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The splashback radius rsp has been identified in cosmological N-body simulations as an important scale
associated with gravitational collapse and the phase-space distribution of recently accreted material. We
employ a semianalytical approach to study the spherical collapse of dark matter halos in symmetron gravity
and provide, for the first time, insights into how the phenomenology of splashback is affected by modified
gravity. The symmetron is a scalar-tensor theory which exhibits a screening mechanism whereby higher-
density regions are screened from the effects of a fifth force. In this model, we find that, as overdensities
grow over cosmic time, the inner region becomes heavily screened. In particular, we identify a sector of the
parameter space for which material currently sitting at rsp has followed, during the collapse, the formation
of this screened region. As a result, we find that for this part of the parameter space the splashback radius is
maximally affected by the symmetron force, and we predict changes in rsp up to around 10% compared to
its General Relativity value. Because this margin is within the precision of present splashback experiments,
we expect this feature to soon provide constraints for symmetron gravity on previously unexplored scales.
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I. INTRODUCTION

Gravity, one of the fundamental forces of nature, plays a
crucial role in inferring our model of the cosmos as well as
all the precision constraints placed on fundamental physics
through cosmology. The theory of General Relativity (GR)
introduced by Einstein a century ago [1], provided a
coherent theoretical framework within which to study all
gravitational phenomena. While it is arguably one of the
most successful theories of modern physics, having passed
a host of empirical phenomena, there remain regimes of
curvature and scale where GR has yet to be accurately
tested. Its theoretical and phenomenological limitations are
being fully explored, with an endeavor which is carried out
at virtually all energy scales, ranging from the ultraviolet
properties of the theory down to the energy scale of H0,
associated to the present-day expansion rate of the
Universe [2].
Upcoming large-scale structure surveys will provide

unprecedented constraints on gravity on cosmological
scales, allowing one to discriminate among many theories
alternative to GR. The phenomenology of theories of
modified gravity (MG) on linear cosmological scales is
fairly well understood, and it is commonly characterized in
terms of modifications in the relation between matter
density and gravitational potentials [3–5]. On the other

hand, it is well known that nonlinear mechanisms in MG
theories “screen away” the effects of additional degrees of
freedom in high-density regions. This ensures that any fifth
force is suppressed andMG reduces to GR in regions where
it has been tested with remarkable accuracy [6].
A natural regime of interest is the intermediate range,

between the screened and unscreened regimes, e.g. the
regions of space at the boundaries of dark matter halos. To
this extent, a feature that is gaining prominence is the so-
called splashback, which corresponds to an observable
steepening of the dark matter halo density profile close to
the boundary [7]. Locally, the position of this steepening
contains interesting information about the clustering of
dark matter shells, and it can be understood as the dividing
radius of single-stream and multistream sectors of the
dark matter phase space. This feature has already been
noticed in the self-similar spherical collapse framework
developed and studied in Refs. [8,9] and generalized to
three-dimensional collapse in Ref. [10]. Self-similarity,
however, is fully operational in a universe without a
characteristic scale, such as the Einstein-de Sitter (EdS)
universe with Ωm ¼ 1. Even though realistic applications
of the same principle to a ΛCDM universe are possible
[11], in this paper, we will focus on the collapse in the EdS
scenario and will leave more realistic scenarios for future
work.
The profiles of the largest dark matter halos in the

Universe, where galaxy clusters reside, can be mapped by
measuring the deformation of background sources [12,13].
This technique, known as lensing, has been used to

*contigiani@lorentz.leidenuniv.nl
†vardanyan@lorentz.leidenuniv.nl
‡silvestri@lorentz.leidenuniv.nl

PHYSICAL REVIEW D 99, 064030 (2019)

2470-0010=2019=99(6)=064030(9) 064030-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.064030&domain=pdf&date_stamp=2019-03-21
https://doi.org/10.1103/PhysRevD.99.064030
https://doi.org/10.1103/PhysRevD.99.064030
https://doi.org/10.1103/PhysRevD.99.064030
https://doi.org/10.1103/PhysRevD.99.064030


measure the splashback feature around clusters [14,15].
It should be noted, however, that the most stringent
constraints are obtained using the distribution of subhalos
traced by the cluster galaxy members [16–19]. In this case,
the interpretation is nevertheless not straightforward, and
an accurate comparison with N-body ΛCDM simulations
is required.
In this paper, we consider the splashback radius in MG

scenarios, investigating the microscopic effects of alter-
native theories of gravity on the dark matter shells accreting
into the halo. Since we aim to gain insight on the physical
details, we do not resort to numerical simulations but rather
employ a semianalytical method based on the framework of
self-similar spherical collapse of Ref. [8]. We focus on the
class of theories of gravity that display the symmetron
screening mechanism [20]. While we present an overview
of the symmetron gravity in the main text, let us mention
here that our analysis can be easily extended to other types
of screening mechanisms, e.g. to Chameleon screening
exhibited by fðRÞ models [21,22], where the density
dependence is explicitly in the scalar field mass, rather
than the field couplings.
We have organized our presentation as follows. In

Sec. II, we introduce the self-similar density profile and
present the relevant equations of motion for the collapsing
shells. In Sec. III, we discuss the basics of symmetron
gravity. In Sec. IV, we present our numerical methods and
demonstrate the effect of the symmetron force on the phase
space of the dark matter halo and the shift in the splashback
radius.1 Finally, we discuss the implications of our findings
and suggest potential further studies in Sec. V.

II. DENSITY PROFILE

In order to study the motion of accreting material onto an
overdensity, we first need to specify a matter density
profile. In this work, we employ the so-called self-similar
approximation in the problem of spherical collapse. In this
context, the idea of self-similarity was introduced for the
first time by Ref. [8], in which it was shown that around
EdS backgrounds, where the scale factor scales as a power
law of cosmic time, aðtÞ ∝ t2=3, the spherical collapse
equations admit self-similar and self-consistent solutions.
The material surrounding a scale-free perturbation ini-

tially coupled to the Hubble flow eventually reaches
turnaround and collapses onto a central overdensity. We
denote by RðtÞ and Mðr; tÞ the position of the turnaround
radius at a time t and the mass contained within the radius r,
respectively. The mass within the turnaround radius can be
written as a function of scale radius as

MðR; tÞ ∝ aðtÞs; ð1Þ

where the parameter s is referred to as the accretion rate.
In this model, MðR; tÞ and RðtÞ are related to each other
through

4π

3
RðtÞ3ρbðtÞ ¼

�
4

3π

�
2

MðR; tÞ; ð2Þ

where ρbðtÞ is the EdS background density at time t.
This additionally implies that the position R as a function
of time also depends on s:

RðtÞ ∝ aðtÞ1þs=3: ð3Þ
Notice that s and the mass of the present-day perturbation
are the only free parameters of this model. In this work, we
choose a fixed value of s ¼ 1.5 for the accretion rate,
known to be representative for the low-redshift Universe in
numerical simulations [7,23].
During spherical collapse, Gauss’s law ensures that the

trajectory for each shell of material is influenced only by
the mass contained within it. The equation of motion for
each shell can be written as

d2r
dt2

¼ −
GMðr; tÞ

r2
; ð4Þ

where the left-hand side is the Newtonian force FNðrÞ
proportional to Newton’s gravitational constant G.
While before turnaround the mass within a shell is

manifestly constant, afterward, this is not true; as multiple
shells start orbiting the halo, their trajectories start inter-
secting. This phenomenon is known as shell crossing, and
it is the principal reason why integrating Eq. (4) is not
straightforward.
If we label each shell of material by its turnaround time

t� and radius r�, such that Rðt�Þ ¼ r�, the trajectory for
each shell is found to be independent of these quantities
when self-similarity is satisfied. This can be verified by
rewriting the equation of motion for the given shell in terms
of the rescaled variables

ξ ¼ r
r�
; τ ¼ t

t�
ð5Þ

and by enforcing the mass profile MðrÞ to be of the form

Mðr; tÞ ¼ MðR; tÞMðr=RÞ: ð6Þ

Notice that, from Eq. (3), it follows that the rescaling of

the local turnaround radius Ξ ¼ RðtÞ
r�

can be also written as
a function of τ alone:

ΞðτÞ ¼ τ2=3þ2s=9: ð7Þ

The system is then evolved through the following self-
similarity equations for ξðτÞ and Mðξ=ΞÞ,

1In the interest of reproducibility, we make our numerical
codes available at http://github.com/contigiani/sym-splash.
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d2ξ
dτ2

¼ −
π2

8

τ2s=3

ξ2
M

�
ξ

ΞðτÞ
�
; ð8Þ

MðyÞ ¼ 2s
3

Z
∞

1

dτ

τ1þ2s=3H

�
y −

ξðτÞ
ΞðτÞ

�
; ð9Þ

where Hð…Þ is the Heaviside step function, and the
turnaround initial conditions for ξðτÞ are ξðτ ¼ 1Þ ¼ 1,
dξ=dτðτ ¼ 1Þ ¼ 0. Notice that, because these two equa-
tions are coupled to each other, they should be solved
jointly to obtain self-consistent solutions for the orbits and
the mass profile. This is done by starting from an initial
guess for MðyÞ and then evaluating numerically the
trajectories ξðτÞ using Eq. (8). The corresponding MðyÞ,
evaluated using Eq. (9), is then taken as an initial guess for
the next iteration. This is repeated until convergence is
reached and a final result for Mðr; tÞ is obtained. The
corresponding density profile is then simply

ρðr; tÞ ¼ 1

4πr2
dM
dr

ðr; tÞ; ð10Þ

and it is shown in Fig. 1. Notice in particular that its time
dependence is completely described by ρbðtÞ and RðtÞ.

III. SYMMETRON GRAVITY

In this section, we provide a brief overview of symme-
tron gravity and introduce the framework needed to study
its effects on spherical collapse.
We consider a scalar-tensor theory of the form

S ¼ Sφ þ SMðg̃μν;ΨÞ; ð11Þ

with

Sφ ¼
Z ffiffiffiffiffiffi

−g
p

d4x

�
M2

p

2
R −

1

2
∇μφ∇μφ − VðφÞ

�
; ð12Þ

Mp being the Planck mass, and SM being the action for
matter fields. The scalar field φ couples to the Einstein
frame metric gμν with Ricci scalar R, while matter fields
(collectively represented by Ψ) couple to the Jordan frame
metric g̃μν. The two metrics are assumed to be related by the
transformation

g̃μν ¼ A2ðφÞgμν: ð13Þ

Notice that such model is fully specified by the functions
AðφÞ and VðφÞ. Varying the action with respect to φ gives
us the equation of motion,

□φ ¼ V;φ − A3ðφÞA;φðφÞρ≡ Ṽ;φðφÞ; ð14Þ

where ρ is the trace of the matter stress-energy tensor, equal
to the local matter density, and ṼðφÞ is an effective
potential. The fifth force per unit mass exerted by the field
φ and experienced by a matter test particle can then be
written as

Fφ ¼ −∇ logAðφÞ: ð15Þ

In this paper, we will focus on a realization of such a
theory, namely the symmetron model specified by the
functions,

VðφÞ ¼ −
1

2
μφ2 þ 1

4
λφ4; ð16Þ

AðφÞ ¼ 1þ 1

2

φ2

M2
; ð17Þ

and effective potential

ṼðφÞ ¼ 1

2

�
ρ

M2
− μ2

�
φ2 þ 1

4
λφ4: ð18Þ

In this parametrization, the symmetron naturally assu-
mes the form of an effective field theory with φ → −φ
symmetry.
In high-density regions, where the condition

ρ > ρssb ≡M2μ2 ð19Þ

is satisfied, the effective potential ṼðφÞ has only one
minimum in φ ¼ 0, and the field is driven toward it,
resulting in a null fifth force. In other words, high-density
regions are screened. In low-density environments, on
the other hand, the minimum is not located at zero.

FIG. 1. Prescription for the spherical halo density profile. The
red dotted line is a smoothed version of the self-consistent profile
which removes the nonphysical sharp caustic.
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For example, for ρ ¼ 0, the vacuum expectation value is
φ0 ¼ μ=

ffiffiffi
λ

p
.

The fifth force can be constrained by local tests of
gravity; to see in detail how local limits translate into
bounds on the mass scale M and the Mexican hat
parameters μ, λ, we refer the reader to Ref. [20], for a
general overview, and to the introduction of Ref. [24], for a
more recent analysis.
In an EdS background, the average matter density as a

function of redshift z is

ρb ¼
1

6πGt2
∝ ð1þ zÞ3: ð20Þ

As the Universe expands, the symmetron can undergo
spontaneous symmetry breaking (SSB) when ρbðzssbÞ ¼
ρssb. For more details about the cosmological evolution of
the symmetron field and the allowed expansion histories,
we refer the reader to Refs. [25,26]. Let us stress, however,
that we are not interested in the possibility of using the field
φ to drive the late-time expansion of the Universe, but we
are only interested in the additional fifth force and its
effects on spherical collapse.
In this paper, we will work in terms of the dimensionless

field χ ¼ φ=φ0 and symmetron parameters composed by
the average matter density at symmetry breaking ρssb, the
vacuum Compton wavelength

λ0 ¼
1ffiffiffi
2

p
μ
; ð21Þ

and the dimensionless coupling

β ¼ φ0Mp

M2
: ð22Þ

Using these parameters, the fifth force sourced by the
symmetron field can be written as

Fφ ¼ −16πGβ2λ20ρssb χ∇χ: ð23Þ

IV. SPHERICAL COLLAPSE WITH THE
SYMMETRON

Having introduced the symmetron, let us now go back to
the original goal of this paper, i.e. study spherical collapse
in symmetron gravity with a particular focus on splashback.
The splashback radius is commonly defined as the point

where the density profile ρðrÞ is at its steepest. While this
steepening is noteworthy because it can be detected as a
departure from an equilibrium profile, this definition is
clearly not suited for our study, in which we assume a
predefined density profile. Fortunately, the splashback
radius is also known to be connected to the apocenter of
recently accreted material and the location of the latest
caustic visible in the density profile. Here, we study the

effects of the symmetron force on splashback by using this
latter definition.
Our simulation is based on a system of equations that

includes the spherical collapse equations, as discussed
in Sec. II, coupled to the equation for the field profile of
the symmetron field, discussed in Sec. III. We start by
presenting our numerical method to compute both the
symmetron field profile and the additional fifth force for
the assumed density profile. We then proceed to integrate
the shell equation to predict the fractional change in the
splashback position in the presence of the symmetron force.

A. Field profile

Assuming the temporal evolution of the field to be very
fast compared to the other timescales of the problem, i.e.
the Hubble timescale and that of the clustering of matter,
the dimensionless field profile χðrÞ sourced by a density
profile ρðr; tÞ satisfies the following equation:

d2χ
dr2

þ 2

r
dχ
dr

¼ 1

2λ20

��
ρðr; tÞ
ρssb

− 1

�
χ þ χ3

�
: ð24Þ

This quasistatic approximation is common in the liter-
ature [27–29] and has been tested in the context of N-body
simulations [30,31]. In order to provide a rough, order of
magnitude justification for this assumption, let us just
mention that the timescale associated with the field
dynamics in vacuum is given by ∼λ0=c. It is clear that
in order for the symmetron field to be relevant for the
dynamics of the spherical collapse this λ0 should be of the
same order of magnitude as the scale of the cluster itself.
The latter, of course, is several orders of magnitude smaller
than c=H0.
The static symmetron equation of motion (24) is a

nonlinear elliptical boundary value problem, for which
we set the standard boundary conditions of vanishing
spatial gradient of the field at r ¼ 0 and r → ∞. We use
a one-dimensional version of the Newton-Gauss-Seidel
relaxation method for the numerical integration of the
equation. This is a standard method used for obtaining the
scalar field profiles in N-body simulations with modifica-
tions of gravity mentioned above.
In practice, we discretize our one-dimensional static

symmetron equation of motion on a regular grid of size h
and use a second order discretization scheme for all the
derivatives.2 The resulting equation takes the form

L½χiþ1; χi−1; χi� ¼ 0; ð25Þ

2We have tested some outputs of our integrator against the
results of the version in which higher order discretization
schemes are employed. For our particular problem, we did not
encounter significant differences in performance of the integrator
and performed the main analysis with the version which employs
the second order scheme.
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where

L½ χiþ1; χi−1; χi�≡DK½ χiþ1; χi−1; χi� −DP½ χi; ρi� ð26Þ

contains the discretization of the Laplace operator

DK ≡ χiþ1 þ χi−1 − 2χi
h2

þ 2

ri

χiþ1 − χi−1
2h

ð27Þ

and effective potential:

DP ¼ 1

λ20

��
ρi
ρssb

− 1

�
χi þ χ3i

�
: ð28Þ

The basic idea of the relaxation methods is to find a field
profile from this equation which is closer to the real
solution than a randomly chosen initial guess. This step
is iterated over multiple (improved) guesses labeled χnðiÞ
until convergence is reached.
At a given step, we define an improved (new) field

profile:

χnewðiÞ ¼ χnðiÞ −
LðχðiÞÞ

∂LðχðiÞÞ=∂χðiÞ
����
χðiÞ¼χnðiÞ

: ð29Þ

Then, we use a part of this new χ as the field profile for our
next relaxation iteration,

χnþ1ðiÞ ¼ ωχnew þ ð1 − ωÞχn; ð30Þ

where 0 < ω ≤ 1 is a weight parameter with, in principle, a
problem-dependent optimal value.
We employ two intuitive convergence diagnostics, in

which at each step we terminate the iteration if a certain
parameter is within a predefined threshold. The first
parameter is the residual function,

R1 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

L½ χðiþ 1Þ; χði − 1Þ; χðiÞ�2
r

; ð31Þ

and the second one is the all-mesh average of the fractional
change in the field profile,

R2 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

ð χnewðiÞ − χoldðiÞÞ2
r

: ð32Þ

To validate our integrator and convergence thresholds,
we compare the numerical solution to a known analytic
solution. In our case, this known solution is an exact
tanhðrÞ field profile, for which the corresponding density
profile was recovered using Eq. (24).
When solving for the density profiles plotted in Fig. 1,

we numerically evaluate the equation of motion in the range
[0, 2] for r=RðtÞ, where the density profile for r ≥ RðtÞ is
assumed to be constant. We make sure that the arbitrary

choice of the upper limit has no effect on our results by
testing larger values.

B. Splashback

Once the symmetron field is found as a function of time,
the present-day phase-space distribution of recently
accreted material can be obtained by integrating numeri-
cally the equation of motion (4) with added fifth force (23)
for different collapse times.
We find that after imposing self-similarity the collapse

equations can be written only as a function of three
dimensionless symmetron parameters: the redshift of sym-
metry breaking zssb, the dimensionless coupling β, and the
ratio λ0=Rðt0Þ between the vacuum Compton wavelength
λ0 and the present-day turnaround radius Rðt0Þ. An
important combination of these parameters is

f ¼ ð1þ zssbÞ3β2
λ20

R2ðt0Þ
; ð33Þ

which explicitly sets the strength of the symmetron force
according to Eq. (15).
From our testing, we found that values λ0=Rðt0Þ ∈

½0.02; 0.1� offer nontrivial cases. For λ ∼ Rðt0Þ, we always
obtain thin-shell-like solutions, while for λ ≪ Rðt0Þ, the
field is heavy and simply relaxes onto the minimum of the
potential ṼðχÞ in Eq. (18).
In Fig. 2, we illustrate our method and show how the

symmetron force modifies the phase-space configuration of
the latest accreted orbits (left-side plot). We find that the
splashback position is significantly affected for parameter
values f ∼ 1, zssb ∼ 2, and λ0=Rðt0Þ ∼ 0.1. These values
imply M ≲ 10−3Mp, which is in agreement with local tests
of gravity [20].
From the same figure (right-side plot), it is clear that the

innermost regions of the overdensity are screened from the
effects of the fifth force at all times, and this becomes
relevant in the outer regions only for z ≪ zssb. Past this
point, the force profile slowly transitions from a thick-shell-
to a thin-shell-like behavior, in which the force gets
progressively concentrated around the surface of the
screened region [32]. Due to the sudden drop in density
associated with splashback, this surface is delimited by the
splashback radius.
A systematic exploration of the symmetron effects on

this feature as a function of all parameters is presented in
Fig. 3, which represents our main result. A clear trend with
zssb is visible. Notice that the fractional change on the
splashback position has an optimal peak as a function of
zssb that is independent of f. If we call zsp the accretion
redshift of the shell currently sitting at the splashback
position after its first pericenter, i.e. the splashback shell,
we see that the effect is maximized when zsp ≃ zssb. This is
easily explained by studying the profile of the fifth force
over time. For zsp ≫ zssb, the selected shell collapses when
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the symmetron is in its symmetric phase and the material
spends the rest of its trajectory in a screened region, away
from the effects of the fifth force; for zsp ≪ zssb, the thin
shell has had time to form before zsp, and the shell feels the
effects of the fifth force only during a small fraction of its
trajectory. Between these two limiting cases, there is an
efficient zssb for which the splashback shell has time to
follow the formation of the thin shell, and it is optimally
positioned near the peak of the force profile for most of its
trajectory. In our figure, we show how this peak still has a
dependence on λ0, introduced by the presence of this factor
on the symmetron equation of motion (24).

To conclude this section, we point out that the smooth-
ness of the density profile as plotted in Fig. 1 has little
impact on our results and no impact on the trends discussed
above. Differences between the two prescriptions exist only
for λ0 ≪ Rðt0Þ, when the field profile becomes susceptible
to the small-scale features of the profile. However, since we
expect the sharp caustic to be smoothed by gravitational
instabilities, for the main results, we chose not to use the
discontinuous profile and assumed instead its smoothed
version. Notice also that considering such high-resolution
scenarios would introduce additional caveats (e.g. the
presence of substructure) that are not the focus of this work.

FIG. 3. Percentage change in the splashback position in symmetron gravity as a function of symmetron parameters: the dimensionless
force strength f and the SSB redshift zssb. The spread of the different curves is given by variations of the third parameter, the vacuum
Compton wavelength of the field λ0. We emphasize in particular the cases λ0=Rðt0Þ ¼ 0.1 (dashed line) and λ0=Rðt0Þ ¼ 0.02 (solid line),
in which Rðt0Þ is the present-day turnaround radius.

FIG. 2. Effects of the symmetron force on the splashback location for β ¼ 3, zssb ¼ 2, λ0=Rðt0Þ ¼ 0.05. On the left side, we show the
phase-space distribution of shells around a spherically symmetric halo, where the shells are color coded by their turnaround redshift. The
dotted line shows how this distribution is affected by the presence of the symmetron force. The arrows on the bottom point to the inferred
splashback radius in the two cases. On the right side, we display the ratio between the symmetron and the Newtonian force profiles, FS

FN
,

for different instants in time. At high redshift, when the innermost material is accreted, the symmetron force is ten times smaller than its
peak value today.
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V. DISCUSSION AND CONCLUSION

In this paper, we have explored how symmetron gravity
affects the splashback feature at the edges of cosmological
halos. In our approach, we assume a self-similar mass
distribution motivated by spherical collapse in an EdS
Universe, where the shape of the spherically symmetric
matter distribution is assumed to be only a function of
r=RðtÞ. This allows us to easily solve for the corresponding
symmetron fifth force and estimate its effects on the
splashback feature by studying the changed phase-space
distribution of recently accreted shells.
The main limitation of our study is the lack of a fully

consistent framework in which the density profile, the
turnaround physics, and the phase-space distribution are
solved for in conjunction with the newly introduced
symmetron equation of motion. For an example, we would
expect a consistent framework to take into account the
backreaction of the scalar field on the density profile.
While deriving self-consistent solutions is outside the

scope of this paper and more suited to N-body simulation
studies, we find it useful to discuss the impact of our
assumptions on the results. Changes to the turnaround
physics are commonly studied through the use of different
approximations, like a scale-dependent Newton’s constant
[33–37]. In our case, if we maintain the assumptions of
self-similarity and power-law accretion in Eq. (1), the main
change to our formalism will come in the form of
upgrading the numerical constant appearing in Eq. (2) to
a function of the perturbation scale and cosmic time.
Previous works have estimated these corrections to be of

the order of a few percentage points at z ≃ 0; see Ref. [32]
for results in symmetron gravity and Ref. [37] for similar
results in fðRÞ theory. In particular, we expect our
assumption to first break at a redshift z such that the
condition FφðrÞ ∼ FNðrÞ is satisfied at the turnaround
radius r ¼ RðtÞ. In our analysis, however, we have seen
that the effects on splashback are maximized when the
collapse redshift of the splashback shell zsp is equivalent to
this transition redshift. After this point, the splashback shell
is confined in the inner region, and we expect its trajectory
to be unaffected by the turnaround physics. Therefore, we
consider our results around the peak of Fig. 3 to be robust
against this assumption. For the same reason, however, we
expect to lose predictability for higher values of zssb, since
the initial condition of the splashback shell will differ from
what we have assumed.
Notice that the argument presented above also implies

that our results can be extended to a standard ΛCDM
scenario. The present-day splashback shell is expected to
have collapsed in the matter-dominated era and to have
followed a trajectory mostly unaffected by the late-time
expansion, especially for low values of the accretion rate s
like the one considered here [11].
Effects of modified gravity on the structure of dark matter

halos are usually presented in the form of changes in the

small-scale power spectra [27,29,38,39] and two-point
correlation functions [40] or the whole phase-space distri-
bution [41,42]. In this analysis, we focused instead on a
particular scale, the splashback radius, and showed that up to
a 10% change can be induced (Fig. 3). It should be pointed
out that Ref. [43] was the first work to explore howmodified
gravity affects the splashback position. We stress, however,
that our work differs from that of its authors in three major
aspects. First, here, we focus on symmetron gravity which
displays a different screening mechanism from the chame-
leon or k-mouflage explored in Ref. [43]. Second, while
their results based on N-body simulations represent more
realistic predictions, they do not allow for a simple explora-
tion of the theory parameter space. Third, with our semi-
analytical approach, we are able to gain insight by obtaining
quantitative results as a function of multiple theory param-
eters and provide an explanation for the visible trends. All
this said, it also should be mentioned that the quantitative
estimation of the modeling uncertainties will still resort on
N-body simulations. This is an interesting aspect, and we
leave its systematic investigation to a future work.
Observationally, splashback can be measured predomi-

nantly around galaxy clusters, for which the present-day
turnaround radius Rðt0Þ is of the order of a few mega-
parsecs. Our results, therefore, imply that this feature can
be used to constrain fifth forces with vacuum Compton
wavelength λ0 just below the megaparsec scale. Because
measurements of splashback in the galaxy distribution
around clusters have already achieved a precision below
the size of our predicted effect [16–19], we expect to soon
be able to constrain not only the symmetron but other fifth
force models on similar scales.
Note in particular that, while other works have ex-

plored the possibility of constraining symmetron gravity
on megaparsec scales [44,45], the range considered here
for λ0 is unconstrained for this model. Thus, we expect a
measurement based on splashback to naturally complement
other results based on laboratory experiments [46,47],
stellar and compact astrophysical objects [48,49], or
galactic disks and stellar clusters [24,50,51].
As the physics of splashback matures into a new

cosmological observable, we expect it to play a powerful
role in testing modifications of gravity, complementary to
already established techniques such as those for large-scale
structure.
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