
Fault-tolerant satellite computing with modern semiconductors
Fuchs, C.M.

Citation
Fuchs, C. M. (2019, December 17). Fault-tolerant satellite computing with modern
semiconductors. Retrieved from https://hdl.handle.net/1887/82454

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/82454

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/82454

Cover Page

The handle http://hdl.handle.net/1887/82454 holds various files of this Leiden University
dissertation.

Author: Fuchs, C.M.
Title: Fault-tolerant satellite computing with modern semiconductors
Issue Date: 2019-12-17

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/82454
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 8

Validating
Software-Implemented Fault

Tolerance
Systematic Fault Injection

In this chapter, we test and validate the software-mechanisms that are the founda-
tion of our fault tolerance architecture to address RQ5. Therefore, we conducted a
fault-injection campaign through system emulation with QEMU into a ARMv7a-SoC
matching our architecture target ARM’s Cortex-A53. Our results show that our lock-
step implementation is effective and efficient for providing FDIR within our system,
and the thread-level coarse grain lockstep’s performance meets our requirements. To
place our results into context, we compared them to literature and discuss lessons
learned and knowledge obtained throughout our fault injection campaign.

Spacecraft

On-Board Network / Satellite Bus

OBC

Semiconductor

MPSoC Logic

Software

On-Chip SRAM

Registers

Volatile RAM Non-Volatile RAM

Abstract Data Storage Technolgies

SensorsAOCSCOM Payloads

OBC Interfaces

EPSSaving

133

134 8.1. INTRODUCTION

8.1 Introduction

Modern embedded technology is a driving factor in satellite miniaturization, which
today enables an entire class of smaller, lighter, and cheaper class of spacecraft. These
micro- and nanosatellites (100kg-1kg mass) have become increasingly popular for a
variety of commercial and scientific missions, which were considered infeasible in the
past. They are drivers of a massive boom in satellite launches, new scientific and
commercial space missions, laying the foundation for a rapidly evolving new space
industry. However, these spacecraft suffer from low reliability, discouraging their use
in long or critical missions, and for high-priority science.

For larger spacecraft, various protective concepts are available to assure fault toler-
ance (FT) through hardware measures. However, these concepts are effective only for
traditional semiconductors manufactured in technology nodes with a large feature size.
Such hardware can not be utilized aboard miniaturized spacecraft due to tight energy,
mass, volume constraints, and high cost. Conventional embedded and mobile-market
systems-on-chip (SoCs) are deployed in their stead, which only utilize error correction
to handle wear and aging effects encountered on the ground. A significant share of
post-deployment issues aboard nanosatellites can be attributed directly to the failure
of these components and peripheral electronics [2], which caused usually by design
failures and effects induced by the space environment, e.g., [296].

Therefore, we developed a non-intrusive, flexible, hybrid hardware/software archi-
tecture (see Chapter 4) to assure FT with commercial-off-the-shelf (COTS) mobile-
market technology based on an FPGA-implemented MPSoC design. Our architecture
utilizes multiple FT measures across the embedded stack, and runs software in coarse-
grain thread-level lockstep to assure computation correctness through replication. It
can offer strong fault coverage without relying upon any space-proprietary logic, cus-
tom processor cores, or other radiation-hardening measures in hardware.

The utilized lockstep concept facilitates state synchronization and forward error
correction between otherwise independent processor cores. It also provides fault de-
tection capabilities for other FT stages which otherwise would lack fault detection
capabilities: FPGA reconfiguration and dynamic thread-replication and relocation
based on mixed criticality. Therefore, it not only offers fault coverage, but also trig-
gers other protective features of our architecture, requiring thorough validation before
a custom-PCB based prototype can be constructed.

Validation of such FT measures requires systematic testing of the actual concept
implementation, a realistic fault model, a consistent fault model definition, and a
suitable test setup. As our lockstep is part of the operating system kernel, system-
level fault injection and application-level testing do not offer a sufficient level of test-
coverage, and instead a variety of fault injection techniques for software are available.
While validation using fault injection using a realistic test-setup is best practice in fault
tolerance research and space-hardware development, very few coarse-grain lockstep
concepts have been implemented and validated in this way. Most concepts described
in academic publications today, instead are validated only using mathematical models
only, but were not actually implemented or practically validated.

At the time of writing the 2018 – 2019 period, careful study of journals and con-
ference proceedings yields only a single coarse-grain lockstep concept [199] that was
practically implemented, and validated based on a realistic fault profile. Practical
implementation and the possibility to compare an implementation’s performance to

CHAPTER 8 135

literature, however, is seen as a prerequisite by industrial users to consider an FT
concept mature enough for practical application. This situation has resulted in a gap
between theory and application, with industry often dismissing software-implemented
FT concepts due to a (perceived?) lack of maturity and an (assumed?) tendency
to ignore practical implementation obstacles. The research results of an entire field
of research, dependable computing through software measures, are thus practically
barred from application for an entire industry segment even though there would be a
pressing technological need and a lack of viable alternatives. For critical applications
like in the space industry, practical concept validation is then just the first of many
validation and testing steps: eventually system-level testing is conducted with a hard-
ware/software prototype. For space application, this prototype is then subjected to
radiation testing followed by on-orbit demonstration.

8.1.1 Contributions
In this chapter, we show how software-implemented FT concepts can be validated for
space applications in a realistic and representative manner, and fields with a similar
fault profile, e.g., critical and irradiated environments. We do so by example of a fault-
injection campaign we conducted to validate a novel thread-level coarse grain lockstep
concept we developed for space applications, described in detail in Chapter 4. We
utilize ISA-level fault injection into an ARM Cortex-A system through virtualization,
and fault injection into a 3-core SystemC-implemented MPSoC. This chapter includes
not only concept validation but is meant as a template for other researchers who
wish to validate their own software-implemented FT concepts. We provide a detailed
description of the fault profile in the space environment, and a through description of
the utilized tools and scripts, which have been made available to the public. Thereby,
we hope to increase acceptance of software implemented FT concepts by industry, and
the share of concepts which are validated in a practically meaningful way.

A single set of data points is insufficient to judge the performance and effectiveness
of the entire coarse-grain lockstep concept class. Thus, it is of great importance to
offer a second set of validation results to allow fellow researchers to compare their
forthcoming results to more than just one single paper. We document a variety of
lessons learned as part of this campaign, which have allowed us to develop a better
understand the practical behavior and protective properties of coarse-grained lockstep
in critical systems.

Few software-implemented FT concepts proposed today have been implemented,
and only a handful have been validated in a realistic and meaningful way. Therefore
this chapter serves as practical guide for fellow researchers that can be used as walk-
through to make proper testing of fault tolerance techniques a less challenging and
time consuming task in an academic environment. The strategy which we describe
throughout the remainder of this chapter is depicted in Figure 56, and described briefly
below.

8.1.2 Chapter Organization
In the next section, we discuss how the challenges of the space environment described
in Chapter 3 are met today in the industry, outline which solutions currently are
available, and how these are tested. We then derive a practical fault model for an RTOS
implementation of this approach (Section 8.4), and analyze which testing techniques

136 8.2. RELATED WORK

9

Abstract Fault Model
(Chapter 2 & 3)

Target Application & Scope
(Section 8.3)

Practical Fault Model Definition
(Section 8.4)

Test Technique Selection
(Section 8.5)

Test Tool Selection and
Test Campaign Setup

(Section 8.6)

Execute Test Campaign
(Section 8.7)

Result Analysis &
Comparison to Literature

(Section 8.8 - 8.11)

Target Binary Implementation
(Section 8.7.2)

Test Space Definition
(Section 8.7.3)

Adequate? Parametrization?

Rework Required?

Bugfixing

Figure 56: The top-down step-by-step testing strategy described in this chapter, with
indications in which section each step is discussed.

are available to verify the lockstep in Section 8.5. Having chosen the most suitable fault
injection techniques for our architecture, in Section 8.7 we describe the automated test
toolchain we developed to systematically conduct our test campaign. We utilize a set of
fault-templates to inject the different faults types described in Section 8.7.3, which we
derive from our fault model. The results of our fault injection campaign are presented
in Section 8.8, and we compare them to related work in 8.10. Before presenting
conclusions, we document pitfalls encountered while preparing and conducting our
campaign in Section 8.11, and describe changes made due to lessons learned during
validation.

8.2 Related Work

Computer architectures for space-use usually undergo radiation testing or laser fault
injection, as the state of the art in the field today is focused on hardware-level FT

CHAPTER 8 137

measures or specialized manufacturing (RHBD and RHBM – radiation hardened by
design/manufacturing). FT is traditionally implemented through circuit-, RTL-, core-
, and OBC-level majority voting [104, 132, 188] using space-proprietary IP, which is
difficult and costly to maintain and test. Circuit-, RTL-, and core-level voting are
effective for small SoCs such as microcontrollers, but this does not scale for the more
potent processor cores used in modern mobile-market MPSoCs [88, 191]. Software
takes no active part in fault mitigation within such systems, as faults are suppressed
at the circuit level and usually only indicated using hardware fault counters, without
a direct feedback between fault-mitigation and software. Hence, testing is strongly
focused on the pure hardware with software functionality during tests often being
reduced to stub implementations to assert basic functionality.

The characterization of the effects induced by radiation within a semiconductor is
of major concern when implementing traditional hardware-FT based systems. Today,
radiation testing is the only practical way to evaluate them, with radiation models
offering useful but tentative and often inaccurate high-level fault estimates. Radiation
test results for different components including memory and watchdog/supervisor-µCs
are available in databases such as ESCIES, NASA’s NEPP1 and the IEEE REDW
Records. Relevant radiation tests have been conducted for the FPGAs utilized in our
project, among others by Lee et al. in [297] and Berg et al. in [143], or are currently
ongoing (Glorieux et al. [298,299]).

Radiation testing can occur only at a very late stage in development, and the results
may vary even for identical chip-designs manufactured in different fabs and fabrication
lines. This form of testing effectively yields heritage and increases a system’s technol-
ogy readiness level, instead of verifying the effectiveness of a specific FT mechanism.
For our architecture, radiation tests yield device-specific data, which enabling us to
estimate fault frequencies, types, and effects on the FPGA on which our MPSoC is
implemented. We require this information to choose an appropriate checkpoint fre-
quency and frame times for our coarse-grain lockstep approach. By itself, however,
radiation tests do not allow an assessment of the capabilities of software-implemented
FT measures.

While transient random bit-flips are often considered in academic literature, the
otherwise different fault model [5] prevents the re-use of many FT approaches devel-
oped for ground applications. Also, the form factor constraints aboard miniaturized
satellites [197] prevent the re-use of most high-availability and failover concepts for
critical terrestrial control applications. Even for atmospheric aerospace applications,
dependable computing usually considers availability, non-stop operation, and safety,
but rarely computational correctness in a fully isolated and autonomous system.

Prior research on software-implemented FT often considers faults to be isolated,
side effect free and local to an individual application thread [208] or purely tran-
sient [199,205]. Many practical application obstacles could be uncovered and resolved
before publication by implementing these concepts [198]. However, implementation of
a measure and fault injection are time consuming tasks [300]. They often require not
only software to be implemented, but also suitable tools and hardware or a represen-
tative substitute, as outlined among others by Sangchoolie et al. in [301]. Especially
fault injection for entire OS instances is non-trivial [302], as thorough preparation
and careful test-tool selection is necessary to obtain representative results from a fault
injection experiment [303]. Therefore, a sizable share of FT concepts exists at a theo-

1see https://escies.org and https://nepp.nasa.gov

138 8.3. TARGET IMPLEMENTATION

retical level [212–214], instead of having undergone fault injection or hardware testing.
To still achieve some degree of validation, many publications thus resort to statistical
modeling using different fault distributions. This is a viable approach for validating
FT concepts directed towards, e.g., yield maximization [58] and aging [304], but not
for software-implemented FT measures for critical environments.

In this chapter, we conduct systematic validation of our coarse-grain lockstep ap-
proach using fault injection to verify the effectiveness and efficiency of our coarse-grain
lockstep FDIR mechanisms under stress. Specifically, we must assure voter stability
and a sufficient level of fault detection to avoid accumulating silent data corruption
and excessively brief frame times, while helping assess the amount of spare resources
needed. Together with FPGA-level fault-information obtained from radiation tests
outlined earlier in this section, and information on the mission specific target environ-
ment, we can then calculate the appropriate fault-frequency for a specific mission and
spacecraft.

8.3 Target Implementation

The high-level logic of our architecture is depicted in Figure 57, and consists of three
interlinked fault mitigation stages implemented across the embedded stack. It is de-
scribed in detail in Chapters 4 through 6. At the core of this architecture is a coarse-
grain thread-level lockstep implemented within the kernel of an OS, which we refer to
as Stage 1. It implements forward error correction and utilizes coarse-grain lockstep
to generate a distributed majority decision for an operating system. The thread-level

MPSoC Supervisor & Config Controler

Bootup

Checkpoint

Application
Execution

Read Majority
Decision

Check
Fault Counter

Update
Compartment

Stage 3
Mixed Criticality

Replace
Compartment

Stage 3
Mixed Criticality

 < limit > limit

recovered
functionality failure

Figure 57: Stage 1 (white) assures fault detection (bold) and fault coverage, Stage 2 (blue)
and 3 (yellow) counter resource exhaustion and adapt to reduced system resources.

CHAPTER 8 139

lockstep assures the integrity of software replicas run on a set of otherwise isolated,
weakly coupled processor cores. Fault detection is facilitated through application-
provided callback functions, requiring no knowledge about application intrinsics and
also no modifications to the application structure. Faults are resolved through state
re-synchronization and thread migration to processors with spare processing capac-
ity. Stage 1 is described in further in Chapter 4, where we also establish an upper
bound for the performance cost of the lockstep. This coarse-grain lockstep is validated
in this chapter, and provides fault-detection capacity for the subsequent stages and
short-term fault-recovery.

8.4 Obtaining a Practical Fault Model

To properly validate software-implemented FT measures, information on the physical
fault model is required. This information is necessary to choose a fault-injection
technique and the right tools to inject the faults. In the remainder of this section,
we show how to deduct a practical fault model from our operating environment. This
enables us to subsequently determine the most suitable fault injection technique as
well as to build a concrete test-space for our fault injection campaign.

To validate our lockstep implementation, we must specifically test how well our
lockstep implementation can detect faults. We need to verify this not only at the
system level, following a majority decision by all involved compartments, but also
locally by an individual lockstepped compartment into which a fault has been injected.
Besides fault detection and the possibility for recovery, it is necessary to determine
how stable or unstable a lockstep will behave. For space applications, a software-
implemented FT concept must be subjected to transient faults, permanent faults,
faults that are neither (intermittent faults). The effect of a radiation induced fault
depends on the particular effected chip region, logic, and microfabrication technology
used [5].

Our coarse-grain lockstep exists as part of the scheduler and utilizes a set of ap-
plication callbacks. Therefore, we must consider the actual effect and impact of faults
on the system from a programmatic perspective. Radiation induced faults will, thus,
have the following effects on the software executed within one of our MPSoC’s com-
partments:

• Data corruption associated with access to main memory, caches, registers and
scratchpad memory due to non-correctable ECC words caused by SEEs.

• Bit upsets, new-value, and zero-value faults due to SEEs and SEFIs in address
and control logic of peripheral IP due.

• Incorrect or non-execution of instructions in the processor pipeline during the en-
tire sequence of processing, i.e. from instruction fetch, execute to write-back, as
well as incorrect decoding of instructions and execution of different instructions
with the given parameters.

• Control-flow deviations and data corruption due to failure of interfaces and com-
partment I/O peripherals, due to faults in controller logic of FPGA’s I/O com-
ponents.

140 8.5. SUITABLE FAULT-INJECTION TECHNIQUES

To properly represent these faults, we should inject both bit-flips and new-values.
Random fuzzing or type-fault injection are widely used for finding exploits and vul-
nerabilities in software, as well as logic bugs, but are not useful for our purposes due
to the different physical fault scenario. Proper validation for software must be sys-
tematic [305], which can not be achieved at the system-level when testing a physical
hardware prototype. Software must be tested separately and systematically, so that
then a prototype can be developed that can undergo system-level testing.

A broad variety of synthetic, theoretical failure types are well described in liter-
ature, e.g., in [303]. In practice these do emerge as one of the described fault types.
As discussed among others in [306], most of these synthetic failure modes [303] ac-
tually emerge as one of the aforementioned effects. To validate the fault-detection
and mitigation capabilities of our lockstep to radiation effects, we are only interested
in the practical effects of a fault, not its theoretical origin, as discussed further by
Sangchoolie et al. in [301].

Radiation can induce subtle effects into logic and may affect the OBC at a system
level (e.g., full component failure or reset) [143]. Such faults emerge disguised as
one of the aforementioned ones in case their effects are transient or intermittent.
Furthermore, we also need to test the lockstep’s behavior under permanent faults.

Faults with a permanent effect are either fatal to a compartment, therefore directly
detectable by other compartments by majority decision, or affect the system as a
whole. Our lockstep is not designed to recover the system from large-scale system-
level permanent faults, and utilizes spare resources to cover the permanent failure of
individual compartments. These are covered by Stage 2 and, if necessary, escalated to
or detected by the on-board computer’s external supervisor through time-out.

8.5 Suitable Fault-Injection Techniques

Fault injection into a live hardware-system or an FPGA (e.g., using JTAG or ICAP)
would be most straight forward way of conducting fault injection. As research bud-
gets are finite, this naive approach does not allow a meaningful level of test coverage
from being achieved, as systematic test coverage is potentially destructive [115], time
consuming, and would require a high degree of parallelization. [307]

As our architecture is designed for FPGA, fault injection using netlist simula-
tion [64] or directly into the FPGA [115, 308] could be facilitated with comparably2

little development effort, as we already utilize a development-board based MPSoC
design implementation. This technique would grant precise control over the type and
effect of faults and the simulation could be conducted with a system closely correspond-
ing to the real one. Several proprietary partially [115, 308, 309] and fully automated
test frameworks [310] as well as commercial applications [64] have been developed for
this purpose. Unfortunately, netlist simulation of a full MPSoC is computationally
disproportionately expensive. Therefore, netlist simulation, too, does not allow us to
achieve meaningful level of test coverage.

Faults could also be injected via widely available standard software debug tools
(e.g., GDB) into software running in userland. This is only representative for tests
considering only the effects of transient faults in simple userland applications [199].
The effects of faults on a full OS implementation and permanent component damage

2as compared to developing a new FPGA design from scratch for the purpose of testing.

CHAPTER 8 141

cannot be simulated [311]. Furthermore, validation of embedded software for low-
power ARM or RISC-V SoCs using desktop-grade ia32/amd64 hosts may bias the
outcome of a fault injection experiment, as the platforms and their ABIs are fun-
damentally different. Fault injection into kernel functionality emulated in userland
may also result in a different run-time behavior than when running bare-metal. This
technique can therefore only yield meaningful validation results for pure application
level FT concepts [303]. Debugger-driven fault injection into a virtual machine can
alleviate these constraints by allowing an actual OS to be tested. However, this tech-
nique is unable to correctly simulate permanent and intermittent faults in components
other than memory and the current execution context. In consequence, the fault injec-
tion using debug tools is significantly constrained [303] and insufficient for validating
our lockstep. This is an inherent limitation of that can only be alleviated through
cooperation of a virtual machine monitor without hardware acceleration [302].

ISA-level binary instrumentation has been shown powerful and efficient for con-
ducting black- and grey-box fault injection [301], and is today widely used for reverse
engineering, security and malware analysis purposes. Though most of these tools are
tuned towards reverse engineering, not fault injection. Fault-injection capable tools
discussed today in relevant publications are mostly proprietary to individual research
groups [301, 312]. Without exception, they are rather experimental and tuned to-
wards single applications, and often also simply not publicly available [312]. To be
comparable however, proprietary tools unavailable to all but a research group are not
relevant.

Fault-injection into a virtual machine (VM), in contrast, allows considerable code
and tool reuse: a VM can be constructed using pre-existing virtualized hardware
available in widely used standard tools. Due to the considerable optimization effort
invested into virtual machine monitors, this technique is computationally relatively
cheap. Depending on the used VM technology, it no changes are to a victim application
and the emulated machine be can resemble the actual intended target system rather
closely. Several test frameworks implementing this approach have emerged in recent
years, though most are still custom tailored for specific usecases or have not been
released to the public [300, 305]. Notable exceptions here are the two open source
frameworks FAIL [306] and FIES [313]. These are publicly and freely available as
open source software and reasonably mature, and therefore we began to conduct our
fault-injection campaign using this technique. However, these tools are only capable
of injecting faults into a single core of an MPSoC, even though they can simulate a
VM with multiple processor cores.

Fault injection using system simulation can combine many of the advantages of
the aforementioned techniques. In prior research, actual MPSoC architectures were
simulated using SystemC to demonstrate architectural features. This could also be
used as compromise between the level of detail and extreme computational cost of
fault injection using netlist simulation, and limitations of fault-injection using system
emulation when targeting an multicore system. Until recently, however, modeling
and implementation of an MPSoC capable of running real software software using
SystemC required an excessive amount of development effort. With the emergence of
modern architecture description languages such as ArchC and in combination with the
emergence of more open processor core designs such as RISC-V, the development effort
necessary to do so has been reduced to a more realistic level. We therefore conducted
further testing of our implementation for with an ArchC implemented SystemC model

142 8.6. TEST CAMPAIGN SETUP

our our MPSoC to validate our lockstep in a true multi-core environment without the
constraints of system-emulation-based fault injection.

8.6 Test Campaign Setup
Having determined a fault-injection techniques and knowing what kind of faults need
to be injected, we must prepare a suitable test environment to properly To achieve sys-
tematic test coverage, manual fault injection or injection relying upon manual binary
introspection are unsuitable. Instead, an automated campaign setup is needed. In
this environment, we can then subject our lockstep implementation to fault injection
in bulk. This process can then be paralleled to achieve the desired test coverage. In
this section, we therefore describe how such a test setup can be realized with limited
development manpower, and pre-existing standard software based on our own setup.

Our fault injection toolchain performs the following steps implemented as a set of
python scripts:

1. Result harvesting: obtain the victim application’s process state, results and
correct lockstep checksums for each payload application. We run the emulation
without fault injection and tracing, outputting the application and OS state for
comparison during later steps. This allows us to e.g., include additional debug
output or otherwise alter the victim-binary’s code for our golden run. Thereby,
we can obtain a correct victim OS state without distorting the actual golden-run.

2. Fault-free simulation: we execute a golden run of our target implementation and
generate traces for executed instructions, register and memory access with the
actual binary used for fault injection.

3. Filter the traces to constrain fault injection to application relevant code and
data (e.g., omitting platform bring-up, OS, and shutdown code).

4. Remove duplicates, and annotate each trace-entry with the number of occurrence
in the trace, generating the test-campaign input data.

5. For each address and occurrence, we generate a fault definition based on a tem-
plate and launch an instance of our fault injection tool.

6. Based on a comparison to the known-correct results obtained in the first step, we
determine the impact of the injected fault (e.g., OS crash, incorrect checksum,
SDC, etc.) and log the result to an sqlite3 database. Besides collecting and
interpreting the results of a fault injection run, we also retain compartment
state information to enable manual analysis in the future if necessary. This
includes a compartment’s human readable output to each compartments’ serial
port, CPU and qemu processor context dumps, as well as the logs generated by
FIES during the fault injection, as well as its exit code.

Steps 1-3 are executed once at the beginning of a test campaign, whereas steps 4
and 5 are computationally comparably expensive but can be parallelized. As sqlite
stores a run’s database in an individual file, result databases from different systems

3Any database would work, but we want to keep the results portable so they can be combined
later one.

CHAPTER 8 143

can be merged, and each test record includes information about the precise injected
fault.

Long fault injection campaigns place considerable strain on host a computer’s
filesystem. While running our test campaigns, we discovered that this can cause induce
significant wear in SSD-based storage device. When replicating this setup, the avid
reader may wish to instead conduct fault injection fully in memory to avoid damage
the host computer’s SSD. This can be achieved by running experiments in a ramdisk,
e.g., by mounting tmpfs on the experiment directory.

8.7 Executing a Test Campaign
We conducted our fault-injection campaign using both system emulation with the
FIES fault injection framework and through SystemC simulation with a 3-core MPSoC
model.

8.7.1 Tool Selection
The available emulation-based FI tools which were available at the time of initiating
validation for our lockstep were not functionally equivalent. They differ regarding
the target environment, test setup and intended test subject scope, and the way in
which they inject faults. The FAIL-framework utilizes a powerful C++ based test
controller for thoroughly analyzing small binaries in a fully automated test campaign.
While the test itself is therefore fully automatic, the development of a test-specific
controller application requires deep knowledge of victim binary intrinsics and program
structure. This information is target binary and concept dependent, and is hardcoded
within a dedicated experiment controller binary 4. The development of FAIL is mainly
focused on the Intel platform. ARM support less mature and only available through
GEM5 [314] or through into hard silicon, neither of which are viable for our purposes
as discussed earlier.

FIES by Höller et al. [313] was developed specifically to validate ARM-based
COTS-based critical systems. It is based upon the much faster and more mature
virtual machine monitor QEMU, thereby supporting a broad variety of SoCs and vir-
tual hardware. However, there is no not support for conducting fully automated test
campaigns, but allows rule-based and systematic fault injection into opaque binaries
during each run. Its fault injection engine utilizes a fault library which can be gener-
ated automatically using compiler-toolchain functionality and instruction and memory
access traces. We can therefore efficiently test a full OS including its kernel, without
requiring a test monitor with knowledge about application intrinsics. The test cam-
paign described in the remainder of this section is thus carried out using an automated
test toolchain incorporating FIES.

FIES does not guarantee timing and strict time determinism. Hence, when vali-
dating more timing-sensitive algorithms however, special care must be taken to assure
the golden run and fault injection runs are equivalent [312,313]. However, our lockstep
implementation also does not require strict time determinism during simulation runs.
It only requires that a comparable level of work is conducted between checkpoints.

In the process of developing our test toolchain, we extended FIES’ functionality
to better support different tracing techniques and added functional improvements.

4See the src/experiments directory at https://github.com/danceos/fail

144 8.7. EXECUTING A TEST CAMPAIGN

Initially, this began as bugfixing effort, but over the course of several months, we in
practice rewrote most fault-injection triggering related code, as well as a major part of
FIES’ state machine. FIES originally was also based on QEMU 1.17, and therefore we
rebased the heavily modified FIES code to QEMU-git 2.12 (qemu-head in December
2017). We also added support for the THUMB2 instruction set as FIES originally only
could inject faults into ARM instructions, and only used those as fault-triggers, as most
common software use both ARM and THUMB2 assembly intermixed. At this point,
we had rewritten major parts of FIES, and we therefore made not just patches for FIES
available, but released the entire tool as “FIESer – FIES Extended and Reworked” to
the public. It is source code is available at https://fieser.dependable.space and
on https://github.com/dependableDOTspace/FIESer.

To realized fault injection via SystemC, we first had to develop a suitable MPSoC
implementation. Most SystemC MPSoC models described in literature, however, at
close inspection turn out to only be capable of running brief instruction sequences
to validate parts of, e.g., an instruction set, or a specific low-level functionality of an
MPSoC. Hence, they are incapable and often not even intended to run run actual
application software, which we require to test our lockstep implementation. This is
no problem for emulation-based fault injection, where only the high-level behavior
of a system is emulation, but challenging for more close-to-hardware SystemC-based
simulation. Hence, as part of an ongoing international inter-university collaboration,
we implemented a true multi-core model of our MPSoC. We implemented this MPSoC
through the use of the open RISC-V platform, for which preexisting ArchC models
were available. Each processor core existed in its own compartment with dedicated I/O
capabilities as described in Chapter 4, and have access to a shared memory segment
used to exchange and compare lockstep state information.

8.7.2 Target Implementation and Payload
When conducting fault injection it may seem obvious that these tests should be con-
ducted against a realistic target implementation. However, this is only feasible if the
right tools were chosen as described in the previous sections. A majority of publica-
tions today does not do so, and often researchers seemingly try to force-use unsuitable
fault injection tools to validate their implementation. In the remainder of this section,
we thus describe the fault injection target implementation of our lockstep, and outline
how and why it is representative for our purposes.

A simplified function flow graph of our lockstep implementation is depicted in
Figure 58 for reference, and in full described in Chapter 4. As payload application,
we utilized two applications:

• The ESA Next Generation DSP benchmark5 run as POSIX threads within
RTEMS. This is a space-industry standard benchmark application used to mea-
sure and compare system performance.

• An application alike the NASA/James Webb Space Telescope Mid-Infrared In-
strument readout software6 [219].

While this choice represents satellite computing workloads reasonably well, test cam-
paigns for other application should utilize representative software. If no specific target

5Source code publicly available at https://essr.esa.int
6See https://github.com/spacetelescope

CHAPTER 8 145

Update to
Valid State

Kernel

Checkpoint
Interrupt

Application
Initialization

Wait for
Supervisor

State Update?

Checkpoint
Start

Checksum
Computation

Checksum
Comparison

Initialization

Initialization

Update to
Valid State

Run

Run

Gen. Checksum
Gen. Checksum

a b
In

iti
al

iz
at

io
n

A
pp

lic
at

io
n

C
he

ck
po

in
t

Disagree? Expose State
Expose State

Scheduler

Application
Thread T

Application
Thread T

Checkpoint
Initialization

Compartment
Bootup

Yes

Yes

Figure 58: The execution cycle of our coarse-grain lockstep implementation on a compart-
ment. Payload application callbacks are depicted in yellow, checkpoint trigger timers in blue.
Faults are injected after initialization.

146 8.7. EXECUTING A TEST CAMPAIGN

application code is available, synthetic algorithm suites such as the SPEC performance
tests7 can be utilized at a loss of realism due to the limited scope and low complexity.

Our fault injection experiments using system emulation were conducted against
an implementation of our approach in RTEMS 4.11.2 using the ARMv7a-Zynq board-
support-package, which closely resembles the compartments of our MPSoC. RTEMS
is a real-time OS running bare-metal, and is used in a broad variety of space applica-
tions. We chose not to utilize the Linux kernel for our fault injection experiments to
maximize the level of control over our experiment and reduce the test time overhead.
We cross-compiled the kernel image from Fedora 28 x86_64 with standard compile
flags (-marm -mfpu=neon -mfloat-abi=hard -O2) in RTEMS GCC 4.9.3. Note that
RTEMS does not utilize privilege separation, enforces no separate between a userland
and kernel code, and has no virtual memory support. All these features would make
faults more easily detectable and the OS as a whole more robust. Hence, faults in ap-
plication code can directly interfere with kernel data structures. However, the absence
of such functionality is representative for today’s space computing even aboard larger
spacecraft.

For SystemC-based fault injection, the model used was implemented using Sys-
temC version 2.3.1 and ArchC 2.4.1 with custom patches to enable fault injection.
Instruction instrumentation was realized using nightly builds of AspectC++, as the
latest released version of AspectC++ is outdated8. The excessive amount of compute
time necessary for fault injection into the MPSoC prevented the re-use of the same
lockstep implementation used as for emulation-based fault injection [315]. Initially, we
attempted to re-use the same test application setup we developed for emulation-based
fault injection, but a single fault-injection run with this application in our ArchC model
on just one processor core would have taken more than 8 hours. Therefore, instead of
running a full RTEMS implementation of our lockstep, we constrained our implementa-
tion to run bare-metal code without thread-management, interrupts, and timers. This
implementation was cross-compiled using the RISC-V toolchain released and main-
tained by the Andes Technology Corporation at https://github.com/andestech/
riscv-llvm-toolchain against the ilp32 ABI of the rv32ima RISC-V architecture
variant. At the time of writing and conducting these fault injection experiments, the
toolchain uses GCC 7.1.1. Naturally, this curtails the fault tolerance capabilities this
implementation can achieve, but it allows the test time to be reduced to approximately
1 minute of real-time per injected fault.

8.7.3 Test Space and Target Components
We prepare a set of fault definition templates, which our fault injection toolchain
combines with information from the previously generated traces. These templates
define the test-space of our campaign. However, choosing the right test-space for
testing an OS-scale fault tolerance measure is non-trivial. A test-space as described in
literature [316] as ideal for testing software in practice is usually not achievable [317],
and stands in stark contrast to the best practices in system-level testing in industry
[318, 319]. Even fault injection with state-of-the-art tools requires a carefully chosen
compromise between realism and test-coverage to avoid runaway test-times and high
cost.

7see https://www.spec.org/cpu
8At the time of writing AspectC++’s latest released 2.2 is more than 2 years out of date and its

functionality is no longer comparable to those of the nightly development builds

CHAPTER 8 147

Transient Fault Injection

Transients are injected as bit-flips and new-value errors into registers and the proces-
sor pipeline using the program counter as trigger. Simple time triggered injection is
insufficient, as the available tools do not assure clock-cycle accurate timing. For in-
structions which are visited more than once, we trigger faults after the n-th occurrence,
which is enabled by an extension of the FIES framework’s fault definition language.
Our SystemC implementation is designed to allow fault injection also with cycle accu-
racy in different parts of the processor pipeline, though we consider this functionality
to be too unreliable to use it for fault-injection yet. With FIES, we inject faults also
into memory access operations based on physical memory addresses. This allows us
to approximate the effect of faults in caches and main memory, as well as faults in
buffers. To better simulate non-correctable upsets in ECC words and faults in the
address logic, we can also directly replace accessed data or replace the address of the
operation.

Permanent Fault Injection

Permanent faults should be injected into accessed main memory and devices address
space. However, they should not be injected into general purpose registers, spe-
cial registers, and the CPU pipeline provided little added value for testing software-
implemented fault tolerance measures. This is due to the fact that the effects of faults
in these components are fatal at the latest after a few clock cycles. Hence, they will
interrupt operation of a processor core, and this can be detected through our lockstep
by other compartments in the MPSoC, as well as by the supervisor. While it is impor-
tant to not ignore parts of our fault model, testing with faults with a predetermined
and known result would needlessly inflate the test space and time.

Functional Interrupts and Intermittent Faults

Radiation may also cause fault-effects which are neither transient nor permanent. To
simulate SEFIs with FIES, FIES’ fault types of periodic and intermittent faults can
be used. For these, fault effects persist for a user-described period of time and are
resolved by the injection framework afterwards.

In our tests, we chose 100ns as fault-duration for SEFIs, the period-equivalent to
10 clock cycles at 100MHz, the frequency emulated by QEMU for the Zynq MPSoC.
This represents the interruption effect and the reset-induced outage of specific circuit
groups due to SEFIs reasonably well. However, we are not aware of radiation-test
data further analyzing the actual timing and detailed interruption behavior SEFIs in
processor logic and FPGA fabric.

Fault Placement during Execution

After executing bring-up code and OS initialization, our victim binary executes pay-
load software for 3 lockstep cycles on FIES and 5 lockstep cycles on ArchC, and then
terminates. The test sequence is depicted in Figure 59, and faults are injected during
the first checkpoint cycle or frame of execution. This allows faults to propagate within
the system, to corrupt the application state, without requiring excessive experiment
time. During the first checkpoint executed after fault injection, corruption of the ap-
plication state should be recovered. Upon reaching the second checkpoint after fault

148 8.7. EXECUTING A TEST CAMPAIGN

injection, the application state should have fully recovered and thereby the system
state should match the golden run’s results. This allows us to verify the full FDIR
cycle from fault injection to recovery.

For emulation-based fault injection we chose a frame time of 2 seconds as interval
between checkpoints. This is a reasonable choice for operation in LEO when pass-
ing through increased radiation zones such as the South Atlantic Anomaly, based on
radiation-testing data for Ultrascale [143, 297] and Ultrascale+ FPGAs [298]. For
SystemC-based fault-injection, checkpoints are executed after each frame the NIR
HAWAII-2RG algorithm has been processed.

For our RTEMS implementation, a golden run takes approximately 7 seconds of
guest-virtual time, which on our test system is equivalent to approximately 30 seconds
of host-time. In case the experiment does not terminate in time, e.g., due to control
flow corruption, the experiment is terminated by the toolchain after 45 seconds (allow-
ing one additional checkpoint to be processed). FIES can also be configured to end an
injection run after executing given number of instructions (e.g., 10 times the number
of instructions executed in the golden run). We are not relying upon this functionality
as the value has to be hardcoded in FIES.

For our MPSoC, the execution time of a golden run for generating traces does
not differ significantly from a run where faults are injected. However, even after
much optimization a single run takes approximately 45 minutes of real-time on Core-
i7 8700K system. We therefore reduced the NIR detector frame size from 2048x2048
pixels to 32x32 pixels, which then reduced the overall runtime to between 1 minute
and 20 seconds, depending on the host system’s performance. Naturally, this changes
the ratio between code and data due to the much reduced size of the data structures
used, but does not change the overall program structure of the executed application
and the lockstep. As we already established an upper bound for the performance cost
of our lockstep in Chapter 4, we consider this constraint acceptable.

After fault injection has terminated, we analyze if our lockstep could detect the
effects induced by the injected fault (if any), and if they could be resolved through a

C

C

C

T T

T T cpy

2

1

0

T T

T T

a

a

b

b

a b T T

T T

a

a

b

b

T T

T T

a

a

b

b

T T a ba b

Fault

T

T

T

init

init

init

Figure 59: The experiment sequence and fault placement for a compartment. Fault are
injected during the red-outlined time period on processor compartment C0.

CHAPTER 8 149

state update from another compartment. To reduce the test space, we do not inject
faults into platform code, bring-up, an shutdown-related code.

Limitations

We chose the length of a fault injection run to allow our victim binary to exhibit the
entire FDIR circle. As we are testing a full OS instead of just code snipplets or brief
instruction sequences, this is necessary. In contrast to related work, the runtime of
our fault injection campaign is therefore already excessively long, e.g., extended by
more than an order of magnitude as compared to Amarnath et al. [305]. However,
such a brief run still does not allow dormant or latent faults to be discovered, e.g.,
such affecting OS data structures and logic resulting time-delayed regressions. Only
certain fault will produce immediate effects, and it is infeasible to extend our target
binary’s runtime even further. Therefore, it is impossible to observe or even determine
if a fault results in no effect, silent data corruption, or time-delayed effects. The time
allotted to each fault injection run therefore is a direct trade-off between achieving
sufficient test-coverage to judge the fault-detection capacity of our lockstep, and to
observe long-term effects.

In our ArchC system model, simulate RISC-V processor cores. This instruction set
offers a large quantity of general purpose registers, which would inflate the test space
as compared to our FIES ARM target (30 general-purpose registers as compared to 12
on the ARM platform). Therefore, we conduct an Architectural Vulnerability Factor
(AVF) analysis [320] for the traces used in our fault injection campaign. AVF allows
us to reduce the test space to avoid injecting faults into locations which would subse-
quently be overwritten, reducing masked faults and the overall test space. However,
as discussed further by Maniaktakos et al. in [321] AVF overestimates vulnerability
by more than 70%, and can not properly model the impact of multi-bit upsets in
semiconductors manufactured in technology nodes less than 65nm feature size. In our
campaign, we utilize AVF to constrain potential fault location (register address), but
not to determine which bits are vulnerable and instead inject faults in each bit of a
32-bit word.

Our need for systematic testing also induces another limitation: Being constrained
to running only a few lockstep cycles after fault injection, we also can not making
more long-term observations regarding fault recovery. The fault recovery potential of
coarse-grain lockstep also are heavily influenced by the protected applications and OS
structure. Any fault-recovery statistics obtained for very short term fault recovery
thus would be unreliable. Instead, this information should better be obtained through
system-level testing with actual on-board data handling software on a prototype.

It would be feasible to inject faults in QEMU’s emulated virtual hardware and into
the infrastructure of our SystemC-MPSoC model. This would allow faults to be injec-
tion more realistically for each emulated or simulated device and MPSoC component.
However, this is not supported in FIES and our SystemC-MPSoC model today. To
our understanding FIES was also never developed with such functionality in mind.
Hence, while technically possible, fault injection in qemu virtual devices would require
considerable development effort even for only one set of virtual devices relevant for
validating our target architecture. Due to a lack of tools, we can instead approximate
the practical effects of radiation by injecting faults during access to memories and
device address space, as well as into the CPSR on FIES.

For our SystemC-MPSoC, there is no structural limitation to fault injection as with

150 8.8. RESULTS & INTERPRETATION

FIES, and in the coming months we plan to expand the fault-injection capabilities of
this model. At this point in time, have begun adding cycle accurate fault injection
support, instead of instruction-based fault injection which is possible with FIES and
our ArchC model today. Once this has been accomplished, we plan to inject faults
also into the MPSoC’s interconnect, as well as CPU peripherals and interfaces that
are part of a compartment.

8.8 Results & Interpretation

To test our toolchain and verify its correct functionality, we conducted manual fault
injection into specific application structures using FIES. We injected such faults into
interesting data and logic which could cause an incorrect application state, or could
otherwise alter the run-time behavior of a compartment. This allows us to analyze
the practical behavior of our lockstep under faults, and enabled us to directly compare
the impact of a fault in a specific location when injected as transient, permanent and
intermittent faults. Table 5 shows the behavior of our lockstep under faults, and
we subsequently expanded our fault injection campaign in the described automatized
way with FIES and our ArchC model. In Table 6, we provide statistics observed when
conducting fault-injection with FIES and ArchC.

In payload-application code, a majority of the injected transient faults resulted in
a corruption to the payload applications’ state. With less than 20% of all faults, the
application of the entire OS crashed or terminated prematurely (compartment resets
were treated as early termination). Faults affecting the lockstep mechanisms (e.g.,
resulting in false comparison or incorrectly generated checksums from correct data)
were rare due to the minimal time spent executing lockstep mechanisms, as its low
code and data footprint.

A comparable share of bit-flips with permanent effects resulted in a corrupted
thread state and thus checksum-comparison mismatch, as was the case with transient
faults. However, this number alone is misleading, as the amount of masked upsets
without noticeable effects plummeted to just 19%, while the share of thread- or OS-
crashes increased. Therefore, we can deduct that a number of faults which due to
transient faults would have resulted in just thread state corruption, now instead result

Detection by Recovery Recovery Method
Result Victim System Trigger State Update Reboot

Corrupted State yes yes lockstep yes yes
Thread Crash yes timing only lockstep yes yes
Lockstep Failure no yes supervisor no yes
Crash/Hangup no yes victim core no yes
No Effect/SDC no no supervisor sometimes yes

Table 5: Behavior of our RTOS implementation under faults, considering fault detection
at the system level, as well when considering victim-processor core itself. Notice that our
lockstep implementation can not detect silent data corruption with no immediate impact on
the thread state.

CHAPTER 8 151

Effect by Injected Fault Type
FIES ArchC

Result Transient Transient Permanent Intermittent

Corrupted State 49% 32% 44% 53%
Thread Crash 8% - 17% 10%
Lockstep Failure 1% 1% 2% 1%
Crash/Hangup 10% 14% 18% 15%
No Effect/SDC 32% 54% 19% 21%

Table 6: Fault injection experiment results to date with FIES and ArchC divided into
transient, permanent, and intermittent faults. A share of all masked faults will cause silent
data corruption, which can have long-term effects on OS data structures. These could be
detected through erasure coding, while memory protection and virtual memory would allow
us to detect misdirected memory access caused by faults. Neither measures is in place in our
proof-of-concept.

in crashes. The total amount of detected faults in turn was increased again by faults
which were previously masked. Intermittent faults have a similar effects to permanent
ones, though with slightly fewer crashes and more faults affecting only the payload
application.

Our coarse grain lockstep implementation contributed fault-detection to the sys-
tem, whereas the state synchronization functionality serves to reduce the amount
of reboots needed to restore the state of each compartment. In practice, its fault-
detection strength depends on both the frequency at which checkpoints are execute
(frame-time) and the likelihood that faults can be covered and corrected. Hence, we
analyzed how rapidly a compartment itself can detect faults in Figure 60.

The fault injection campaign shows that there is indeed a measurable difference
in behavior between transient and permanent faults, and between target applications
of different complexity. As expected, permanent faults are more likely detectable
than transients, due to their increased severity. However, we also expected permanent
faults to be easier detectable by a compartment than SEFIs (see Figure 60a). This
was not the case. The increased likelihood of permanent faults resulting in crashes
and the higher percentage of non-fatal state corruption faults due to SEFIs made fault
detection within the affected compartment more likely for SEFIs. For permanent
faults a larger percentage of faults results in a crash, which can no longer be detected
by the affected compartment. These results underline the importance of conducting
validation not only using transient faults, but also with permanent and intermittent
faults.

The effects of a fault will be detected through majority decision by the rest of
the system. The fault detection rate increases sharply, as the MPSoC as a whole
can also detect crashes of an entire compartment or lockstep mechanism failure, as
shown in Figure 60b. In Figure 61, we therefore provide a direct comparison between
self detection and majority decision for transients, permanent and intermittent faults.
While the results for transient faults again match our expectations, for permanent
faults and SEFIs, the initial fault detection capability for the full MPSoC even with
only a single executed checkpoint is drastically better than for self-detection. Here, a

152 8.8. RESULTS & INTERPRETATION

1 2 3 4

60

70

80

90

57

82

92

97

61

85

94

98

63

86

95

98

Processed Checkpoints

D
et
ec
ti
on

C
ap

ab
ili
ty

(%
)

(a) Detection by the Victim Compartment:

1 2 3 4

60

70

80

90

67

89

96

99

79

96

99 99

78

95

99 99

Processed Checkpoints

(b) Detection by the Full System:

Transient
Permanent
Intermittent

Figure 60: Payload application and state corrupting fault detection chance of a single
compartment for different fault types after a given number of execute checkpoints. Notice
that intermittent faults are more likely to be detected than permanent faults by the affected
compartment itself, which is counter intuitive. This is due to the increased percentage of
faults that are fatal for a compartment, and the system as a whole can detect permanent
faults with higher likelihood.

fault detection chance of near 79% and 78% during the first checkpoints also implies
a near certain fault detection likelihood during the second checkpoint; see Figure 61b
and c. In contrast, for self detection, faults can be detected after with 57%, 61% and
63% during the first checkpoint after fault occurrence and near certain detection only
being achieved after three checkpoints.

When designing our lockstep concept, we considered fluctuations in compartments
thread assignment within the MPSoC to be critical. This is caused by crashes and
reboots of individual compartments. Worst-case benchmark results showed that fre-
quent crashes of compartments could degrade performance of the system by between
9% and 26% for high checkpoint frequencies and brief frame times. Based on our
experiments, we find comparably few faults, between 11% and 20%, cause crashes
and lockstep-failures. Even under the (unrealistic) assumptions that faults were to

1 2 3 4

60

70

80

90

57

82

92

97

67

89

96

99

Processed Checkpoints

D
et
ec
ti
on

C
ap

ab
ili
ty

(%
)

(a) Transient

1 2 3 4

60

70

80

90

61

85

94

98

79

96

99 99

Processed Checkpoints

(b) Permanent

19
%

1 2 3 4

60

70

80

90

63

86

95

98

78

95

99 99

Processed Checkpoints

(c) Intermittent

by Victim
by System

Figure 61: Comparison of the fault detection capabilities of an individual compartment and
the by MPSoC through majority decision. The full system can also detect a crash of the OS
instance running on a compartment, and malfunctions in the lockstep logic.

CHAPTER 8 153

Number Immediate Lockstep Reboot
Effect of Faults % Thereof: Recovery Timeout Required

Non-Masked 47526 46% 22004 10915 14607
46% 23% 31%

Masked 57379 54%

All 104905

Table 7: Fault Recovery statistics for SystemC fault injection.

occur in each checkpoint period, many faults could still be resolved through a state
update and do not require a reboot. Hence, our lockstep implementation can provides
the necessary degree of voter stability to making application reassignments between
compartments rare.

A majority of faults that resulted in no observable effect on our implementation may
indeed be masked and require no measures to be taken, as they may have no impact on
the application state [322]. This is a limitation of our fault injection toolchain, as faults
are also injected into registers and memory which may be overwritten by subsequent
instructions, or faults that cause self-masking control flow deviations. Such situations
occur e.g., due to faults in branch or comparison instructions triggering the same
iteration of a loop more than once. They have no practical impact on the application
state while, and also cause only minor timing deviations which do not impact the work
conducted until to the next checkpoint.

8.9 ArchC MPSoC vs. FIES Result Comparison

Comparing our transient results between ArchC and FIES, we notice that the results
are mostly comparable. The share of faults without noticeable effect are increased
by approximately 20%, which seems reasonable considering the different lockstep im-
plementations tested: part of this difference can be attributed to the vulnerability
overestimation remaining due to limitations of our AVF analysis. Furthermore, the
lockstep implementation on ArchC can not exploit the powerful exception handling
function available in a proper operating system implementation, as we are here run-
ning the test implementation bare-metal. Instead, our FIES implementation exists
as part of RTEMS, which allows more precise fault analysis, and overall reduces the
chance that a fault will crash the entire OS instead of just the test application thread.

To allow better comparison of the fault effect ratios between system emulation
and SystemC fault injection, we have to normalize the results obtained with both
techniques. To do so, we apply normalization to the 54% of masked faults to all
effect ratios obtained with FIES, where we encountered just 32% masked faults. A
comparison between normalized FIES fault effect ratios and ArchC is depicted in Table
8. As depicted, after normalizing the result data, we receive almost identical fault effect
ratios with both techniques, with our RTOS implementation showing 6% higher data
corruption likelihood than our bare-metal implementation. In our ArchC lockstep
implementation, 15% of all faults cause a crash or hangup effect, while in our RTOS
implementation 14% of cause such an effect. As our FIES implementation utilizes

154 8.10. COMPARISON TO LITERATURE

threading 6.5% of all crashes remain isolated to the crashed application software, or
the lockstep, while our ArchC implementation knows no such separation. In practice,
this shows that the additional OS and application isolation functionality implemented
within a modern OS also has a positive impact on suitability. In turn, the increased
amount of code an data required for an OS-scale implementation also shows that the
ratio of faults causing data corruption is slightly higher than when running the same
application bare-metal.

In Figure 7, we provide fault effect and recovery statistics obtained from our ArchC
MPSoC model. After observing 105905 fault injection runs into our ArchC MPSoC
model using AVF-filtered golden run traces, we can observe that: in 46% of cases a cor-
rupted thread-state could immediately be recovered through a state update, required
no reboot of the faulty MPSoC core. In further 23% of cases, faults could have been
recovered if the lockstep had allowed for more wait time during checkpoint voting,
which was severely constrained in our test campaign to assure sufficient test coverage.
Only in 31% of cases, fault resolution was unsuccessful, requiring a reboot of the af-
fected processor core. Overall, these statistics are very positive, considering especially
the much reduced fault-recovery potential that a bare-metal lockstep implementation
has as compared to a full OS implementation.

Considering the different scale and detection capabilities of the two different lock-
step implementations analyzed, this different is in line with our expectations: The
target implementation we used for ArchC fault injection does not utilize a threaded
scheduler, and therefore thread-management and scheduling is eliminated as potential
failure source. Overall, injected faults in a threaded RTOS implementation should
locally also impact OS-level control logic, and infrastructure data structures, and in-
duce secondary fault effects there. At the same time, the this also means that faults
which in an RTOS implementation caused a thread to crash, now would only cause
data corruption in the protected application.

8.10 Comparison to Literature

To place these results in context with results from other lockstep concepts, we sought
to compare our results to literature. Unfortunately, few coarse-grain lockstep concepts
have been implemented in practice and tested using means beyond modeling. At the
time of writing, we are aware of only one publicly released validation report by Dobel

FIES
Ref. @ 54% SDC ArchC ∆

Corrupted State 49% 38.22% 31.72% -6.5%
Thread Crash 8% 6.24% 0% -6.24%
Lockstep Failure 1% 1% 1% 0%
Crash/Hangup 10% 7.8% 14.54% +7.66%

∆ Total 5.08%

Table 8: Transient fault effect comparison between system emulation and SystemC fault
injection, normalized to equivalent SDC ratios.

CHAPTER 8 155

et al. [199] considering practical fault injection with real software and faults, instead
of statistical estimation.

When directly comparing our results to Dobel et al.’s transient fault injection re-
port [199], the share of faults causing application, thread, and OS crashes with our
approach is noticably increased. For transient faults, this can at least in part be ex-
plained with the different capabilities of Dobel et al.’s proposed lockstep mechanisms.
In their contribution, lockstep is facilitated through application intrusive function
call hooking. Thereby, Dobel et al.’s lockstep can offer more fine-grained protection
than our approach. However, it also require considerable code, deep and non-portable
changes in the target OS, has a high performance overhead, and constrains the tar-
get OS and application structure. The measured detection differences are consistent
across all effect categories: we measure a higher amount of masked faults, a decreased
amount of detected state deviations, and an increased amount of crashes with our
approach.

Dobel et al. consider their fault injection measurements overly optimistic, as they
utilized payload applications “of little complexity (leading to few potential candidates
for fault injection)” [199]. Their validation and lockstep implementation is constrained
to handling transient faults, while SEFIs or permanent effects are not covered as these
faults were injected into a user-land application of their approach through a debugger.
Dobel et al. assume the OS, system libraries, and kernel to be fault-free, while we
instead inject faults into a full OS including POSIX libraries with payload applications.
In light of this bias, we consider our results are in line with Dobel et al.’s, and our
lockstep implementation to function as desired.

The results we obtained with SystemC fault injection into our ArchC MPSoC
confirms this further. There, we can in practice reproduce exactly this same scenario
between the two lockstep implementations we have been utilizing for testing with
FIES and for our ArchC MPSoC-model. The lockstep implementation there is overall
simpler, has fewer calls to critical infrastructure functionality that could break, and
therefore offers less overall failure potential than our full RTEMS-implementation.
Furthermore, in this MPSoC we utilize RISC-V processor cores with a much simpler
and less powerful instruction set than that offered by a full Cortex-A processor core
implementing the ARMv7a instruction set, which not only supports one instruction
set, but uses two instruction sets in combination (ARM and THUMB).

8.11 Discussions

Fault injection today can be conducted for different reasons, such as to detect secu-
rity vulnerabilities in software, memory leaks, or to assure test coverage when testing
for functional correctness. However, fault injection for validating the correction func-
tionality of a fault-detection and lockstep technique is very different from, e.g., fault
injection conducted for security purposes. Applying the same assumptions or test
tools to both, while attractive, does not result allow for proper validation. The used
fault injection techniques, target implementations, and payload software will influence
the obtained results. Validation using an overly simplistic target implementation will
bias the results obtained. Comparing our results to Dobel et al.’s underlines that it is
important to conduct fault injection into a realistic implementation with non-trivial
payload software, but also that more lockstep concepts must be validated.

Our coarse-grain lockstep can detect faults resulting in a crash or in corruption of

156 8.11. DISCUSSIONS

the thread state. However, it is unable to detect silent data corruption and latent faults
in OS data structures and code. To better handle this, a compartment’s checkpoint
handler could generate a checksum for certain critical kernel data structures. However,
the scope to which this is possible is limited and the computational cost may be high.
It would be practically impossible to do this for a larger OS or, e.g., the Linux kernel.

Velasco et al. propose in [323] to apply erasure coding for critical OS data struc-
tures in software. The proposed concept is similar to code signing, and today widely
used for tamper-proving of embedded devices and e.g., for secure boot. The availabil-
ity of this functionality would allow our lockstep to also detect silent data corruption
in rarely accessed OS structures and device drivers code and data.

When experimenting with different compiler flags, we found that faults injected in
equivalent code segments of differently compiled binaries could result in varying fault
effects. We determined through introspection of the relevant target binary parts, that
the changed behavior was caused due to specific compiler flags. Especially loop un-
rolling (GCC’s -funroll-loops flag) had a particularly positive effect when injecting
permanent and intermittent faults. In practice then compiler then flattens the program
structure, duplicating code segments instead of executing the same segment multiple
times within a loop. Serrano Cases et al. in [324, 325] as well as Lins et al. in [326]
have begun to explore these effects for improving reliability, but otherwise industry
and literature today seem oblivious on this issue. Designers of software-FT measures
in the future should consider the impact of a broad variety of behavior-altering flags
and toolchain settings supported by modern compiler suites, as these have a direct
impact on the utilized FT mechanisms as well as validation.

FIES originally offered no support for the THUMB instruction set. However, most
OS kernels, many device drivers, and even standard library functions mix THUMB
and ARM instructions. Therefore, we had to implement support for the THUMB and
THUMB2 instruction sets for FIES, to assure consistent tracing and fault injection
results.

A jump between instruction sets without compiler-interwork would yield an unde-
fined instruction exception, as the opcode-encoding for ARM and THUMB instruc-
tions differs. This effectively prevents undetected, incorrect jumps in ARM/THUMB
interwoven code segments. We argue that instruction set mixing could be exploited
to improve fault detection. Critical code segments could intentionally be assembled
with strong instruction-set interweaving to assure that an incorrect jump immediately
results in an exception instead of silent data corruption or control-flow deviations.
For C-code, this can be achieved per function using target attributes and prefixes, or
more fine-grained using preprocessor definitions and pragma. This would reduce the
likelihood of silent data corruption and introduce a level software diversity through
compiler instrumentation or scripted, automated code transformation [327].

When designing our coarse grain lockstep measure, we were aware of two ways of
inducing checkpoints: through timers on each compartment and externally through in-
terrupts. If timers are used, checkpoints are triggered independently on each compart-
ment. Interrupt induced checkpoints are centrally triggered by the off-chip supervisor,
creating a potential single point of failure. At design time, we therefore considered
timer driven lockstep to be better, as it avoids a central authority inducing checkpoints
in favor of decentralized triggers. However, our fault injection campaign showed that
interrupt induced checkpoints are considerably simpler. The timer-handling related
logic requires more code and increases the OS state, and thus also more prone to faults

CHAPTER 8 157

than a simple interrupt handler. Hence, in future work we decided to use interrupt
driven checkpoints instead of timed checkpoints.

8.12 Conclusions
In this chapter, we presented an automated fault injection toolchain, and validation
results of the software-implemented fault tolerance (FT) concept described in Chapter
4. Few software-implemented FT concepts proposed today have been validated, and
therefore this chapter also serves as practical guide for fellow research, to make proper
testing of fault tolerance techniques a less challenging and time consuming task. Today,
a broad variety of fault injection techniques and tools are available for finding bugs
or security vulnerabilities, to assure logical correctness of a concept, or to validate
FT concepts. Validation of software-implemented FT concepts requires a realistic
implementation, and in-depth knowledge on the tested mechanisms and tools. Hence,
not all tools and techniques are suitable for all purposes, and validating FT concepts
in the same way as fault injection is conducted for, e.g., software security purposes,
does not work.

Proper validation thus is non-trivial, is time consuming and requires considerable
research. In consequence, developers of coarse-grain lockstep concepts often forego the
practical concept implementation and validation, resorting instead to modeling. Prac-
tical validation, however, is a prerequisite to even consider a concept for application in
mission critical systems, which then can be subjected to system-level validation and
prototype development. This has resulted in a large gap between academic theory
and practical application, with researchers proposing powerful concepts but industrial
users disregarding them out of hand due to a perceived lack of maturity and time
pressure due deliver results.

The lockstep implementation validated in this publication and is the key element of
a hardware-software-hybrid system architecture which combines different FT measures
across the embedded stack within an FPGA-based MPSoC design. Validation of such
concepts has to be conducted differently than for traditional hardware-voting based
systems, and requires systematic fault injection. Hence, we developed an automated
fault injection toolchain, which enables systematical testing using system emulation
to validate the complete FDIR cycle. To place our results into context, we compared
them to literature and discuss lessons learned and knowledge obtained throughout
our fault injection campaign beyond analyzing raw numbers. The overall results of
our fault injection campaign are positive and the thread-level coarse grain lockstep’s
performance meets our requirements.

As the other parts of our architecture have been verified separately in related
work, our test campaign represent the final step in validating our current development-
board based proof-of-concept. In practice, through this testing, we have exhausted all
technically feasible testing techniques for software that are possible today to validate
a fault tolerance measure of the scale of our lockstep. The positive outcome of our test
enables us to now produce a prototype OBC implementation, which then allows us to
then subject it to laser fault injection, radiation testing, and trials on-orbit. Systematic
validation of our coarse-grain lockstep implementation is therefore an intermediate
step. To further test our architecture, a prototype system must be implemented to
then conduct radiation testing.

158 8.12. CONCLUSIONS

