a core of
vertical cells expanding from the center of the colony.
Most of our predictions are amenable to experimental

scrutiny. The distributions of extrusion positions and times
[Eqs. (7) and (8), and Fig. 4] can be readily extracted from
experiments on monoclonal colonies freely expanding on a
Petri dish. The technology for in situ stress measurements
in bacterial systems is still in its infancy [26,27]; thus direct
experimental detection of the P zone appears precluded at
this stage. However, some of its properties can be indirectly
inferred from the distribution of the extrusion positions and
the time of the extrusion event in experiments. For instance,
experiments can be designed to validate that the variance of
both distributions, hence the relative size of the P zone,
decreases with the growth rate.
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