
Fault-tolerant satellite computing with modern semiconductors
Fuchs, C.M.

Citation
Fuchs, C. M. (2019, December 17). Fault-tolerant satellite computing with modern
semiconductors. Retrieved from https://hdl.handle.net/1887/82454

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/82454

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/82454

Cover Page

The handle http://hdl.handle.net/1887/82454 holds various files of this Leiden University
dissertation.

Author: Fuchs, C.M.
Title: Fault-tolerant satellite computing with modern semiconductors
Issue Date: 2019-12-17

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/82454
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 9

Combining Hardware and
Software Fault Tolerance

High-Level System Design

In this chapter, we describe in detail the topology of our multiprocessor System-on-
Chip (MPSoC) to address RQ6 by providing an ideal platform architecture for the
lockstep described in Chapter 4. We show how it can be assembled in its entirely from
well tested COTS components using commodity processor cores and library IP. The
resulting MPSoC is the result of a true hardware-software co-design process, and uti-
lizes the concepts presented in the previous chapters. It is designed as ideal platform
for our architecture, where each design decision was taken to reinforce the fault toler-
ance properties of the system as a whole. This chapter therefore servers the final step
in developing our fault-tolerant system architecture. In Chapter 10, we then present
practical implementation results of this MPSoC.

Spacecraft

On-Board Network / Satellite Bus

OBC

Semiconductor

MPSoC Logic

Software

On-Chip SRAM

Registers

Volatile RAM Non-Volatile RAM

Abstract Data Storage Technolgies

SensorsAOCSCOM Payloads

OBC Interfaces

EPSSaving

159

160 9.1. INTRODUCTION

9.1 Introduction

Satellite miniaturization has enabled a broad variety of scientific and commercial space
missions, which previously were technically infeasible, impractical or simply uneconom-
ical. However, due to their low reliability, nanosatellites, as well as light microsatellites,
are typically not considered suitable for critical and complex multi-phased missions
and high-priority science. The on-board computer (OBC) and related electronics con-
stitute a large part of such spacecraft, and were shown to be responsible for a significant
share of post-deployment failure [2]. Indeed, these components often lack even basic
fault tolerance (FT) capabilities.

Due to budget, energy, mass, and volume restrictions, existing FT solutions origi-
nally developed for larger spacecraft can not be adopted. In this chapter we describe an
multiprocessor System-on-Chip (MPSoC) that utilizes conventional hardware, provid-
ing FT for miniaturized satellites. The MPSoC is assembled from well tested COTS
components, library logic (IP), and powerful embedded and mobile-market proces-
sor cores, yielding a non-proprietary, open architecture. Our key contribution is a
fault-tolerant OBC architecture for CubeSat use that consists only of extensively val-
idated standard parts, and can be reproduced with minimal manpower and financial
resources.

9.2 Background & Related Work

Aboard nanosatellites, subsystems are controlled by just one command & data han-
dling system, whereas aboard a larger satellite these tasks are distributed across mul-
tiple dedicated payload and subsystem computers. This implies a varying OBC work-
load throughout a nanosatellites mission, which traditional FT solutions only handle
through over-provisioning. The MPSoC design presented in this chapter can efficiently
handle faults through thread migration and partial reconfiguration. Major parts of our
approach are implemented in software, allowing the OBC to deliver the desired com-
bination of performance, robustness, functionality, or to meet a specific power budget.
To enable strong FT with low-cost commodity hardware, we combine fault detection,
isolation and recovery in software, FPGA configuration scrubbing with other fault
detection, isolation and recovery (FDIR) measures across the embedded stack.

Nanosatellites today utilize almost exclusively COTS microcontrollers and appli-
cation processors-SoCs, FPGAs, and combinations thereof [40,237]. Due to manufac-
turing in fine technology nodes, and the use of extensively optimized standard IP, they
offer superior efficiency and performance as compared to space-grade OBC designs.
The energy threshold above which highly charged particles can induce faults (SEE –
single event effects) in such components decreases, while the ratio of events inducing
multi-bit upsets (MBU), and the likelihood of permanent faults, increase. To adapt
such hardware-FT based concepts additional FT-circuitry is required, inflating logic
size and producing diminishing returns, resulting in limited scalability and low clock
frequencies [188, 190, 192]. We can observe that traditional FT-concepts applied to
modern COTS hardware yield no nanosatellite compatible architectures.

While more sensitive to transient faults than ASICs [142, 143], FPGA-based Soft-
SoCs have been shown to offer excellent FDIR potential for miniaturized satellites
[238]. Transients in critical parts of the FPGA fabric can be scrubbed [242], while
permanent faults may be compensated through reconfiguration with differently routed

CHAPTER 9 161

configuration variants [105]. Fine-grained, non-invasive fault detection in FPGA fab-
ric, however, is challenging, and subject of ongoing research [239, 240]. Relevant FT-
concepts thus rely on error scrubbing, which has scalability limitations and cover only
parts of the fabric [239, 242]. We overcome these limitations by implementing fault-
detection in software through thread-replication and coarse-grain lockstep within an
MPSoC using weakly coupled cores.

Tiled architectures [246,328] are often used for well paralellizable applications with
many low-performance processor cores. Among others, [329] and [328] showed that
this topology can also be exploited to achieve FT for image processing applications
with a very specific structure. We combine a compartmentalized topology with a
coarse-grained lockstep described in Chapter 4, enabling FDIR without constraining
the application type or system architecture. Thus, the architecture presented in this
chapter is well suited for platform control and can be used as a template, allowing a
high level of OBC design freedom, and enabling a considerable amount of testing to
be inherited from COTS components and logic.

Thread migration has been shown to be a powerful tool for assuring FT, but prior
research ignores fault detection, and imposed tight constraints on an application’s type
and structure (e.g., video streaming and image processing [241]). Thread-level coarse-
grain lockstep of weakly coupled cores instead supports general purpose computing,
and in the past, has already been used for high availability, non-stop service, and
error resilience concepts. However, in prior research, faults are usually assumed to be
isolated, side effect free, and local to an individual application thread [208] or transient
[199, 205], entailing high performance [209] or resource overhead [210, 211]. More
advanced proof-of-concepts [198, 199], however, attempt to address these limitations,
and even show a modest performance overhead between 3% and 25%, but utilize
checkpoint & rollback or restart mechanisms [199], which make them unsuitable for
spacecraft command & control applications.

Many of these limitations and obstacles ultimately can be attributed to low ma-
turity, as a majority of software-FT concepts are published as a concept TRL1 but
remain unvalidated. Hence, they could be uncovered, and in many cases, can be po-
tentially resolved through implementation and practical validation [198], increasing
maturity to TRL2 or TRL3. However, development of a testable proof-of-concept is a
time consuming and costly undertaking [300], as outlined among others by Sangchoolie
et al. [301] with limited immediate yield for academic publication. Fault injection for
entire OS instances is especially non-trivial [302], as thorough preparation and care-
ful tool-selection is necessary to obtain representative results from a fault injection
experiment [303]. Therefore, a broad variety of TRL1 software-FT concepts exist
today at a theoretical level [212–214], for which validation was only conducted statis-
tically using modeling with different fault distributions or not a all. In this chapter,
we therefore conduct validation of our coarse-grain lockstep approach using system-
atic fault-injection. Thereby we verify the effectiveness of our coarse-grain lockstep
FDIR mechanisms under stress using a RTOS-based proof-of-concept implementation,
increasing maturity to TRL3.

9.3 A Hybrid Fault Tolerance Approach

Conventional FT architectures require proprietary logic in hardware to facilitate fault
detection and coverage. In contrast, the architecture described in this chapter can

162 9.3. A HYBRID FAULT TOLERANCE APPROACH

offer strong FT using just COTS components and proven standard library logic. This
is made possible through the use of the FT approach we presented in Chapter 4. The
high-level functionality of this approach is depicted in Figure 62, and consists of three
interlinked fault mitigation stages implemented across the embedded stack:

Stage 1 implements forward error correction and utilizes coarse-grain lockstep of
weakly coupled cores to generate a distributed majority decision across compartments.
Fault detection is facilitated through application callback functions, without requiring
deep modifications to an application or knowledge about intrinsics.

Stage 2 recovers failed compartments through reconfiguration and self-testing.
It assures the integrity of programmed logic and deploys configuration scrubbing, as
well as Xilinx Soft-Error-Mitigation (SEM), to correct transients in FPGA fabric. Its
objective is to assure and recover the integrity of processor cores and their immediate
peripheral IP through FPGA reconfiguration and the use of differently routed and
placed alternative configuration variants, thereby counteracting resource exhaustion.

Stage 3 engages when too few healthy compartments are available, and re-allocates
processing time to maintain reliability. To do so, thread-level mixed criticality is ex-
ploited, assuring sufficient compute resources are available to high-criticality applica-
tions by sacrificing performance or availability of lower-criticality threads.

Further details including benchmark results are available in Chapter 4. The main
target in our project is the ARM Cortex-A53 application processor, which is today
widely used in embedded and mobile-market devices. However, this research is pro-
cessor and ISA independent. In this chapter, we describe an MPSoC design and

MPSoC Supervisor & Config Controler

Bootup

Checkpoint

Application
Execution

Read Majority
Decision

Check
Fault Counter

Update
Compartment

Stage 3
Mixed Criticality

Replace
Compartment

Stage 3
Mixed Criticality

 < limit > limit

recovered
functionality failure

Figure 62: Stage 1 (white) assures fault detection (bold) and fault coverage. Stages 2 (blue)
and 3 (yellow) counter resource exhaustion and adapt the on-board computer application
schedule to reduced system resources.

CHAPTER 9 163

architecture template, which is enabled by this approach and can be reproduced in
Xilinx Vivado 2017.1 and later.

9.4 The MPSoC Architecture

We developed our software-FT architecture for use on top of an MPSoC consisting
only of COTS technology. The main target in our project is the ARM Cortex-A53
application processor. For many size-optimized space applications, smaller cores such
as the Cortex-A32, A35 and A5 may also offer a better balance between performance,
universal platform support, and logic utilization. The Cortex-A53 core was chosen as
it is today widely used in a variety of industrial and mobile-market devices, though
our architecture is processor and instruction set architecture (ISA) independent.

In this section, we describe a publicly reproducible MPSoC design variant imple-
menting our architecture, which can be designed in full using Xilinx library IP and
Microblaze processor cores. The architecture minimizes shared logic, compartmental-
izes compartments, and offers a clearly defined access channel between compartments
and the supervisor, and is depicted in Figure 63.

9.4.1 Supervision & Reconfiguration

Stage 1 can be implemented on a single chip, but we utilize an off-chip supervisor
to facilitate FPGA reconfiguration and transient fault scrubbing in the running con-
figuration. The outlined multi-stage FT approach puts only minimal load on the
supervisor, and it can thus be again implemented using a traditional radiation hard-
ened or tolerant microcontroller. The FeRAM-based TI-MSP430FR family would be a
solid somewhat radiation-tolerant but non-FT substitute, which is today widely used
aboard a broad variety of CubeSats and low-performance COTS products designed for
nanosatellite use. The level of performance offered by such microcontrollers is usually
sufficient only for educational CubeSats and federated systems. However, a supervisor

SPI CTRL MCTLR

MCTLR
Main

Memory

FeRAM
(OS Code)

Tile 3

Tile 1 MMU

MMU

MCTLR
MRAM

(App Code)

SPI ctlr

SPI CTRL
DDR ctlr
+ ECC

SM

SM

X

X

X

Memory
Scrubber
DDR

Scrubber

Tile 4 MMU

SM

Tile 2 MMU

SM

MCTLR
NAND Flash

(Payload Data)

Xs

r/o

S
E
M

I
C
A
P

CLK

CLK

CLK

CLK

CLK
CLK

CLK

Figure 63: The topology of our compartmentd MPSoC design. Each compartment exists
in its own reconfiguration partition and therefore also clock domain, simplifying routing and
logic placement. Reconfiguration partitions are indicated with dashed lines.

164 9.4. THE MPSOC ARCHITECTURE

in our architecture only receives the majority voting results from the coarse grain lock-
step, controls the FPGA, and facilitates reconfiguration through an ICAP controller
in static logic. Hence, the low level of performance of an MSP430FR, for example, is
sufficient, and allows an ultra-low-cost implementation of our approach for academic
CubeSat projects and scientific instrumentation.

We deployed configuration error mitigation through Xilinx SEM in combination
with supervisor-side scrubbing to safeguard logic integrity. However, SEM and scrub-
bing only detect faults in specific components of the FPGA fabric (e.g., not in BRAM),
leaving significant parts of the design unprotected unless logic-side ECC is used.

These measures alone do not provide sufficient protection for fine-feature size FP-
GAs. Thus, our software-FT functionality can locate faults in the partition of a specific
compartment, allowing the supervisor to resolve them using reconfiguration. We place
compartments in separate configuration partitions to enable partial reconfiguration of
individual compartments, without affecting the rest of the system.

As depicted in Figure 62, the supervisor only reacts to disagreement between com-
partments, otherwise remaining passive. It maintains a fault-counter for each compart-
ment and acts as a watchdog. When resolving transient faults within a compartment,
it increments the fault-counter and induces a state update through a low-level debug
interface. After repeated faults, the supervisor will replace the compartment by ad-
justing the thread-mapping of a spare compartment, activating it, and rebooting the
faulty compartment. In case a system developer indicated threshold is exceeded, the
disagreeing compartment is assumed permanently defunct and not re-used as a spare.

To allow supervisor access to a compartment and its address space, each compart-
ment is equipped with an AXI debug-bridge (Figure 64). The supervisor can trigger
execution of self-test functionality within a compartment to detect faults in periph-
erals. It can also trigger an adjustment of a compartment’s thread allocation as part
of Stages 1 and 3, making the MPSoC’s computational performance, robustness and
energy consumption adjustable at runtime.

Majority voting between compartments can be implemented as distributed major-
ity decision [330], then requiring no direct intervention of the supervisor during regular
operation. If this is not desired, or lockstep through interrupt triggered checkpoints
is implemented, then the supervisor should also take care of receiving the voting re-
sults generated on each compartment. In that case, the supervisor can access each
compartment’s thread mapping via each compartment’s debug interface, and if nec-
essary induce a reset or otherwise manipulate a compartment without requiring its
cooperation.

9.4.2 Tile Architecture

Our MPSoC design implements multiple isolated SoC-compartments accessing shared
main memory and OS code. Even though the purpose and function of these compart-
ments is different, the topology resembles a compartmentalized architecture instead
of a conventional MPSoC design, in which cores share infrastructure and peripherals.
This topology increases Stage 1’s fault coverage capacity and allows task mapping
for general-purpose software. Each such compartment contains a processor core, local
interconnect, and peripheral IP-cores and interfaces as depicted in Figure 64, resides
in its own clock domain, and can be reset independently. Allocating a clock domain
to each compartment improves timing, and reduces logic-overlap and interdependence

CHAPTER 9 165

State
Memory

State
Memory

Compartment

SPI2AXI
Bridge

MMU

X State
Memory

Memory
Scrub

CoreIRQ

Inter
faces

Supervisor

R
es

et
G

en

C
ac

he

C
lo

ck
G

en

Xs

r/o

Main
Memory

MRAM
(OS)

NAND Flash
(Payload Data)

QSPI ctlr

Xa

DDR ctlr
+ ECC

Other State
Memory

Figure 64: The logic-side architecture of a compartment. Access to local IP bypasses the
cache, while access to global memory passes is cached for performance reasons.

between compartments. Furthermore, we can then also utilize partial reconfiguration
and frequency scaling for each compartment, as well as clock gating.

A compartment executes a set of thread replicas, and its loss can be compensated
by the rest of the system. To assure a failed compartment can not cause performance
degradation in the rest of the system (e.g., by continuously accessing DDR or program
memory), it can be disconnected off from the global interconnect by the supervisor.
Non-masked faults (due to radiation, aging, and wear) disrupt the data or control flow
of the software running on a compartment. Stage 1 builds upon this capability at the
thread-level, as state differences can be detected by other compartments and often
even by the malfunctioning compartment itself as described in Chapter 8.

All compartments are equipped with an identical set of peripheral interfaces, with
controllers being mapped to identical locations and address ranges. The compartment
address space layout is uniform across the system and compartments are indistinguish-
able for software. Hence, application code and data structures are portable between
compartments, simplifying thread migration drastically. This allows us to reduce the
computational cost and complexity of software-lockstepping.

Thread allocation and information relevant to the coarse-grain lockstep is stored
in a dedicated dual-ported on-chip BRAM on each compartment. We refer to compo-
nent is as state memory, and indicate it as SM in the figures. One port is accessible
to the compartment’s processor core, while the other is read-only accessible to the
system. This allowing low-latency information exchange between compartments with-
out requiring inter-compartment cache-coherence or main memory access. The state
memory architecture is depicted in Figure 65. The supervisor can access and modify
each compartment’s state memory through its debug interface on each compartment.

9.4.3 Interconnect Topology and Shared Memory

Figure 63 depicts the MPSoC’s high-level topology. Our MPSoC design utilizes an
AXI interconnect in crossbar mode to allow compartments access to shared main and
non-volatile memory controllers, though we are currently reworking our MPSoC to
instead use a NoC [329].

Main memory is shared between compartments, as SD- and DDR memory con-
trollers are too large and require too much I/O to instantiate for each compartment.
Each compartment has full access to a segment of main memory, which is mapped to
the same address range on all compartments (the MMU component in the figures).

166 9.4. THE MPSOC ARCHITECTURE

Tile

Tile

MMU

SM

DBG

Xs

IF

X

$Core

SM

X

IF

DBG

MMU$Core

TileSM

X

IF

DBG

MMU $ Core

TileSM

X

IF

DBG

MMU $ Core

Figure 65: A compartment’s state memory is accessible to all other compartments in the
system. It provides a write protected, high-speed on-chip possibility to expose state-relevant
data to the MPSoC as a while.

All compartments can access main memory read-only to simplify state synchronization
and IPC. The supervisor can access each set of main memory controllers directly.

For nanosatellite missions to LEO, often only SECDED ECC support is required
and readily available in library IP already [331], while basic error scrubbing can be
facilitated in software. For critical, deep-space, and long-term missions, block coding
should be used instead to compensate for the increased impact of SEEs and higher
likelihood of MBUs in high-density SDRAM. Reed-Solomon ECC as well as error
scrubbers are available commercially, or can be assembled from open-source IP. The
main memory scrubbers are controlled by the supervisor to avoid potential interference
by malfunctioning compartments. ARM Cortex-A53 as well as Microblaze caches and
several local memories and buffers offer ECC support as basic functionality [331].

To safeguard main memory, FeRAM [332], MRAM [150], and mass memory from
SEFIs, as well as permanent failure, these memories are implemented redundantly to
enable failover. To allow non-stop operation during FPGA reconfiguration, we also
implement their controllers, and the AXI interconnects they are attached to redun-
dantly. This also enables further protective measures which we described in Chapter
7, and allows load distribution for timing critical main memory through segment inter-
leaving. Thereby the available DDR memory bandwidth is increased and the overall
latency for memory access can be reduced. This also enables us to recover an instance
of a memory controller on short notice without requiring the full system to be halted1.

Tiles compete for DDR memory access. As our architecture is implemented on
FPGA, the clock frequency of each compartment’s processor core is lower as on ASIC
implemented MPSoCs. In consequence, the global interconnect as well as DDR mem-
ory controllers offer abundant throughput at drastically higher clock frequencies. Each
processor core caches access to shared memory, drastically reducing the strain on the
memory subsystem. Access to a compartment’s state memory still bypasses the cache,
but this is implemented directly in high-speed, low-latency on-chip BRAM. Hence,

1Note that depending on the used OS, a reboot of a compartment may be required. Linux sup-
ports modifications to the memory layout and relocation, while simpler OS, such as RTEMS, do not
currently know such functionality.

CHAPTER 9 167

while in principle competing for memory bandwidth, even an 8-compartment system
can not saturate the two available DDR4 channels in our current MPSoC design. Ide-
ally however, our architecture should be implemented using a NoC instead of a global
AXI-interconnect crossbar, which would offer drastically better scalability, more effec-
tive caching and buffering, and also a degree of FT.

9.5 Subsystem Connectivity and Peripheral I/O

A fault resolved in Stage 1 may cause incorrect data to be emitted through I/O
interfaces. This is an inherent limitation of coarse-grain lockstep concepts, and can
only be slightly alleviated through additional application-intrusive work-around as
described, for example, in [199]. Instead, this limitation is better solved at the logic
level through interface-level voting, which is possible with minimal extra logic. For
most CubeSats, most nanosatellites, and less critical microsatellite missions, however,
this is usually foregone.

Larger spacecraft already utilize interface replication or even voting to assure full
hardware TMR, usually requiring considerable effort in hardware or logic to facilitate
this replication. Our MPSoC architecture inherently provides interface replications
by design, requiring no extra measures to be taken, as the individual compartment-
interfaces can be directly used for TMRed architecture. Further safeguards are neces-
sary for very small CubeSats where interface replication is undesirable, for example,
due to PCB-space constraints.

Partition Tile 1

Partition Tile n

Interface
Controller

Interface
Controller

I/O

Output
FIFO

Input
FIFO

Buffer

Output
FIFO

Input
FIFO

. . . MUXVoter

active

active

Figure 66: An activation-driven, buffered output voter with input de-multiplexer can be
constructed for low-pin-count CubeSat interfaces. Note that an additional re-sampling step
would be required in case of different thread scheduling on lock-stepped compartments.

168 9.5. SUBSYSTEM CONNECTIVITY AND PERIPHERAL I/O

9.5.1 Electrical- and Logic-level Interface Voting

For simple embedded interfaces like I2C and SPI connected to “dumb” sensors or
actuators with no user configurable firmware, a simple majority decision per I/O line
is possible. While hardware voting is challenging for large arrays of voters running
synchronized at very high frequencies, the CubeSat-relevant interfaces are electrically
simple, have a very low pin count, and run at relatively low clock frequencies. Hence,
voting for these interfaces can efficiently be implemented on-chip through simple voters
assuming compartments signals interface activity.

Our coarse grain lockstep mechanisms allow software to be executed with slight
timing variations. These may be caused by clock-domain interactions, competition of
compartments for global interconnect DDR4 and QSPI access, as well as differences in
compartment partition routing and or I/O pin placement. In general, these variations
will be limited to few clock cycle duration. I/O on these interfaces must be buffered,
which can be done within the FPGA as discussed further also by Li et al. in [333]. For
simplicity, compartments should also indicate that an interface is active, and we can
double-use the chip-select pins present in almost all I2C and SPI implementations.
The voter can use activity on these pins as indication that the interfaces is active,
and delay voting for a given amount of clock cycles using a set of FIFO buffers. The
depth of these FIFOs thereby determines the maximum delay compensated by the
voter [334]. In our design we can utilize a combination of re-sampling majority voter
and MUX as depicted in Figure 66.

Note that larger MPSoC variants with 6 or more compartments can host multiple
independent lockstep sets as described in Chapter 6. In this case, simple buffered vot-
ing is insufficient, as compartments could then also run mixed lockstep groups where
threads may be scheduled with much larger time differentials. This differential will
always be shorter than the duration of a lockstep cycle or the frame time, but in LEO
these may extend to up to several seconds. It would be uneconomical and, depending
on the application, even technically infeasible to buffer I/O for long duration. How-
ever, we consider the design-combination of a low-end CubeSats that can not afford
subsystem TMR, packet-based communication, with a high-performance 6-core MP-
SoC not very attractive and therefore a corner case. If this combination was still
deemed necessary, a straight forward solution would be to maintain multiple isolated
thread-assignment groups.

9.5.2 Simple Inter-Subsystem and Controller Networks

Many SPI and I2C implementations support multi-master shared bus operation, and
it is possible to even create large and complex CAN-bus networks [335]. CubeSats
often use these interface standards for low-speed inter-subsystem communication in
simple CubeSat designs [39,336]. While packet based interfaces offer far better scala-
bility, reliability, and fault-mitigation properties for this purpose [337], in reality these
concepts will remain in use aboard CubeSats for the foreseeable future. However, in
contrast to interfacing with “dumb” endpoints ICs, these networks2 usually consist of
microcontrollers running satellite developer provided software. In this case, a better
solution to de-replicating and obtain consensus within the system of our MPSoC’s
compartments is to make the subsystems aware of the replication.

2In CubeSat jargon often referred to as “buses”.

CHAPTER 9 169

A subsystem controller then can await receiving a second replica of a command
sequence from a different master. Of course this does not solve the issue of a single
compartment/master jamming or saturating the bus due to malfunction. However,
most CubeSats using these interfaces as subsystem-bus currently usually also do not
take actual meaningful countermeasures in this regard. This is technically possible, but
requires entirely different network topologies [335,337] than the simplistic single-level
bus concepts used aboard CubeSats today [39].

9.5.3 Packet Switching and Routing On-Board Networks

For packet-based interfaces such as Spacewire [338], AFDX [94], CAN [55], or Ethernet
[73], no hardware- or logic-side solution is necessary. There, packet duplication and
integrity checking can be managed efficiently at the data link, network and transport
layers (OSI layers 2 – 4 [339]). At the physical layer, Ethernet and thereof derived
technologies such as AFDX [94] and TTEthernet [340] perform shared medium through
collision detection and micro-segmentation with frame switching. Then, packet routing
(L3) and de-duplication in software at the higher OSI layers can be deployed, e.g., in
software. Today, this is common practice in relevant industrial applications such as
AFDX and TTEthernet used in related fields such as atmospheric aerospace or safety
critical automotive applications.

The FPGAs considered in our research provide an abundance of high-speed MGT
transceivers. These are intended to support high-performance serial interfaces such as
PCIe, or USB3 host interfaces [341], which may become attractive for CubeSat use in
the future and have built in error correction support. Even the smallest XCKU3P part
fields 16 such interfaces, and the location of these interfaces is in very attractive loca-
tions for using 2-3 of them isolated within each of our MPSoC’s compartments [342].
In practice, this would allow for a very scalable, high-performance CubeSat inter-
subsystem communication architecture [343] at little cost assuming a the satellite’s
high-level design takes this into account.

9.6 Implementation Considerations

The MPSoC architecture described in this chapter was developed for miniaturized
satellite use, as an ideal platform for the software-FT approach described in Chapter
4. This architecture is not specifically dependent on utilizing ARM processor cores,
but can be implemented with any FPGA-implementable soft-core. Our choice of the
ARM platform was taken in part to allow thread migration between soft- and hard-
cores (e.g., on Zynq Ultrascale+), maximum comparability to COTS mobile-market
and embedded MPSoCs with secondary use aboard a major share of CubeSats. Espe-
cially for low-budget CubeSat users in research or university projects, standard vendor
library cores such as Xilinx Microblaze may be an excellent alternative to our Cortex-
A choice. These cores offer erasure coding and other basic fault tolerance features out
of the box already, and performed rather well in radiation tests [331]. They are readily
available and often even free of charge, especially to academics and non-commercial
scientific research users.

We implemented a proof-of-concept on a Xilinx XCKU5P FPGA with modest re-
source utilization (28% LUTs, 33% BRAMs, 16% FFs, 5% DSPs) and 1.92W total

170 9.7. CONCLUSIONS

power consumption with Microblaze cores. In this 4-compartment design, each com-
partment was equipped each with one peripheral I2C master controller, one SPI mas-
ter, as well as a dual-channel GPIO controller. Such an interface configuration is rep-
resentative for most CubeSat applications, while AFDX, TTEthernet, and Spacewire
are today not widely used aboard CubeSats.

This approach and architecture could very well be implemented on ASIC without
reconfiguration and Stage 2, and we see this as a “big-space” variant of our approach.
An ASIC implementation offers lower energy consumption, and allows higher clock
rates due to reduced timing and shorter paths. If manufactured in an inherently radi-
ation hard technology such as FD-SoI [144], it would be less susceptible to transients
and more robust to permanent faults. Due to the drastically increased development
cost and required manpower, the resulting OBC would not be viable for most minia-
turized satellite applications (not anymore “on a budget”).

9.7 Conclusions
The 3-stage FT approach combined with its MPSoC host system presented in this
chapter is the first practical, non-proprietary, affordable architecture suitable for FT
general-purpose computing aboard nanosatellites. It utilizes FT measures across the
embedded stack, and combines topological with software functionality, utilizing only
extensively validated standard parts. Thereby, we enable the use of nanosatellites in
critical space missions, while the architecture allows trading processing capacity for
reduced energy consumption or fault coverage.

An OBC relying upon this architecture can be facilitated with the minimal man-
power and financial resources. The MPSoC can be implemented using only COTS
hardware and extensively validated, and widely available library IP, requiring no pro-
prietary logic or costly, custom space-grade processor cores. It offers a high level of
resource isolation for each processor, utilizing architectural features originally con-
ceived for ManyCore systems to achieve FT.

Each compartment functions as a stand-alone processing compartment with ded-
icated I/O, existing in its own clock domain and reconfiguration partition, thereby
minimizing shared resources and reducing routing complexity. Compartments were
purposefully designed to best support thread-level coarse-grain lockstep of weakly
coupled cores, while allowing partial reconfiguration without stalling the rest of the
system. The architecture was implemented successfully, and tested on current gen-
eration Xilinx Zynq/Kintex and Virtex FPGAs with 4, 6 and 8 compartments, and
validated through fault-injection into RTEMS.

