
Fault-tolerant satellite computing with modern semiconductors
Fuchs, C.M.

Citation
Fuchs, C. M. (2019, December 17). Fault-tolerant satellite computing with modern
semiconductors. Retrieved from https://hdl.handle.net/1887/82454
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/82454
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/82454


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/82454 holds various files of this Leiden University 
dissertation. 
 
Author: Fuchs, C.M. 
Title: Fault-tolerant satellite computing with modern semiconductors 
Issue Date: 2019-12-17 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/82454
https://openaccess.leidenuniv.nl/handle/1887/1�


Chapter 11

Conclusions and Outlook

11.1 Conclusions

RQ1 In this thesis, we presented a satellite on-board computer (OBC) ar-
chitecture that can offer strong fault tolerance with conventional, low-cost, modern
semiconductors manufactured in small feature-size technology nodes. The correct
functionality of this architecture is safeguarded through a set of inter-linked software-
implemented fault tolerance measures combined with FPGA reconfiguration, which
we described in Chapter 4. These concepts allow us to assure fault tolerance even for
satellites with a very small form factor, which today can only utilize primitive or no
fault tolerance measures at all, as traditional radiation-hardened satellite computer so-
lutions can not be utilized due to volume, mass and power restrictions. We showed that
through lockstep implemented in software, we can efficiently protect a system consist-
ing of embedded and mobile-market components, and should ideally be implemented
within an FPGA to exploit reconfiguration. We demonstrate that the performance
cost of this lockstep mechanics is economical, and that its implementation is possible
in a non-invasive manner. Its protective guarantees are run-time configurable, and
fault tolerance can even be entirely deactivated at runtime if so desired.

RQ2 In Chapters 4 and 5, we showed that the logic of an FPGA-implemented
MPSoC can be protected well from radiation effects through smart configuration man-
agement and off-chip diagnostics. We closed the fault-detection gap which prior re-
search struggles to close through the multi-stage fault tolerance architecture described
in Chapter 4. To safeguard an FPGA from transient faults, we showed that error
scrubbing and FPGA reconfiguration can be used to detect and correct bit-upsets in
the CRAM of an FPGA. As described in Chapter 4, permanent faults can then be
mitigated through reconfiguration with alternative partition variants. This not only
increases the capability to cover permanent faults, but as we show in Chapter 5, it also
allows an OBC to adapted to the specific requirements during each phase of complex,
multi-phased space missions. This allows a reduction of overall system complexity,
reduces the need for spare processor cores and MPSoC infrastructure logic, and can
drastically extend the lifetime of a COTS FPGA-based OBC.

RQ3 In space missions with a very long duration, parts of an FPGA’s fab-
ric will eventually no longer be recoverable through reconfiguration. This is due to
accumulating permanent faults in the semiconductor the FPGA, and thus also the

195



196 11.1. CONCLUSIONS

MPSoC, are implemented in. Over time, this will result in an increasing number of
the MPSoC’s processor cores becoming unusable, gradually reducing the amount of
processing time available to the lockstep, and the level of replication it can achieve
for all applications. In Chapter 6, we showed that the run-time configurable nature
of software-implemented fault tolerance enables an OBC to respond to this behavior
in a way that can best be described as “graceful aging”. By exploiting mixed criti-
cality, it is possible to autonomously reallocate processing time between the different
applications that are part of an OBC’s flight software, allowing us to safeguard fault-
tolerant operation for the flight software’s core functionality. We showed that stability
and availability of critical applications can be maintained by sacrificing performance
of less important applications. In practice, this allows an OBC to age gracefully and
adapt to a shrinking set of intact processor cores, instead of failing spontaneously
as traditional systems do. A satellite operator can use this functionality to priori-
tize and dynamically trade system performance for increased fault coverage, power
saving, or to maximize an OBC’s functionality. Spare processor cores in traditional
hardware-voting based systems remain idle until a fault occurs, but our lockstep can
use them actively to run less critical parts of the flight software, until they are needed
in practice to replace a failed processor core. This allow spare processor cores available
throughout an MPSoC to be pooled and used more efficiently, thereby to overcoming
the static nature of traditional static hardware-implemented fault tolerance measures.
This allows an OBC to offer stronger fault coverage, and to more efficiently meet the
changing performance requirements throughout complex multi-phased solar system
exploration missions with much reduced over-provisioning and without requiring idle
spares.

RQ5 All these operational and system-design improvements are possible due
to the coarse-grain lockstep concept described in Chapter 4, which we utilize to achieve
forward error correction. We implement this lockstep within the OS kernel of an op-
erating system (RTEMS, FreeRTOS, and experimentally also on Linux) or as part of
baremetal software, where it assures synchronization between multiple thread-replicas
run on the processor cores of an MPSoC. To test and validate our architecture, in
Chapter 8, we conduct fault-injection into an emulated system and into a SystemC-
implemented MPSoC model. In this chapter we describe the two fault injection cam-
paigns we conducted against implementations of our lockstep: In the first campaign,
we utilized the QEMU-based FIES fault injection framework to inject faults into an
RTEMS implemented variant of our lockstep run on a Cortex-A system. In the sec-
ond campaign, we modeled a triple-core model of our MPSoC using RISC-V cores
in ArchC, and injected faults using SystemC simulation. Few software-implemented
fault tolerance concepts described in literature have been practically implemented and
validated. Therefore this chapter is also intended as practical guide for fellow re-
searchers, to make proper testing of software-implemented fault tolerance measures
less challenging and time consuming.

RQ4 Relying on software-implemented fault tolerance measures also require
special care to be taken to assure the integrity of the flight-software in which they are
implemented. Hence, in Chapter 7, we explored how unprotected volatile and non-
volatile COTS memory can be retrofitted with strong error correction and protected
from bit-upsets and SEFIs in control logic. We showed that error scrubbing for volatile
memory can be combined with allocation-time integrity checking and blacklisting for
defective pages in widely-used operating systems such as Linux. To safeguard the logic



CHAPTER 11 197

of our lockstep and a full firmware image, we showed that a file system can be equipped
symbol-based erasure coding and can use memory protection to mitigate the impact
of faults in control logic. To protect payload data, we described that a composite
erasure coding system can be combined with RAID-like functionality to efficiently
protect data stored within high-density NAND-flash and phase change memory. We
showed that software measures can guarantee strong fault tolerance, the NAND-flash
industry has in even begun to adopt the same erasure coding systems we proposed
in this paper as part of a solid-state drives embedded software-stack, e.g., in [286].
Simple erasure coding for caches and other on-chip memories at the time of writing is
a standard feature in Xilinx library IP, and supported in all currently available model-
market devices [119]. Security vulnerabilities such as Rowhammer and an increased
need for yield enhancement have prompted the adoption of ECC also for protecting
main memory [362], and in combined with software-implemented memory testing and
scrubbing described in this chapter, sufficient protection can be assured even for LEO
CubeSat missions with an extended duration of 2-5 years.

RQ6 Much of today’s fault tolerance research proposes interesting and novel
concepts. But in practice, the majority of these concepts can not be applied to protect
a critical system as it exists in the real world. To show that our architecture is
effective in practice, in Chapter 9 we developed an MPSoC design which provides
an ideal platform for the software-mechanics used to assure fault tolerance. It is
the result of a hardware-software co-design process and assures a high-degree of logic
and data isolation for software run on the individual processor cores of the OBC
within compartments. It can be implemented with just currently available COTS
hardware and extensively validated FPGA-vendor library IP, requiring no proprietary
logic or costly, custom space-grade processor cores. This design demonstrates that our
architecture can not just protect a satellite OBC in theory, but also that a suitable
computer architecture is feasible, and that no space-proprietary logic or IP is required.

In Chapter 10, we described the practical implementation of this MPSoC for a
variety of Xilinx Ultrascale and Ultrascale+ FPGAs as proof-of-concept. To show how
a practical OBC implementation for this MPSoC can look like, we developed a series
of MPSoC implementations and a breadboard proof-of-concept of this architecture on
Xilinx VCU118 (with 2 DDR memory channels) and KCU116 boards (with 1 channels
due to board constraints) in conjunction with TI-MSP430FR development boards. We
described the component-level setup of this architecture for CubeSat-use, for which
an MPSoC implementation on a KU3P FPGA is possible with just 1.94W total power
consumption. This demonstrates that a practical implementation of our architecture
can be achieved, which stays well within the power budget range available aboard
current 2U CubeSats.

11.2 Discussions

Traditional fault-tolerant computer architectures intended for space applications strug-
gle against technology, and are ineffective for embedded and mobile-market compo-
nents manufactured in technology nodes with a fine feature size. In this thesis we
showed that the solution to this limitation is the use of software-implemented fault
tolerance measures, which can be utilized to systematically protect each component
of an OBC as depicted in Figure 75. Through the architecture we developed orig-
inally as OBC for the MOVE-II satellite, we show that it is possible to efficiently



198 11.2. DISCUSSIONS

Spacecraft

On-Board Network / Satellite Bus

OBC

Semiconductor

MPSoC Logic

Software

On-Chip SRAM

Registers

Volatile RAM Non-Volatile RAM

Abstract Data Storage Technolgies

SensorsAOCSCOM Payloads

OBC Interfaces

EPSSaving

Figure 75: A component-level model of a satellite OBC, components for which the research
presented in this thesis offers protection are indicated with checkmarks.

protect modern COTS semiconductors effectively, and make them usable for critical
space applications. To realize such an architecture, we do not require any space-
grade components, fault-tolerant processor designs, or other custom and proprietary
logic. The OBC architecture we developed from this approach can be replicated with
just standard design tools and library IP, which are available commercially and even
free-of-charge to designers in academic environments. Our architecture scales with
technology, instead of struggling against it. It benefits from performance and energy
efficiency improvements that can be achieved with modern mobile-market hardware,
and can be scaled up to include more, and more powerful processor cores.

In Chapter 10, we showed as practical example that our architecture can achieve
beyond 50% power saving even between two generations of Xilinx FPGAs, one being
manufactured in 16nm FinFET and the prior generation in a 20nm planar technology
node. In this regard, we eagerly await the release of the next generation of FPGAs
manufactured in EUV-based technology nodes with 7nm or 5nm feature size. Com-
pared to 16nm FinFET and 20nm planar manufactured devices, we expect that next
generation FPGAs manufactured in these technology nodes will offer further power
saving, will allow much higher clock frequencies to be achieved for an MPSoC imple-
mented in configurable logic, while the reduced feature size of the semiconductor logic
would further reduced the likelihood for radiation to affect.



CHAPTER 11 199

A comparison of our OBC architecture to traditional space-grade solutions and
contemporary CubeSat computing seems unfair. Today, miniaturized satellite devel-
opers are limited to use low-performance microcontrollers and MPSoCs implemented
in ASIC or FPGA. Considering the few CubeSat compatible low-performance micro-
controllers that have been shown robust under radiation, our implementation can offer
drastically more performance. At the time of writing Chapter 4, we estimated that
our architecture run on modern MPSoC and FPGAs can offer a beyond factor-of-5
performance improvement as compared to these microcontrollers. Since 2017, within a
time-span of just two years, mobile market MPSoCs have advanced drastically, and a
beyond factor-of-10 improvement seems more realistic. At the time of writing in mid-
2019, most mobile-market devices can offer almost twice the clock speed and a better
performance per clock cycle as compared to their counterparts in 2017. Same ap-
plies to the upcoming generation of FPGA which will benefit greatly from technology
scaling.

Mobile-market MPSoCs used aboard CubeSats today seldom include any fault tol-
erance capabilities. Only sometimes to CubeSat designers implement custom home-
brew component-level failover concepts, which has been shown to inflate complexity
and failure potential. Our OBC architecture is based upon the same type of commer-
cial technology, but through software-measures and a smart MPSoC design, we assure
long-term fault coverage with a component-wise simple setup. Comparing this OBC
architecture with traditional solutions for larger spacecraft, even our current FPGA-
based proof-of-concept exceeds the single-core performance of the latest generation of
space-grade ASICS-SoCs such as an GR740 (250MHz vs 300MHz+). On top of that,
our architecture can offer fault tolerance at a fraction of the cost. It can do so without
suffering from the tight technological constraints of this classical technology and the
archaic development tools used there. All this is possible while still using COTS hard-
ware, without being impacted by the legal constraints of components that are subject
to ITAR or other export control laws.

11.3 Outlook and Future Work

As of early 2019, Xilinx has began to introduce a new generation of FPGA-equipped
devices manufactured in a 7nm FinFET+ technology node, in which the design issue
causing latch-up in Ultrascale+ should be mitigated [299]. With this node, Xilinx’s
foundry TSMC expects an around 65% reduction power consumption as compared
to the 16nm FinFET node used for Ultrascale+ FPGAs [360]. Even if only half of
this expected power reduction would manifests, in combination with FPGA-fabric
optimizations, we can expect to achieve approximately 1W power consumption with
our MPSoC implemented on a next-gen Xilinx FPGA. While these expectations based
on experiences with the current 20nm Planar and 16nm FinFET manufactured Xilinx
FPGAs, future FPGA generations released within the next decade will, with near
certainty, allow our architecture to even become usable aboard 1U CubeSats.

At this point in time, I have validated this OBC architecture to the extent that
this is possible for a single researcher in an academic environment. As next step
to validate it, I therefore plan to develop a prototype implementation. Since 2018,
I have therefore collaborated with and contributed to the Xilinx Radiation Testing
Consortium in the creation of a Kintex Ultrascale KU60 device-test card to reduce
the cost and time required for constructing this prototype. As of 12.09.2019, we, the



200 11.3. OUTLOOK AND FUTURE WORK

XRTC infrastructure team, have finalized the KU60 card’s design and schematics, and
after routing and a final review pass, the KU60 DuT-card will go into production later
this year.

Once the XRTC KU60 DuT-card becomes available, I plan to implement a match-
ing daughterboard carrying DDR-SDRAM, MRAM, and PCM components as well as
a supervisor MSP430FR, to then conduct radiation testing. Radiation testing will
then increase the maturity of this architecture to TRL4, and also serves as intermedi-
ate step to then realize a full custom-PCB based prototype. This prototype can then
for the first time be used to demonstrate the full capabilities of this architecture at
TRL5, without the constraints present in a development-based breadboard setup.

There is considerable potential for improvements considering the proof-of-concept
that I have developed before and during my PhD: The relaxed cost, energy, and size
constraints aboard microsatellites and larger spacecraft would allow an implementation
of this OBC architecture spanning multiple FPGAs and with a drastically higher
number of compartments. Such an OBC would not only offer better scalability and
fault-isolation than a single-FPGA system, but can then also tolerate chip-level defects
and SEFIs. Application replicas in lockstep could then be distributed across multiple
FPGAs, allowing non-stop operation even if an individual FPGA would have to be
reset, if or full reconfiguration is necessary.

To support larger MPSoCs with more than 8 compartments efficiently, a more
scalable interface between compartments and memory controller sets should be used.
This can be achieved by replacing the 2-level AXI crossbar the MPSoC is built around
today with a Network-on-Chip (NoC). A NoC offers improved scalability [329], can
also be used to enable fault-tolerant routing [349], backwards error correction through
re-transmission, and quality-of-service support [359]. When implementing this archi-
tecture with a NoC, the shared memory controller sets would be implemented on one
NoC layer, while the state-exchange network described in Chapter 9 would exist as
second layer. NoC routers can also be outfitted with error correction themselves [93].
Unfortunately, the few NoC-specialized experts I encountered while conducting this
research had little interest in implementing their research practically. Hence I hope
incorporate NoC into this MPSoC design in the future in collaboration with those who
are willing to do so.

I designed this OBC architecture specifically to utilize and exploit the powerful
fault-recovery capabilities of modern FPGAs. However, this OBC architecture could
very well be realized also on ASICs manufactured in radiation-robust COTS man-
ufacturing processes such as FD-SoI [144]. This would allow much reduced energy
consumption, and drastically higher clock speeds to be achieved. An ASIC variant
would be less susceptible to transients and more robust to permanent faults, while
loosing the capability to mitigate permanent faults through FPGA reconfiguration.
However, due to the drastically increased development costs of an ASIC implemen-
tation, the resulting OBC would not be viable for miniaturized satellite applications
anymore. We see this as a “big-space” variant of this approach with its own advantages,
but it would no longer offer fault tolerance “on a budget”.

This research began as a one-person project, but towards the end of my PhD, it
has become clear that it has today outgrown the capacity of just a single researcher. In
all regards, the end of my PhD is actually the beginning of something new, and more
important. I know that in the coming years, I must gather a research group to advance
this research and develop it further in a suitable environment. Where I will do this



CHAPTER 11 201

remains yet to be seen. At the end of the second year and the beginning of the final year
of my time as PhD researcher, I therefore began to explore ways for conducting long-
term testing for this OBC architecture to appropriately consider the time-component
that is introduced in testing hardware-software-hybrid systems. In this processes,
I have had the pleasure collaborate with several international experts in the fields
of radiation testing, space engineering, and semiconductor testing. Promising test
environments for long-term testing include the close proximity of a radiation source,
the Exposed Facility aboard the ISS (JEM-EF), or the vicinity of the Fukushima
Daiichi site. Naturally, all these test setups require considerable preparation time,
and preparing a prototype for deployed, e.g., aboard ISS is a highly competitive and
certification-heavy undertaking. Therefore, I aim to conduct in parallel to long-term
testing also on-orbit validation aboard a CubeSat, which is possible more rapidly and
at reduced cost than e.g., through an ISS experiment. After all, on-orbit technology
demonstration and validation is one of the prime use-cases for CubeSats today, and
also one of their most successful applications.

On-orbit validation aboard a CubeSat also closes a circle that began with the early
failure of the FirstMOVE CubeSat, and that initiated my satellite fault tolerance
research. I started this research, searching for a way to realize a better, fault-tolerant
satellite bus architecture for the MOVE-II CubeSat project. Back then, it became clear
that there were simply no fault-tolerant OBC architectures or products in existence
that could even theoretically be used to assure fault tolerance and guarantee reliable
operation for long-term CubeSat mission. At the start of this thesis, we raised the
question:

RQ0 Can a fault tolerance computer architecture be achieved with modern embedded
and mobile-market technology, without breaking the mass, size, complexity, and
budget constraints of miniaturized satellite applications?

This hard question arrose at the beginning of the development process of the MOVE-
II CubeSat. I approached this research without a specific architecture or solution in
mind, and even briefly considered a highly experimental, academic VLIW platform.
Three years, many published research papers, and several catastrophes later, it is now
possible to answer this question in the following way:

RQ0 Yes. A fault-tolerant computer architecture for miniaturized satellites is tech-
nically feasible with contemporary COTS technology. Once fully implemented
as a prototype, it can be used to expand the reliable lifetime of modern day
CubeSats drastically, thereby enabling their use in critical and long-term space
missions. With contemporary COTS components, this OBC architecture can
be applied to satellites as small as 2U CubeSats. Advances in semiconductor
manufacturing in the upcoming generation of FPGAs will make this approach
also usable for smaller spacecraft, and even more appealing as it scales with
technology. It can improve efficiency and scalability when implemented aboard
heavier spacecraft that we use today for high-priority science and solar system
exploration. And maybe in the future, hopefully, we can explore even what lies
beyond its boundaries.



202 11.3. OUTLOOK AND FUTURE WORK


