Universiteit

4 Leiden
The Netherlands

Fault-tolerant satellite computing with modern semiconductors
Fuchs, C.M.

Citation
Fuchs, C. M. (2019, December 17). Fault-tolerant satellite computing with modern
semiconductors. Retrieved from https://hdl.handle.net/1887/82454

Version: Publisher's Version
License: Licence agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/82454

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/82454

Cover Page

The handle http://hdl.handle.net/1887/82454 holds various files of this Leiden University
dissertation.

Author: Fuchs, C.M.

Title: Fault-tolerant satellite computing with modern semiconductors
Issue Date: 2019-12-17

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/82454
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 10

On-Board Computer Integration
and MPSoC Implementation

Practical Design Verification on FPGA

In this chapter, we present a practical implementation results for our MPSoC design,
as just making up fault tolerance concepts would be insufficient to answer RQ6. We
show that this on-board computer architecture in its full functionality can be imple-
mented with a low component cost, and only with standard development tools and IP.
We achieve 1.94W total power consumption, which is well within the power budget
range achievable aboard 2U CubeSats and larger satellites. This serves as proof-of-
concept for our architecture and answers RQ6, paving way to radiation testing and
on-orbit demonstration in the future.

Spacecraft
OBC @)
Semiconductor -
Software
. G))
MPSoC Logic @

Registers

On-Chip SRAM

Volatile RAM Non-Volatile RAM

Abstract Data Storage Technolgies

_— OBC Interfaces —

On-Board Network / Satellite Bus

Saving COM | EPS | AOCS | Sensors |Payloads

171

172 10.1. INTRODUCTION

10.1 Introduction

Cheap, CTOS electronics designed for the embedded and mobile-markets are the foun-
dation of modern nanosatellite design. They offer an excellent combination of low
energy-consumption, minimal cost, and broad availability. However, such components
are not designed for reliability, and include only rudimentary fault tolerance capabili-
ties. Due to the elevated risk of loosing a satellite due to failure of these components,
CubeSat missions today are kept brief or up-scaled to larger, more expensive satellite
form factors.

Low-complexity, low-performance satellite on-board computer (OBC) designs have
allowed a variety of successful CubeSat missions, with a few missions even operating
successfully for as long as 10 years. This demonstrates that there is no fundamental,
hard technological barrier that could prevent the use of modern semiconductors in
space missions. However, these designs are sufficient only for missions with very low
performance requirements, e.g., for educational missions and brief technology demon-
stration experiments.

Many sophisticated scientific and commercial applications can today also be fit into
a CubeSat form factor, which make a much longer mission duration desirable. To fly
these payloads, a CubeSat has to process and store drastically more data, and at all
levels requires increased performance. Therefore, all advanced CubeSats today utilize
industrial embedded and mobile-market derived systems-on-chip (SoC), which offer an
abundance of performance. However, these SoCs in turn are manufactured in modern
technology nodes with a fine feature size. They are drastically more susceptible to
the effects of the space environment than simple but robust low-performance micro-
controllers. Hence, proper fault tolerance capabilities are needed to ensure success for
advanced long-term CubeSat missions, as gambling against time and radiation can be
risky.

Radiation hardening for big-space applications can not be adopted, as this ap-
proach is only effective for very old or very proprietary and costly manufacturing
processes. Budget, energy, and size constraints prevent the use of traditional space-
grade components used aboard large satellites, while component-level fault tolerance
significantly inflate CubeSat system complexity and failure potential. Today, no fault-
tolerant computer architectures exist that could be used aboard nanosatellites powered
by embedded and mobile-market semiconductors, without breaking the fundamental
concept of a cheap, simple, energy-efficient, and light satellite that can be manufac-
tured en-mass and launched at low cost. Hence, we developed a scalable, yet simple
OBC architecture that allows high-performance MPSoCs to be used in space, and is
suitable for even small 2U CubeSats.

Our proof-of-concept OBC utilizes Microblaze processors on a low-power FPGA,
exploits partial reconfiguration and software-implemented fault tolerance to handle
system failure. It is assembled only from COTS components available on the open
market, standard vendor library IP, and runs standard operating system and software.
To protect our system, we utilize a combination of runtime reconfigurable FPGA logic
and software-implemented fault tolerance mechanisms, in addition to well understood
and widely available EDAC measures. We facilitate fault tolerance in software, which
enables our system to guarantee strong fault coverage without introducing the hard
design limitations of traditional hardware-TMR based solutions.

Our OBC architectures can efficiently and effectively handle permanent faults in

CHAPTER 10 173

the FPGA fabric by utilizing alternative FPGA configuration variants. It ages grace-
fully over time by adapting to an increasing level semiconductor degradation, instead
of just failing spontaneously. The performance of the OBC itself is adjustable, allow-
ing spacecraft operator to modify system parameters during the mission. An operator
can trade processing-capacity and functionality to achieve increased fault coverage or
reduced energy consumption, without interrupting satellite operations. Thereby, we
can maintain strong fault coverage for missions with a long duration, while adjusting
the OBC to best meet the requirements of complex multi-phased space missions.

To our understanding, this is the first scalable and COTS-based, widely repro-
ducible OBC solution which can offer strong fault coverage even for 2U CubeSats. We
provide an in-depth description of our proof-of-concept MPSoC, which requires only
1.94W total power consumption, which is well within the power budget range achiev-
able aboard 2U CubeSats. In the next section, we provide a brief overview over the
status-quo in fault-tolerant computer system design for large spacecraft, CubeSats,
and ground use. Subsequently in Section 10.3, we describe our OBC’s component-
level architecture, the MPSoC used, as well as the interplay between the different
components of the OBC. Before providing conclusions, we present our implementa-
tion results and details about how this MPSoC was tested and validated in Section
10.5. Finally, we discuss advanced applications of our proof-of-concept with multiple
FPGASs, Network-on-Chip usage and resistance to full-chip SEFIs in Section 10.4. All
components required to re-implement this OBC design are available at low cost to
scientists and engineers in an academic environment. The necessary IP and standard
design are available free of charge from the relevant vendors, e.g., through Xilinx’s
university program for academics and scientific users.

10.2 Related Work

In contrast to the initial generation of educational CubeSats, today fewer satellites
fail due to practical design problems caused by inexperience [39]. Instead, Langer et
al. in [2] showed that a majority of these failures can be attributed to electronics
heavy subsystems. Even experienced, traditional space industry actors with years of
experience in large satellite design, who develop CubeSats satellites “by the traditional
book” with quasi-infinite budgets today struggle to reach just 30% mission success [42].

The main source of failure are environmental effects encountered in the space en-
vironment: radiation, thermal stress, and corruption of critical software components
that can not be recovered from the ground, and failures caused by power electronics.
Considering again Langer et al., [2], with increasing age mission duration, a broad
majority of documented failures aboard CubeSats originate from OBCs, transceivers,
and the electrical power subsystem. While functionally disjunct, these subsystems all
have in common that they are heavily computerized and architecturally rather similar,
built around one or multiple microcontrollers and memories.

Fault tolerance concepts targeting generic commercial ground-based computing
applications usually cover only a small subset of our fault model: transient faults,
material aging, and occasionally gradual wear. Such assumptions are valid for crit-
ical applications for ground applications, but not for space applications. Often, the
introduction of permanent faults breaks fault tolerance concepts for ground applica-
tions, weaken their protective capabilities strongly, or limit their protection to only
a brief period of time. Most ground-based and atmospheric aerospace fault tolerance

174 10.2. RELATED WORK

concepts also aim to guarantee reliable operation from the point in time a fault occurs
until maintenance can be performed. This is a problematic assumption for CubeSat
use, as servicing missions have only been performed on rare occasions for spacecraft
of outstanding scientific, national, and international significance such as the Interna-
tional Space Station or the Hubble Space Telescope. But certainly not for low-cost
CubeSats.

These limitations, however, by using a combination of different additional fault
tolerance measures across the embedded stack. Fault tolerance concepts for ground
and atmospheric aerospace applications can therefor serve as building blocks to design
a fault-tolerant architecture for space applications.

10.2.1 Fault Tolerance for Large Spacecraft

Traditional OBCs for large satellites realize fault tolerance using circuit-, RTL- [344],
IP-block- [104, 132], and OBC-level TMR [90] through costly, space-proprietary IP.
They make heavy use of over-provisioning and tries to include idle spare resources
(processor cores, components, memory, ...) where necessary. Naturally, this is done
at the cost of performance and storage capacity, increases system complexity, and
power consumption. Circuit-, RTL-, and core-level measures are effective for small
microcontroller-SoCs [88,345], if they are manufactured in large feature-size technology
nodes. More and more error correction and voting circuitry is needed to compensate for
the increased severity of radiation effects with modern technology nodes [345]. This in
turn again inflates the fault-potential, requiring even more protective circuitry, making
this approach ineffective for modern semiconductors.

Processor lockstep implemented in hardware lacks flexibility, limits scalability, and
is feasible only for very small MSoCs with few cores [88,346]. Timing and logic
placement becomes increasingly difficult for more sophisticated processor designs, and
becomes infeasible for SoCs running at higher clock frequencies. Practical applications
run at very low clock frequencies [347] with two or three very simple processor cores,
even for ASIC implementations [88,132]. Common to all these solutions is that they
are proprietary to a single vendor, implying a hefty price tag and tight functional con-
straints. Especially the space-proprietary single-vendor solutions available are often
difficult to develop for, have in many cases no publicly available developer documen-
tation, have no open-source software communities which could provide support in
development, and usually imply vendor lock-in into a walled garden ecosystem.

To design nanosatellites, we instead utilize the energy efficient, cheap modern elec-
tronics [41], for which traditional radiation-hardening concepts become ineffective.
Specifically, CubeSats utilize COTS microcontrollers and application processor SoCs,
FPGAs, and combinations thereof [40,41]. Some of these were shown to performing
well in space, and others poorly. On-orbit flight experiences varying drastically even
between different controller models of the same family and brand [39]. Specifically,
components that were discovered to perform well are very simple microcontrollers
with a minimal logic footprint and low complexity. These are manufactured in coarse
feature-size technology nodes, and were by coincidence designed to be rather tolerant
to radiation (radiation-hard by serendipity) [46]. Examples of such parts are the PIC
controller family, which are logically extremely simple, and controllers that include in-
herently radiation-tolerant functionality such as the Ferroelectric RAM (FeRAM) [332]
based MSP430FR family [225]. Unfortunately, these “well behaved” components also

CHAPTER 10 175

offer very limited performance, which is sufficient only for simple educational missions,
technology demonstration, and short low-data rate science missions.

Computer designs for nanosatellites utilized about 10 years ago began to heavily
utilize redundancy at the component level to achieve failover, to provide at least
some protection from failure. However, practical flight results show that such designs
are complex and fragile, as compared to entirely unprotected ones [39,41]. Entirely
unprotected OBC designs, in turn, may fail at any given point in time. However, today
satellite designers are usually forced to simply accept this risk, leaving the hope that
a satellite will by chance not experience critical faults before its mission is concluded.
Risk acceptance is viable only for educational, and uncritical, low-priority missions
with a very brief duration.

10.2.2 Fault Tolerance Concepts for COTS Technology

FPGAs have become popular for miniaturized satellite applications as they allow a
reduction of custom logic and component complexity. FPGA-based SoCs can offer
increased FDIR potential in space over ASICs manufactured in the same technology
nodes [40] due to the possibility to recover from faults through reconfiguration. Tran-
sients in configuration memory (CRAM) can usually be recovered right away through
reconfiguration [105], while permanent faults may be mitigated using alternative con-
figuration variants. However, fine-grained, non-invasive fault detection in FPGA fabric
is challenging [345], and is a subject of ongoing research [239,240]. Applications thus
rely on error scrubbing, which has scalability limitations and covers only parts of the
fabric.

Software implemented fault tolerance concepts for multi-core systems were identi-
fied as promising already in the early days of microcomputers [131], but was technically
unfeasible and inefficient until few years ago. Modern semiconductor technology al-
lows us to overcome these limitations and recent research [348,349] shows that modern
MultiCore-MPSoC architectures can theoretically be exploited to achieve fault toler-
ance. However, these are incapable of general-purpose computing, and instead cover
deeply embedded applications with a very specific software structure [241,350]. They
require custom processor designs [348], or programming models which are suitable
for accelerator applications [349]. The fundamental concept of software-implemented
coarse-grain lockstep, however, is flexible and can be applied, e.g., to MPSoCs for
safety-critical applications [348,351], networked, distributed, and virtualized systems
[201].

10.3 A Reliable CubeSat On-Board Computer

A system designed for robustness must avoid single-points of failure and assist in fault-
detection. It should also support non-stop operation. Ideally, it should be capable of
tolerating the failure of entire block and individual attached component. The OBC
architecture presented in this chapter consists of an FPGA and a microcontroller in
tandem, which is used for test and diagnostic purposes. Within the FPGA, we im-
plement an MPSoC architecture, which is then made fault-tolerant using software
measures, while its robustness is increased using memory EDAC and FPGA reconfig-
uration.

&
m “ Redundant Memory Set A “
w ! "
= Redwave “ DDR4 MRAM Flash/PCM | | COM
m || Main Memory (08S) (Payload Data)| |
! _ [! e
A == ____1
= t
3 L »! ADCS
m
Z
@)
S Diagnosis -y 0CS
= Supervisor and CAN
23] Control —>
W (MSP430FR) On-Board
@) JTAG WWOOM%%WW Ethernet ———— Network > Payload
- (Satellite Bus)
% etc Y
= > Payload
35| QSPI CFG Mem Transceiver
o~
<
o3 ————> EPS
S e — —
Y ! i _ _ _
FPGA “ DDR4 MRAM Flash/PCM "
Configuration | | Main Memory (0S) (Payload Data)| |
Memory “ !
| Redundant Memory Set B !
Figure 67: A component-level diagram of our OBC architecture. This architecture is intended as an in-place substitute for a conventional
ASIC-based System-on-Chip, and only adds a second set of memory ICs to counter component-level failure.
©
I~
i

CHAPTER 10 177

However, conventional MPSoCs follow a centralist architecture with processor cores
sharing functionality where possible to minimize footprint, optimize access delays,
improve routing [238]. There, processor cores share memory in full, and have full access
to all controllers operating within this address space, to maximize system functionality
and code portability. In consequence, conventional high-performance computer designs
offer only weak isolation for application running on different processor cores for the
sake of performance. Faults in one core may therefore compromise the functionality
of other cores and the MPSoC as a whole. This increases the overall failure-potential
sharply as compared to very small microcontroller SoCs, as an MPSoC’s logic does
not have only a larger footprint, but also more components that can independently
cause such a system to fail.

From a fault tolerance perspective this is undesirable, and in our OBC we follow a
different approach. Designers of fault-tolerant processors for traditional space applica-
tions handle this issue by utilizing custom fault-tolerant processor cores, to assure that
faults occurring within a core are mitigated and covered before they could propagate.
For miniaturized satellite use, this is not feasible, and instead we must achieve fault-
isolation and non-propagation through system-, software-, and design-level measures.
In the remainder of this section, we show how this can be done with only commodity
COTS components and tools that are available to academic CubeSat designers.

10.3.1 System- and Component-Level Architecture

We designed out architecture as in-place replacement for a conventional MPSoC-driven
OBC design and utilize a commodity FPGA. The component-level topology of our
OBC design is depicted in Figure 67.

We utilize an FPGA to realize an MPSoC that offers strong isolation between
the individual processor cores, and to enable recovery from permanent faults. This
FPGA serves as main processing platform for our OBC, and capable of running a full
general-purpose OS such as Linux. We implemented a proof-of-concept of our OBC
architecture using Xilinx Kintex and Virtex Ultrascale+ FPGAs, as well as the ear-
lier generation Kintex Ultrascale FPGAs. For CubeSat use, only Kintex Ultrascale+
FPGAs are relevant at this point due to drastically reduced power consumption as
compared to older generation and Virtex FPGAs. We provide further details on this
MPSoC in the second to next subsection.

To store the FPGA’s configuration memory is attached to the FPGA via SPI. The
FPGA by default acts as SPI-master for this memory and automatically loads its con-
figuration from there. In our proof-of-concept implementation, we utilize conventional
NOR-flash [153] for this purpose, which also is included on most commercial FPGA
development platforms. However, NOR-flash is inherently prone to radiation [153],
and phase-change memory (PCM [284]) is much better suited for this task as its mem-
ory cells are inherently radiation-immune. Thus, in future applications and in our
prototype, we will utilize a PCM IC instead of serial-NOR-flash.

Like most CubeSat OBCs, our OBC includes an additional microcontroller which
acts as watchdog, and performs debug and diagnostic tasks. However, as we are
utilizing an FPGA as the main processing platform, it only controls the FPGA and the
MPSoC implemented within it. Hence, it acts as a saving subsystem (redwave/hard-
command-unit), and can resolve failures within the MPSoC its peripheral ICs for
diagnostics purposes in case the MPSoC became dysfunctional. To reflect this role,

178 10.3. A RELIABLE CUBESAT ON-BOARD COMPUTER

we refer to it as “supervisor”.

As depicted in Figure 71, the supervisor is connected to the FPGA through GPIO
and SPI. The SPI interface allows low level diagnostic access to different parts of
the MPSoC, as well as facilitate low-level test access to FPGA-attached components.
Through the GPIO interface, the supervisor controls the FPGA’s JTAG interface and
can reset the FPGA as well as different parts of the MPSoC. The FPGA also has access
to the FPGA’s configuration memory, and shares this SPI bus with the FPGA in a
multi-master, so that in case of failure, it can independently reconfigure the FPGA.

The supervisor itself is not connected to other satellite subsystems, and can not
control other parts of the satellite beyond the OBC itself. During regular operation, it
takes no part in the normal data processing operations of the OBC and only receives
correctness information from the MPSoC, which is further described in Chapter 4.
However, for failure diagnostics the supervisor can be used to reprogram the OBC
FPGA to access the rest of the satellite through its interfaces for debug purposes.
Therefore, the supervisor requires very little processing power, and we utilize a robust
low-performance MSP430FR5969 microcontroller. The MSP430FR. controller family
is manufactured with inherently radiation-tolerant FeRAM instead of flash, and has
become popular in low-performance COTS CubeSat products due to its good perfor-
mance under radiation and in space [225]. A space-grade substitute is available in the
form of the MSP430FR5969-SP.

10.3.2 Memory Components

Besides the FPGA, configuration memory, the supervisor, and the usual power elec-
tronics, our OBC architecture includes two redundant sets of memory ICs for use
by the MPSoC implemented on the FPGA. Each memory set includes DDR memory
used as main working memory by the MPSOC, magnetoresistive-RAM [150] (MRAM)
used to store the operating system and flight software, as well as PCM for holding
payload data. In our development-board based proof-of-concept, we are constrained
to substituting MRAM and PCM with NAND-flash due to hardware constraints.

DDR-SDRAM is prone to radiation-induced faults [250], though with modern high-
density components manufactured in fine technology nodes, the likelihood to experi-
ence bit-upsets is low [255,352]. Hence, for most nanosatellite missions single-bit
correcting error correction coding (ECC) [254] is sufficient to protect the integrity of
data stored [251] as long as error scrubbing is implemented [353]. In LEO, scrubbing
intervals can be kept very low, e.g., once per orbit, as the particle flux and likelihood
to receive bit-flips with modern DDR memory is minimal. This can be realized using
software-measures as we showed in Chapter 7. ECC can be implemented using stan-
dard Xilinx Library IP [331], as well as free open-source cores from OpenCores, and the
GPL version of GRLIB. Specifically, standard Xilinx design software out-of-the-box
includes the necessary library IP for Hsiao and Hamming coding.

For CubeSats venturing to areas in the solar system with more intensive radiation
bombardment, continuous memory scrubbing can be implemented in logic within the
MPSoC. Then, stronger EDAC with longer code-words and larger code-symbols should
be used, instead of the weaker coding that can be assembled using Xilinx library
IP. Symbol-based ECC can compensate better for the effects of radiation in modern
DDR-SDRAM: despite occurring less frequently overall, highly charged particles have
an increased likelihood to cause multi-bit upsets instead of changing the state of just

CHAPTER 10 179

a single DRAM cell. EDAC using Reed-Solomon ECC as well as interconnect error
scrubber IP cores are available commercially, e.g., via Xilinx or from the commercial
GRLIB library. Alternatively, they can be assembled from open-source IP, available
from OpenCores, and a broad variety of other open-source code repositories. However,
the quality of such cores is often uncertain, and even a good part of the IP available
through the curated OpenCores catalog is known to be defunct. Memory scrubbing
can be assembled on the FPGA from standard library IP, while ready-made scrubbers
are available commercially (e.g., the “memscrub” IP core from commercial GRLIB).

To store the OBC’s OS and its data, COTS MRAM ICs are available at low cost on
the open market today and flight experience with the parts inside earlier CubeSats has
been overwhelmingly positive. However, only the memory cells of these memories are
radiation immune. Without further measures, they are still susceptible to misdirected
read- or write access, and SEFIs. We showed in Chapter 7 that these issues can be
mitigated in software, through ECC, and redundancy. We also showed that this can be
achieved with minimal overhead through the use of a bootable file-system with Reed-
Solomon erasure coding. FeRAM would be more power efficient than MRAM, and is
also inherently radiation tolerant, but its low storage density makes it insufficient for
our use-case.

For storing applications and payload data, memory technologies with a much higher
storage density than MRAM are necessary. In practice, this limits us to use NAND-
flash and PCM, of which only the latter is radiation-immune. The storage cells of
both have a limited lifetime, and therefore are subject to wear. However, high-density
PCM has not become widely available on the open market, and so we currently have to
resort to using NAND-flash. Fault tolerance for these memories can again be realized
in software. As both these memories suffer from use-induced wear, the necessary
functionality to handle wear is needed to efficiently safeguard their long-term use.
Therefore in Chapter 7, we presented MTD-mirror, which combines LDPC and Reed-
Solomon erasure coding into a composite erasure coding system.

One of the main causes for failures in commercial memory ICs of all memory
technologies are faults in control logic and other infrastructure elements, causing SEFIs
[255]. These may cause temporary or permanent failure of memory ICs, regardless of
the memory technology used, which can not efficiently be mitigated through erasure
coding. Instead, redundancy for these devices is needed, which we can realize by
placing two memory sets. However, we do not implement failover in hardware, but
merely connect the two memory sets to the FPGA. All failover functionality is realized
through the topology of our MPSoC and in software.

10.3.3 The OBC Multiprocessor System-on-Chip

To realize fault tolerance for our OBC architecture, we isolate software run within
our OBC as much as possible and without constraining software design. To do so, we
co-designed an MPSoC as platform for the software functionality described in Chapter
4. Tts logic placement is depicted in Figure 68, and we will describe its composition
here.

We place each processor core within a separate compartment. Applications and the
environment in which they are executed are strongly isolated through the topology of
the MPSoC. The MPSoC version described in this chapter has 4 Xilinx Microblaze
processor cores, and therefore 4 compartments, which are depicted in brown, green,

10.3. A RELIABLE CUBESAT ON-BOARD COMPUTER

180

o S h
fmﬁ}ﬂ,\ = by imirdik
M55 i :
s == LS . =
n T
o o] dlm.rﬂlmi.muﬁﬂm,jd =k —
o ey et ey g e i By
u FEmn I e Larfuliat, Blsakile:h, ekt - rEmE
H — o T L= -l p— —
g N] e s I E52 0 M T [
e A e e e e e
sy e ang - r—

Figure 68: Logic placement of our proof-of-concept quad-core MPSoC for the upcoming XRTC Kintex Ultrascale KU60 device-test board. A
QSPI controller is highlighted in teal for size-comparison between an interface core and a compartment’s total size.

CHAPTER 10 181

blue and purple. Compartments have access to two independent memory controller
sets through an FPGA-internal high-speed interconnect. The two memory controller
sets are depicted in the Figure in red and yellow.

The final, pink-colorized logic segment contains infrastructure IP responsible for
FPGA housekeeping, as well as an on-chip configuration controller with access to the
FPGA'’s internal configuration access port (ICAP). As depicted in Figure 69, several
MPSoC components related to FPGA housekeeping are placed in static logic:

e the configuration controller makes up only a minor part of the pink-indicated
logic,

e the supervisor’s debug interface (further described in Section 10.3.4),

e as well as a library IP core facilitating CRAM-frame ECC for the detection
and correction errors in the FPGA’s running configuration (Xilinx Soft Error
Mitigation IP — SEM [354]).

Researchers showed in related work [355,356] that faults within an FPGA can ef-
fectively be resolved through reconfiguration, or mitigated using alternatively routed
and placed configuration variants [105]. Usually, full FPGA reconfiguration would
interrupt the operation of the MPSoC, and depending on the configuration memory
used, can require considerable time. By using partial reconfiguration, we can instead
split the MPSoC into separate partitions, which can then be independently reconfig-
ured. The use of an on-chip reconfiguration controller drastically improves the re-
configuration speed, but also allows fine-grained fault analysis and configuration error
scrubbing. Multiple alternative partition designs can be provided for each compart-
ment and memory controller set, which can then be reconfigured independently. This
not only allows non-stop operation, but also increases the likelihood that a suitable
combination of partition variants can be found to mitigate permanent faults present
in the FPGA fabric [105].

Compartments and memory controller sets are placed in dedicated partial recon-
figuration partitions. Partial reconfiguration allows us to test and repair individual
compartments, and to reprogram one memory controller set transparently in the back-
ground, without affecting the remaining system. We have implemented this concept
in prior research in Chapter 5 for the MOVE-II CubeSat.

Placement in static logic instead of a partition implies that infrastructure logic
is not part of any partial reconfiguration partition, which is required both for SEM
and logic utilizing ICAP. In practice approximately 90% of the fabric’s area is part
of the reconfiguration partitions, of which 75% is quadruple-redundant and part of
a compartment supporting TMR operation through software. The other 25% of the
logic holds the shared memory controllers, which offers simple redundancy and can be
recovered transparently using partial reconfiguration. Only 10% of the fabric holds
static logic, which can be still be recovered through reconfiguration.

Large clock trees and reset networks are known to be problematic in space ap-
plications [357]. The logic in each compartment resides in a separate clock domain,
and a memory controller set in 3 — one each for DDR4 backend, memory controller
front-ends, and AXI-interconnects. Therefore, clock trees are isolated from each other
and are de-coupled on the AXI interconnects of the memory controller sets. This
minimizes clock skew and its impact, as well as temperature-related effects, while
improving timing and logic routing.

182 10.3. A RELIABLE CUBESAT ON-BOARD COMPUTER

Compartment 1 Supervisor

| |
| |
: CLK : ccess
| I Port
| |
DBG
| |
| |
" [
I I | cLk
I |
| I

________________ Confi F
———————————————— Controller

Compartment 2

QSPI ctlr

Shared
Memory
Set A

Memory
Scrubber

X! DDR ctlr
+ ECC

Compartment 3

CLK DDR ctlr
+ ECC

Memory
Scrubber

partment 4 Memory

Set B

QSPI ctlr

i
I
I
I
I
I
I
I
I
I
I
I
: Shared
I
I
I
I
I
I
I
I
I
|

Figure 69: Block-level layout in our MPSoC including clock-placement. Partial reconfigu-
ration partitions are indicated with dashed lines. Compartment and memory controller sets
(X4,5) can be reconfigured without interruption. The state-exchange interconnect (X,) re-
sides in a dedicated configuration partition, but during reconfiguration compartments can no
access state information. In practice, this results in an interruption of the MPSoC, which
can be avoided using a NoC instead of a AXI interconnect.

CHAPTER 10 183

MRAM [
Clock (0S)
|
RG ent 1}nter gosot%tg)eglgler
=== Gen aces elt-Test Flash/PCM 1
: > Gen EERES (Payload Data)
1 : |
Q
: SPI2AXI CPU |<
Supervisor — Bridge Core S i
|
' DDR ctlr DDR4
————————————— » IR .
Q Compartment I +ECC }\/Iam Memory -|

Figure 70: The memory and logical topology of a compartment in a quad-core MPSoC. The
compartment local and the global memory controller interconnects are logically isolated. A
compartment’s processor core has access to the memory controller sets and to compartment-
local controllers. Access to compartment-local controllers bypasses the cache.

Compartments are comprised by the minimum set of IP-blocks required for a con-
ventional single-core SoC, including interrupt controller, peripheral controllers, I/O,
and bring-up software. A compartment is conceptually similar to a tile in a Many-
Core architecture, which are today widely used for compute acceleration and pay-
load data processing [205]. However, their functionality is different, as a ManyCore
compute-tile usually is constrained to run simple software, without supporting inter-
rupts, inter-process communication, and I/0. A compartment instead runs a full copy
of a general-purpose OS with rich software, has access to hardware timers, interrupts,
may preform inter-process communication freely, and can handle I/O autonomously.
Besides an on-chip memory holding the bootloader, it is also outfitted with a dedi-
cated dual-port state-memory used to exchange lockstep information. The topology
of a compartment is depicted in Figure 70. Each compartment is outfitted with a di-
agnostic access port, which enables low-level access to a compartment’s internal logic
through an SPI2AXT bridge. This facility is further described in Section 10.3.4.

In general, for the sake of reliability, the use of SPI or I12C based satellite bus
architectures is in general discouraged. However, in Chapter 9, we showed how the
interfaces of multiple compartments can be concentrated to emit only a correct result
to the satellite bus. Indeally, a network-based satellite-bus should be implemented,
which has been shown to be more robust to failures aboard CubeSats of all sizes. If an
on-board network is available, no interface-concentration measures are needed, as the
network can take care of data de-duplication and can assure that data from a faulty
compartment is not propagated. See also [94], for an excellent example of how this
can be done while providing real-time guarantees.

On-chip memory controllers used across our MPSoC are implemented in BRAM,
which in turn consists of SRAM. Xilinx library IP offers ECC for caches and on-chip
memories to detect and correct faults. We utilize Hsiao ECC to protect the data
stored in these memories due to its lower logic footprint and otherwise comparable
performance as compared to Hamming coding. Due to the brief lifetime of data in
caches and buffers, no scrubbing is necessary and the overhead induced through ECC
would be detrimental to the overall robustness of the system. Instead, faults in these
components are mitigated in software, as described in Chapter 4. To avoid accumu-
lating errors in a compartment’s bootloader, we can attach an error scrubber to each

184 10.3. A RELIABLE CUBESAT ON-BOARD COMPUTER

compartment’s local interconnect, which is managed by each compartment.

To protect the running configuration of our SRAM-based FPGA, we implement
CRAM-frame ECC using the Xilinx Soft Error Mitigation IP (SEM [354]). However,
configuration-level erasure coding and scrubbing can still only detect faults in specific
components of the FPGA fabric (e.g., not in BlockRAM). We address this limitation
at the system level: Our coarse grain lockstep functionality enables us to detect faults
in the fabric with compartment granularity within 1-3 lockstep cycles, which is further
discussed in Chapters 4 and 5. In practice, this closes the fault-detection gap left by
scrubbing and configuration erasure coding.

Each memory controller set consists of a DDR4 memory controller, a QSPI con-
troller, a set of clock and reset generators, as well as an optional memory scrubber core
and the top-level AXI crossbar. The optional memory scrubber cores can be controlled
by the supervisor to avoid potential interference by malfunctioning compartments.

Each compartment has full write access to a segment DDR memory, while it can
access the DDR memory in its entirety read-only. We construct the interconnect
used by compartments to access a controller set from an AXI crossbar and four AXI
switches, one for each compartment. The top-level crossbar is connected to the area-
optimized AXI interconnect attached to each compartment, which makes up the second
level of the MPSoC'’s interconnect. In each interconnect, we realize memory protection
for the address space of the relevant compartment to avoid a single point of failure
causing misdirected write access. Thereby, we create a topology that strongly isolates
compartments from each other, and assures non-interference between compartments.

The address space of all compartments is uniform, enabling memory structures to
be migrated between compartments and re-used. Through the MMU component indi-
cated in Figures 70 and 69, we perform the necessary address translation operations.

In case one memory controller set fails, MPSoC compartments that were using this
set will switch to failover through a reboot. Compartments that are already utilizing
the secondary set can continue executing correctly and provide non-stop operation.
Hence, it is desirable to run two of the MPSoC’s compartments off the A-controller
set, and the rest off the B-set. This allows the software-implemented fault tolerance
functionality to guarantee non-stop operation even if an entire memory set would fail.
In our proof-of-concept, we realize this functionality by outfitting compartments to be
able to use two kernel variants, of which one booting into with main memory in the
A set, and the second one into the B set. However, there are more elegant ways to
accomplish this, e.g., using position-independent firmware images [358].

To efficiently perform lockstep state comparison and synchronization between com-
partments, an MPSoC has to provide adequate means of exchanging state-data, as
discussed also in Chapters 4 and 9. For small MPSoCs with less than 6 cores, this
is realized in DDR/SDRAM memory. For larger designs, a dedicated state-exchange
network improves performance and offers stronger isolation. These components are
depicted in green in the figures. Access to state memory then takes place entirely
on-chip without passing through caches, and the global interconnect.

10.3.4 The Supervisor-FPGA Interface

The supervisor can access the FPGA through the FPGA’s JTAG interface. JTAG in
principle is powerful which can be used as a universal tool to interact with the FPGA
and its MPSoC, and manipulate it in a variety of ways. However, JTAG TAPs can be

CHAPTER 10 185

very complex, and the protocol does not assure the integrity of transferred data, while
binary data transfer via JTAG can be very slow. Hence, we only use it to reconfigure
the FPGA in case the on-chip configuration controller fails.

The supervisor can trigger an interrupt or permanently disable a compartment, and
can induce a reset in compartments, memory controller sets, for the configuration con-
troller, and for the FPGA itself. This is realized through a set of GPIO pins attached
to the supervisor. The supervisor can conduct low-level diagnostics and has access
to each compartment’s address space, without having to rely upon a compartment’s
processor core.

We realize high-speed interconnect access through SPI, as the CubeSat community
is already familiar with this type of interface. As we just required a direct point-to-
point between the FPGA and the supervisor without chip select, this interface setup
on the PCB-side is very simple. We attach an SPI2AXI bridge to each compartment’s
local interconnect, and additionally to each memory controller set. This SPI-bridge
can be assembled entirely from well tested, free, open-source IP available in the GPL
version of GRLIB, using the SPI2AHB and AHB2AXI IP cores. Alternatively, a
variety of open-source SPI2AXI cores are available, e.g., on gitlab, but the quality of
these cores is uncertain. Xilinx and other vendors offer a selection of commercial IP
cores.

The supervisor also communicates with the FPGA-internal configuration con-
troller, which is outfitted with a conventional SPI-slave interface. In contrast to the
SPI-diagnostics setup used for accessing the interconnect of compartments and mem-
ory controller sets, the configuration controller actively collaborates with the supervi-
sor. The configuration controller communicates with SEM and can be deactivated by
the supervisor in case of failure. During normal operation, it will notify the supervisor
about faults in the FPGA fabric. It can then perform reconfiguration via ICAP. The
satellite developer can therefore deposit multiple differently placed designs for each
partition in configuration memory, which the configuration controller can attempt to
use to resolve a fault. Finally, the configuration controller will report outcome of the
repair attempt to the supervisor.

Architecturally, the configuration controller resembles a stripped-down compart-
ment design, but is constrained to a minimal logic footprint in the following way:

e It can run only baremetal code or an RTOS, not a general-purpose OS, thereby
reducing the controller’s logic footprint.

e This software is stored directly in on-chip BRAM which is part of the reconfig-
urable fabric.

e It has no access to the memory controller sets, to prevent interdependence be-
tween static logic and partial-reconfiguration partitions.

e Besides its SPI master connected to configuration memory, the configuration
controller has no other external interfaces.

In case of failure, the supervisor can substitute the full set of the configuration con-
troller’s functionality through JTAG, and can recover it through fulllFPGA reconfig-
uration.

As depicted in Figure 71, the supervisor can utilize it’s SPI interface to access the
different components of the MPSoC in a controlled and performance-efficient manner.

186 10.3. A RELIABLE CUBESAT ON-BOARD COMPUTER

XKCU3P

Compartments

i

[
Partition 1B

a

[

[

GPIO[3] Select Reg

*/ _|_)|> SPI2AXI
|

= Diagnosis D e
= and E T T |
§ SPI Control M ! Memory Sets !
= L U L 3! SPRAXI !
7~ Interrupt X ! !
é Reset : i
GPIO[2 |

2l : Memory I
FPGA TAP | Scrubber I
JTAG ! : |
! DDR cilr ||
| +ECC [1
e]

SPI-Slave

BSY/CL
SPI
Master
SFI Reconf.
Controller
FPGA
Configuration
Memory

Figure 71: The design of our supervisor-FPGA control and diagnostic interface including
the debug-facilities used by the supervisor to access different compartments of the MPSoC.

CHAPTER 10 187

It can disable individual compartments in case of failure by using existing circuitry
required for partial reconfiguration, as indicated in Figure 70. However, instantiating
the combination of SPI, reset, and interrupt lines for each compartment, memory set,
and the reconfiguration controller would require a large amount of IO-pins. In practice,
the supervisor will only communicate one MPSoC component at any given time, and
never with multiple concurrently. Hence, we de-multiplex (DEMUX) this interface,
thereby reducing the need for I/O resources to just an SPI interface and 5 GPIO lines.

10.4 Handling Chip-Level SEFIs and Failure

Our proof-of-concept MPSoC design spans only of a single FPGA and is not designed
to withstand component-wide SEFTs affecting the entire FPGA. However, it can be
implemented to tolerate such faults and even full component failure.

Figure 72a depicts an idealized traditional A /B-failover system with I/O switching.
Such a system can tolerate the failure of components in either the A or the B side,
but fails if an additional fault occurs elsewhere in the system. The B-side of the
system remains inactive until a fault has been detected and isolated, and can be
used productively without further design measures in hardware. Due to failover being
implemented at the component level in hardware, additional glue logic required for
switching between the A and B-system. It is usually not possible to test the failed
side without further design measures, and tests can only be conducted if the system
is taken offline. These limitations can be worked around with more glue logic and a
more complex failover implementation, but even then the relevant logic can usually
not just be be turned off and bypassed. Instead, it remains a potential failure source.

The system depicted in Figure 72b implements our architecture on two FPGAs
and does not suffer these limitations: Instead of implementing all compartments and
shared memory controller sets on a single FPGA, they can be distributed across multi-
ple FPGAs. The chip-to-chip AXI IP used to connect two or more FPGAs is available
in the Vivado IP library. The failure of, e.g., a memory component connected to
one FPGA, does not cause the failure of an entire redundant system side. Compart-
ments on one FPGA connected to a failed component can still access components
on the B-side. The supervisor and platform controller on the faulty side can then
reconfigure the relevant FPGA partitions, and conduct further analysis on the failed
components. The system can thus continue thus support non-stop operation in case
of severe component failure, if threads-replicas are distributed so that not all replicas
of a thread are executed on the same FPGA. In a TMR setup, this enables non-stop
operating, e.g., with the A-side running 2 replicas on one FPPGA and the B side
running the third replica on the other. In NMR setups, two replicas can be assigned
to each side, allowing fault-detection even if one of the FPGAs has failed during the
same lockstep cycle. For diagnostic purposes, thread-replication and therefore fault
tolerance can also be constrained temporarily or even fully disabled. Even a severely
degraded system implementing our architecture that has suffered multiple component
failures can thus still operate correctly and support non-stop operation. In contrast to
a traditional OBC based on component-redundancy, our architecture thus can delivers
stronger fault tolerance capabilities than traditional OBCs. As compartments on dif-
ferent FPGA can share resources, this allows for increased efficiency and performance
as compared to traditional systems.

To support larger MPSoCs with more than 8 compartments efficiently, a more

188 10.4. HANDLING CHIP-LEVEL SEFIS AND FAILURE

scalable interface between compartments and memory controller sets should be used.
This can be achieved with a Network-on-Chip (NoC). A NoC allows drastically larger
MPSoC designs [329] due to improved scalability, but also enables fault-tolerant rout-
ing [349], backwards error correction (re-transmission), and quality-of-service sup-
port [359]. When implementing our architecture with a NoC, the shared memory
controller sets would be implemented as one NoC layer, while the state-exchange net-
work forms a second layer. In contrast to conventional interconnects typologies, a NoC
can also utilize error correction for NoC routers [93].

On-Board Network

A

| Transceiver + RedWave

DD DDR
A B
/
OBC SoC OBC SoC
Flash — X A X B I Flash
A B
|

(a) A traditional redundant system where there A-side failed due to malfunc-
tion in one memory components, which will fail once a fault occurs on the B

side.
| On-Board Network |
FPGA FPGA
DDR ER

A B
§ L =
@ Flash

A 0

| Transceiver + RedWave |

(b) Our architecture, which is still functional and not degraded, even though
multiple components have failed on both sides.)

Figure 72: Fault tolerance examples of a traditional OBC and our architecture, which
shows that our architecture can tolerate a much increased number of faults than a traditional
system.

CHAPTER 10 189

10.5 Utilization and Power Comparison

The quad-core MPSoC architecture described in this chapter was implemented on a
set of Kintex Ultrascale and Ultrascale+ devices using Xilinx Microblaze soft-cores
running at 300MHz, and DDR4 controllers. In our proof-of-concept, we utilize a
FeRAM-based MSP430FR5969 controller for our proof-of-concept, for which a low-
cost space-grade substitute is available. The MPSoC is reproducible in Xilinx Vivado
2017.1 and later. The necessary IP is included in the Vivado IP library, and can be
obtained free of charge through Xilinx’s university program by academics and non-
commercial scientific users. This serves as proof-of-concept for our architecture, with
resource utilization indicated in Table 9.

For this Microblaze-based MPSoC implementation, the added logic footprint for
instantiating a compartment as compared to just an application-processor without any
peripherals is low. For size comparison between an interface IP-core and a compart-
ment, a QSPI controller core is highlighted in Figure 68 in teal. It makes up only 2.5%
of a compartment’s LUT and 6% BRAM utilization, with other commonly used cores
aboard CubeSat such as 12C or UART showing a similar or even lower footprint. The
larger size of ARM Cortex-A53 processor cores reduce this ratio even further.

Our initial proof-of-concept was implemented on the Xilinx Virtex Ultrascale+
VCU118 Evaluation Kit with DDR4 controllers running at 1600MHz. This FPGA
family was ideal for design space exploration as the kit has two DDR4 memory channels
and a large fabric. Within the Xilinx Radiation Test Consortium we are currently
working on a Kintex Ultrascale KU60/XQRKUO060 test board for radiation testing, to
which we ported our design. Logic and partition placement are depicted in Figure 68.
FPGA utilization and power consumption tables are indicated in Tables 9 and 10. On
KU60, DDR4 memory controllers run at 1000MHz due to generational constraints.

We ported our MPSoC also to smaller Kintex Ultrascale+ devices, the KU60’s
closest equivalent part KU11P and the smallest FPGA in the family and generation,

KCU3P KCU11P KCU60 (XRTC)
Resource Used % Total Used % Total Used % Total
LUT 85505 52.55% 87187 29.20% | 132359 39.91%
LUTRAM 9319 9.33% 9632 6.49% 19536 13.30%
FF 93766 28.81% 96043 16.08% | 158617 23.91%
BRAM 303.5 84.31% 303.5 50.58% 316 29.26%
DSP 30 2.19% 30 1.02% 30 1.09%
10 224 73.68% 224 43.75% 378 60.58%
BUFG 21 8.20% 22 3.20% 26 4.17%
MMCM 2 50.00% 2 25.00% 2 16.67%
PLL 7 87.50% 9 56.25% 13 54.17%

Table 9: Resource utilization our MPSoC on different Xilinx Kintex FPGAs. The XRTC
variant’s DDR4 memory controllers has a larger data-width due to package constraints. De-
sign constraining fabric-resources are marked in bold.

190

10.5. UTILIZATION AND POWER COMPARISON

FPGA XKCU3P XKCU11P XKCU60
FPGA Generation Ultrascale+ Ultrascale+ Ultrascale
Technology Node 16nm FinFET | 16nm FinFET | 20nm Planar
Part Package SFVB784-1 FFVE1517-1 | FFVA1517-1
Clocks 0.23W 0.29W 0.71W
Signals 0.11W 0.15W 0.30W
Logic 0.11W 0.15W 0.42W
BRAM 0.19W 0.19W 0.41W
DSP <0.01W <0.01W <0.01W
PLL 0.37TW 0.46W 0.72W
MMCM 0.23W 0.23W 0.21W
I/0 0.2TW 0.34W 1.50W
Dynamic Power 1.51W 1.81W 4.26W
Static Power 0.44W 0.70W 0.67TW
Total Power 1.94W 2.51W 4.93W

Table 10: Power consumption of the 3 quad-core MPSoC implementations. Data generated
by Xilinx Vivado 2018.3’s Implementation Power Report.

On-Chip Power

Dynamic: 1.500wW (72%)
15% Clocks: 0.228W
7% Signals: 0.112W (7%)
7% _ i
F8% - Logic: 0.112'W (7%)
B BRAM: 0.188W (12%)
2504 DSP: 0.002W (<1%)
PLL: 0.371 W
- B mc: 0.228'W
18% ToF 0.266 W
22%
Device Static: 0.435W (22%)

Figure 73: Power consumption of the 4-core MPSoC powering our MPSoC implemented on
XCKUS3P. Figure generated by Xilinx Vivado 2018.3.

CHAPTER 10 191

the KU3P. The port required minor adjustments to the utilization of clocking resources,
as both KU11P and KU3P have fewer clocking-resource (MMCM and PLL tiles) than
the KU60. On KU11P, it was sufficient to switch several clock-generators used in
the shared memory controller sets from PLL to MMCM tiles, without changing other
parameters. The main constraint of the KU3P, however, required a reduction of clock
generators in memory controller sets to 1 clock domain instead of 3 as described in
Section 10.3.3. Due to the much smaller fabric of the KU3P, clock-domain sizes and
routing distances decrease, resulting better timing of the design.

Despite much lower dynamic power consumption across the board in Ultrascale+,
the KU11P variant shows slightly higher static power consumption than the KUG60,
which is counterintuitive. After discussion within the Xilinx Radiation Testing Con-
sortium, the most plausible explanation for this anomaly is the different IO-bank
placement within the fabric between these devices. On KUG60, IO-banks are placed in
more favorable locations considering MPSoC design than on KU11P. This increases

E i1
H

Figure 74: Logic placement of our proof-of-concept MPSoC on a Xilinx Kintex Ultrascale-+
KU3P with 4 compartments (purple, blue, green, and brown), two shared memory controller
sets (red & yellow) and static logic (pink). In contrast to the KU60 implementation, DDR
controllers of this designs have reduced data width.

192 10.6. EXPERIMENTAL RESULTS AND TESTING

logic-spread, leaving less fully inactive fabric sections, which could explain an increase
in static power consumption due to infrastructure on KU60.

The resulting Ultrascale+ MPSoC implementations, while functionally equivalent,
show a 50% lower power consumption than the previous generation. This is due to
manufacturing in a 16nm FinFET technology node instead of 20nm planar. Power
savings mainly come from a reduced dynamic power consumption of this design, due
to an increased degree of logic concentration in a smaller of FPGA-fabric area. For
CubeSat-use, the Kintex Ultrascale+ family is therefore more attractive, despite the
potential risk of IO-pin latch-up is acceptable [299] which today is mitigated in this
field through the system-level measures [39]. On the the smallest Ultrascale+ part
and most compact BGA package xcku3p-sfvb784 available at the time of writing, we
achieved 1.94W total power consumption. This is well within the power budget range
of 2U CubeSats. Vivado’s power report for this design is depicted in Figure 73.

Synthesis was run in “Alternative Routability” mode, while implementation was
with the “Performance-Explore” strategy with post-route placement & power optimiza-
tion, as the resulting implementations showed consistently better timing and power
utilization.

10.6 Experimental Results and Testing

We have tested our proof-of-concept OBC on Xilinx VCU118 (with 2 DDR memory
channels) and KCU116 boards (with 1 channel due to board constraints), and con-
structed a breadboard setup in conjunction with an MSP430FR development board.
Further information on this designs is available in Chapter 9, with an MPSoC im-
plementation paper currently undergoing peer review. The actual platform for our
research has been the ARM Cortex-A53 application processor, which is today widely
used in a variety of mobile-market devices and certain COTS CubeSat OBCs. The
architecture we presented in this chapter is processor and platform independent, with
the MPSoC presented here implemented using Xilinx Microblaze processor cores.

To test our implementation, we have conducted fault injection through system em-
ulation into an RTEMS implementation of Stage 1 running on a Cortex-A processor.
In 2019, we also constructed a multi-core model of our MPSoC also in ArchC/SystemC
on RISC-V to conduct further fault-injection close-to-hardware. The results of this
fault-injection campaign are documented in Chapter 8. They show that with near sta-
tistical certainty, a fault affecting a compartment can be detected within 1-3 lockstep
cycles, demonstrating that Stage 1 is effective and works efficiently.

10.7 Conclusions

In this chapter, we presented a CubeSat compatible on-board computer (OBC) ar-
chitecture that offers strong fault tolerance to enable the use of such spacecraft in
critical and long-term missions. It is the result of a hardware-software co-design pro-
cess, and utilizes fault tolerance measures across the embedded stack. We described
in detail the design of our OBC’s breadboard layout, describing its composition from
the component-level, to the MPSoC implementation used, all the way down to the
software level. We implement fault tolerance not through radiation hardening of the
hardware, but realize it in software and exploit partial FPGA-reconfiguration and

CHAPTER 10 193

mixed criticality. To implement and reproduce this OBC architecture, no custom-
written, proprietary, or protected IP is needed. All COTS components required to
construct this architecture can be purchased on the open market, and are affordable
even for academic and scientific CubeSat developers. The needed designs are avail-
able in standard FPGA-vendor library logic (IP), which in most cases is available to
academic developers free of charge through university donation programs.

Overall, our OBC architecture is non-proprietary, easily extendable, and scales
well to larger satellites where slightly more abundant power budget is available. We
successfully implemented a proof-of-concept of our MPSoC for a variety of Xilinx
Kintex and Virtex Ultrascale and Ultrascale+ FPGA. This MPSoC was implementable
even for the smallest Kintex Ultrascale+ FPGA, KU3P, and we achieved 1.94W total
power consumption. This puts it well within the power budget range available aboard
current 2U CubeSats, which currently offer no strong fault tolerance.

A comparison to existing traditional space-grade solutions as well as those available
to CubeSat developers seems unfair. Today, miniaturized satellite computing can use
only low-performance microcontrollers and unreliable MPSoCs in ASIC or FPGA with-
out proper fault tolerance capabilities. Using the same type of commercial technology,
our OBC can assure long-term fault coverage through a multi-stage fault tolerance
architecture, without requiring fragile and complex component-level replication. Con-
sidering the few more robust, low-performance CubeSat compatible microcontrollers,
our implementation can offer beyond a factor-of-10 performance improvement even
today. Considering traditional space-grade fault-tolerant OBC architectures for larger
spacecraft, our current breadboard proof-of-concept implemented on FPGA exceeds
the single-core performance of the latest generation of space-grade SoC-ASICS such as
an GR740. However, it does so at a fraction of the cost of such components, and with-
out the tight technological constraints of traditional or ITAR protected space-grade
solutions.

Traditional fault-tolerant computer architectures intended for space applications
struggle against technology, and are ineffective for embedded and mobile-market com-
ponents. Instead, we designed a software-based fault tolerance architecture and this
MPSoC specifically to enable the use of commercial modern semiconductors in space
applications. We do not require any space-grade components, fault-tolerant processor
designs, other custom, or proprietary logic. It can be replicated with just standard
design tools and library IP, which is available free of charge to many designers in
academic and research organizations.

Our architecture scales with technology, instead of struggling against it. It bene-
fits from performance and energy efficiency improvements that can be achieved with
modern mobile-market hardware, and can be scaled up to include more, and more
powerful processor cores. At the time of writing, Xilinx has begun to introduce a new
generation of FPGA-equipped devices manufactured in a 7nm FinFET+ technology
node, in which the design issue causing latch-up in Ultrascale+ could also have been
mitigated [299]. Xilinx’s foundry TSMC expects this manufacturing process to offer
approximately 65% reduction power consumption as compared to the 16nm FinFET
node used for Ultrascale+ FPGAs [360]. Even if only half of this expected power reduc-
tion would manifests, in combination with FPGA-fabric optimizations, we can expect
to achieve approximately 1W power consumption with our MPSoC implemented on
a next-gen Xilinx FPGA. While these expectations based on experiences with the
current 20nm Planar and 16nm FinFET manufactured Xilinx FPGAs, future FPGA

194 10.7. CONCLUSIONS

generations released within the next decade will, with near certainty [361], allow our
architecture to even become usable aboard 1U CubeSats.

At the time of writing, each component of our OBC architecture has been imple-
mented and validated experimentally to TRL3 in a 1-person PhD student project.
From each individual component, we have assembled a development-board based
breadboard setup. As next step in validating this new OBC architecture, we will
construct a prototype for radiation testing. Since 2018, we have therefore contributed
to the Xilinx Radiation Testing Consortium to develop a suitable Kintex Ultrascale-
equipped device-test board. This will bring our architecture to TRL4, and is an in-
termediate step before developing a custom-PCB based prototype for on-orbit demon-
stration. Once this has been achieved, we intend to perform the final step in validation
of this technology aboard a CubeSat.

