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English Summary
Modern semiconductor technology allows the construction of miniaturized satellites,
which are cheap to launch, low-cost platforms for a broad variety of scientific and com-
mercial instruments. Especially the smallest and lightest satellites can enable space
missions which previously were technically infeasible, impractical or simply uneconom-
ical. In particular satellites constructed as CubeSats can be manufactured rapidly at
low cost, with the limited resources available in academic environments. However, to-
day such spacecraft suffers from low reliability. Hence, they have up until now mainly
been used for less critical and low-budget missions, where risks can be taken.

Many sophisticated scientific and commercial applications can today also be fit
into a miniaturized satellite form factor, which make a much longer mission duration
desirable. Theoretically, such spacecraft could also be used in a variety of critical
and complex multi-phased missions, as well as for high-priority science missions for
solar system exploration and astronomical applications. However, due to their low
reliability, these spacecraft have until now been used only as companions to accomplish
secondary tasks.

Modern electronics constitute a significant part of such spacecraft, and make up
several of their most critical subsystems. Considering their lower weight, these elec-
tronics must be lighter, smaller, and offer a better performance-per-watt ratio than tra-
ditional space-grade components. Thus, all advanced CubeSats today utilize cutting-
edge industrial embedded and mobile-market derived computer designs. At minimal
cost, these offer an abundance of performance, require less energy, and are easier to
work with than their space-grade counterparts that have a long legacy of use.

However, conventional systems-on-chip-based computers also lack the fault toler-
ance capabilities of computer-architectures aboard larger spacecraft. In related work,
subsystems using these components were determined responsible for a majority of
failures after spacecraft were launched and deployed in space. Due to budget, en-
ergy, mass, and volume restrictions in miniaturized satellites, existing fault-tolerant
computer solutions developed for such larger spacecraft can not be adopted.

As of 2019, there exists no fault-tolerant computer architectures that could be used
aboard nanosatellites powered by embedded and mobile-market semiconductors, with-
out breaking the fundamental concept of a cheap, simple, energy-efficient, and light
satellite that can be manufactured en-mass and launched at low cost. Miniaturized
satellite developers are, thus, left with the following options:

Upscaling: Resort to utilize traditional space-grade components. This usually re-
quires upscaling of the spacecraft design to a larger form factor, as such
components require more energy and offer less functionality, flexibility,
and processing performance. In practice, this drastically increases cost,
manpower requirements, and satellite development times. Hence, this
approach is not constructive for most novel mission concepts centered
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260 ENGLISH SUMMARY

around utilizing specifically spacecraft that can be developed rapidly,
or which have to be kept small, expendable, or cheap.

SpareSats: Mitigate the risk of early failure by deploying one or multiple SpareSats
to replace a CubeSat once it has failed. In practice, this not only in-
creases costs, but also makes failures more likely as the total number of
components launched is increased. Hence, this approach only becomes
viable after a sufficient level of robustness can be achieved. Today this
approach is only viable for constellation missions where satellite gen-
erations are replaced continuously at a rapid pace (e.g., Planet Lab),
and individual satellites with an exceptionally abundant budget (e.g.,
MarCo).

Acceptance: Accept the lack of reliability. Keep the mission brief in the hope of
achieving all main objectives, before the spacecraft eventually fails by
chance. For future miniaturized satellite missions with a longer dura-
tion, hope, faith, and luck should not be factors upon which systems
engineering is based.

When this thesis was written, developers of most miniaturized satellite missions
were forced to follow this third option. For very simple and brief CubeSat missions,
this approach resulted in success more often than not, but also in many early failures.
However, gambling against time and clinging to hope to not be impacted by environ-
mental effects in the wrong moment is unacceptable, and increasingly less tolerated by
governments, space agencies, and investors. To ensure success for advanced long-term
CubeSat missions, better, more reliable system architectures are required. Hence,
fault-tolerant concepts are needed that are suitable for on-board computers based on
modern commercial semiconductors.

This Thesis and its Results
To overcome the technological deficits that impact the use of very small satellites today,
in this thesis a new fault-tolerant computer architecture is detailed. It is suitable for
integration even into light scientific CubeSats, which are based on modern commercial
semiconductors.

To develop the architecture presented in this thesis, results and concepts from a
wide range of science and engineering fields are used. The expertise involved in devel-
oping this architecture transcends both science and engineering individually. Instead,
we combine the best of both of these worlds: we integrate scientific advances, con-
ceptual knowledge, and theoretical notions, with the practical implementation and
thorough testing that is standard in the fields of space and electrical engineering.

To make the research contained within this thesis accessible to both scientists and
engineers, Chapters 2 and 3 are intended as an informal introduction and definition
of the fault-model considered in this thesis. Chapter 2 contains a brief overview over
key aspects of spaceflight today, for readers who are unfamiliar with this topic. It
serves as motivation for this thesis. The chapter also introduces concepts related
to fault-tolerant computer design. In order to design and develop a fault-tolerant
on-board computer architecture that is actually effective and efficient, it is crucial to
understand the effects of the space environment on a computer. Chapter 3 thus details
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these effects, design constraints for space electronics, and operational considerations
during space missions, such as communication times, and celestial mechanics.

Based on the preceding chapters, in Chapter 4 we present a fault-tolerant on-board
computer architecture which combines software implemented fault tolerance concepts
with FPGA reconfiguration and mixed criticality. This is further complemented with
several other, more conventional fault tolerance and error correction measures. Fault
tolerance in this architecture is implemented as several interlinked stages that allow
an on-board computer to age gracefully.

To enable all this functionality, we utilize a software-implemented coarse grain
lockstep, which is described in detail in Chapter 4. This functionality alone offers
strong fault tolerance capabilities, but would be insufficient for long term missions.
Therefore, in Chapter 5, we describe how reconfigurable logic can be used to recover
a defective system from a broad variety of faults. We utilize FPGA reconfiguration to
assure the integrity of a system-on-chip design, in order to extend the useful lifespan
of an on-board computer, and to maximize the fault coverage potential of spare re-
sources. In space missions with a very long duration, defective parts of an FPGA will
eventually no longer be recoverable through reconfiguration. Hence, the amount of in-
tact programmable logic available within an on-board computer diminishes overtime.
In Chapter 6, we show how mixed criticality can enable a computer to adapt to degra-
dation, instead of failing spontaneously as traditional systems do. We can use this
functionality to trade performance for power-saving and robustness autonomously at
runtime. This allows the flight software core functionality to be safeguarded as faults
occur, achieving graceful aging and pooling spare resources to maximize survivability.

All of this functionality exists as software. It is run on a multi-processor system-
on-chip that is implemented within an FPGA. Software, payload information, and the
logic programmed into an FPGA are data, the integrity of which must be safeguarded
during the entirety of a space mission. In Chapter 7, protective concepts for the
different memory technologies present aboard a modern satellite are described.

Previous software-based fault-tolerant concepts applicable to modern semiconduc-
tors often sound nice in theory. However, these turn out to be impractical for real-world
application. To date no such fault tolerance architecture has been practically imple-
mented and validated, but doing so is a critical step. We take this critical step in
Chapters 8 through 10 of this thesis.

The lockstep functionality used in our architecture is validated using Fault Injection
in Chapter 8. In Chapter 9, we describe a practical multi-processor system-on-chip
design for implementation on an FPGA that serves as an ideal platform for said
architecture. We then dedicate Chapter 10 to the practical implementation of the
concepts and designs described in the previous chapters. Thereby, we show how an
on-board computer with this architecture can look like in the real-world, using a
breadboard-based proof-of-concept constructed from development boards. This was
done for the following 6 Xilinx FPGAs:

• Kintex UltraScale KU60,

• Kintex UltraScale+ KU11p, KU3p, the KU5p of a Xilinx KCU116 development
board, and the

• Virtex UltraScale+ VU9P of a Xilinx VCU118 development board.

For three of these FPGAs, KU60, KU11p, and KU3p, we provide detailed power and
utilization data.
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Conclusions

At the start of this thesis, we raised the question:

Can a fault tolerance computer architecture be achieved with modern embedded and
mobile-market technology, without breaking the mass, size, complexity, and budget con-
straints of miniaturized satellite applications?

A PhD, many published research papers, and several catastrophes later, it is now
possible to answer this question in the following way:

Yes. A fault-tolerant computer architecture for miniaturized satellites is technically
feasible with contemporary consumer- and industrial-grade technology. Once fully im-
plemented as a prototype, it can be used to expand the lifetime of modern day CubeSats
drastically, thereby enabling their use in critical and long-term space missions.

The software-components of the architecture presented in this thesis can be imple-
mented in a non-invasive manner. They provide protection for preexisting applications,
without the need to custom-write them to support this architecture. Using real-world
software, we show that these mechanisms can detect faults rapidly and with a high
probability, and that we can successfully recover from faults at low computational cost
in most cases. We demonstrate that the performance cost of this architecture is eco-
nomical, and remains effective even when operating in exceptionally heavily irradiated
regions of space.

With contemporary commercial components, a system-on-chip design that serves
as ideal platform for this architecture can be implemented even on the smallest Ultra-
scale+ FPGA with just 1.94W power consumption. Hence, this on-board computer
architecture can be applied to satellites as small as 2U CubeSats.

As the architecture scales with technology, advances in semiconductor manufac-
turing in the next generation of FPGAs will make this approach even more appealing,
and also usable to protect smaller spacecraft. It can improve efficiency and scalability
when implemented aboard heavier spacecraft that we use today for high-priority sci-
ence and solar system exploration. And maybe in the future, hopefully, we can explore
even what lies beyond its boundaries.


