
Fault-tolerant satellite computing with modern semiconductors
Fuchs, C.M.

Citation
Fuchs, C. M. (2019, December 17). Fault-tolerant satellite computing with modern
semiconductors. Retrieved from https://hdl.handle.net/1887/82454

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/82454

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/82454

Cover Page

The handle http://hdl.handle.net/1887/82454 holds various files of this Leiden University
dissertation.

Author: Fuchs, C.M.
Title: Fault-tolerant satellite computing with modern semiconductors
Issue Date: 2019-12-17

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/82454
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 2

A Brief Introduction to
Spaceflight and Fault Tolerance

Thesis Motivation and Legitimization

The research upon which this thesis is based does not come from one single field of
science, but is interdisciplinary. It relies upon concepts and results from several dif-
ferent fields, including computer engineering, nuclear science, electrical engineering,
physics and astronomy, as well as space engineering. In this chapter, we provide a
brief and informal introduction to our application, its design constraints, as well as
fault-tolerant computer architecture. We further provide an overview over the current
status of small satellite space missions, as well as a review on satellite failures in the
past and at the time of writing. This chapter therefore serves also as motivation and
legitimization for our research, including mission success and failure statistics, which
underline the lack of reliability of very small satellites today.

Ch. 2: MotivationSpacecraft

On-Board Network / Satellite Bus

OBC

Semiconductor

MPSoC Logic

Software

On-Chip SRAM

Registers

Volatile RAM Non-Volatile RAM

Abstract Data Storage Technolgies

SensorsAOCSCOM Payloads

OBC Interfaces

EPSSaving

11

12 2.1. SPACECRAFT AND SATELLITE MINIATURIZATION

2.1 Spacecraft and Satellite Miniaturization

In this section, a brief introduction into the different kinds of satellites and satellite
miniaturization itself is given, to provide general understanding for readers who are
not familiar with this field. This section is meant as to give sufficient background
information on the application for the research discussed in this thesis.

Satellites can be differentiated by mass in several classes.When thinking of space
stations, satellites, and deep-space probes, we usually imagine large structures float-
ing in space, weighing multiple tons, powered by vast solar panel arrays, radioisotope
thermoelectric generators, or fission reactors [7]. Certainly, many early scientific, com-
mercial, and military satellites were very large spacecraft. These are sometimes de-
signed to operate for several decades in space. However, today, modern semiconductor
technology, more efficient battery and photovoltaics, novel propulsion technologies,
and robust lightweight materials enable the construction of much smaller, lighter, and
cheaper spacecraft.

Spacecraft with a wet mass1 of less than 500kg are therefore referred to as “minia-
turized satellites”, and can be constructed dramatically faster than large satellites. In
Table 1, an overview over satellite classes and capabilities is given.

At the time of writing, several companies have achieved commercial success by
operating large groups of miniaturized satellites in orbit. They have been successfully
used to providing real-time earth observation data and help in disaster recovery [8],
and in safety- and life-critical services [9] such as airplane traffic tracking and maritime
shipping [10]. A broad variety of biological and chemical experiments [11] has been
carried out using CubeSat platforms, which are also rather popular for testing and
validating novel technologies in space [12, 13]. Several pico- and nanosatellite-based
space-observatories [14, 15] have been launched, and nanosatellites were deployed by
the Hayabusa 2 space probe at the asteroid 162173 Ryugu [16]. In 2018, 2 inter-
planetary CubeSats traveled to the planet Mars as part of the MarCO mission [17],

1The mass of the spacecraft including payload and all consumables such as propellant.

Weight Minia- Build as Classical Propulsion Mission

Class Max Min turized CubeSat Tech Usable Available Lengths

Large - 1t No Absurd Yes Yes Decades

Medium 1t 500kg No Absurd Yes Yes Decades

Small 500kg 100kg Yes Limiting Most Yes 10 years

Micro 100kg 10kg Yes Common Little Yes years

Nano 10kg 1kg Yes Standard No Yes 1 year

Picro 1kg 100g Yes Standard No Limited months

Femto 100g - Yes Inefficient No No -

Table 1: Satellites can be classified in a variety of ways, with each type of spacecraft having
different capabilities, technological limitations, and the capability to achieve different mission
durations. In principle, almost any satellite could be manufactured to be a CubeSat, but only
for some this makes sense due to the constraints of this form factor standard.

CHAPTER 2 13

providing real-time telemetry during the arrival-phase of NASA’s InSight Mars Lander.
Several miniaturized satellite constellations for technology demonstration, and Earth
observation, and positioning, and data relay purposes have been developed [18–21]
and launched [8, 22, 23]. At the time of writing, scientists and engineers have even
begun to develop CubeSat-based interferometers and composite space telescopes [13]
that could outperform even the largest conventional space-observatories, and there are
plan to use Nanosatellites even for gravitational-wave measurement [15].

2.1.1 Large Satellites based on Traditional Design Principles

Satellites with a wet mass above 500kg are at this point in time constructed in large
projects with vast budgets quasi artisanally. Most “big-space” applications rely upon
such satellites. Satellites of 500kg – 1000k are usually classified as medium-sized satel-
lites, heavier spacecraft are designated as a large satellites. Development of such satel-
lites is challenging, system architectures are complex, resulting in long development
times, and the need to utilize well tested, proven technology, that is available over a
very long period of time. This technology is usually space industry proprietary. Tech-
nology readiness, design maturity, and space heritage of a technology through prior
use aboard other spacecraft are essential, and often seen a prerequisite for considering
a technology for use within this satellite class.

Construction of these satellites in practice often takes many years [24], sometimes
even decades [25]. To provide an example, the James Webb Space Telescope (JWST)
is designed to have a wet mass of approximately 6620kg. It is a multinational project
involving hundreds of stakeholders, and has been in construction for more than 25
years at the time of writing, and its precise date of completion and launch has not
been announced yet. The cost of the electronics used aboard such a spacecraft is
small compared to the funds required to meet legal requirements, for salaries, tooling,
testing, management, certification, insurance, and launch. Spacecraft testing also
requires access to specialized facilities [26,27] including:

• thermal/vacuum chambers to analyze the behavior of the spacecraft in a space-
like environment at high or low temperatures (often 173K and 373K) [28],

• radiation testing facilities using radiogenic sources or particle accelerator to sim-
ulate the radiation environment a satellite’s components have to operate in, and
to verify their correct behavior and, if available, effectiveness of fault tolerance
measures, and

• a broad variety of other heavy machinery, e.g., to perform mechanical stress and
vibration tests.

Most modern major launch vehicles can carry much heavier and bulkier loads than
just one satellite [29, 30]. Often a substantial amount of volume and mass remains
available which in the early days of spaceflight remained vacant to not endanger the
primary payload [31]. To reduce costs, organizations often either sell this excess ca-
pacity, or hand the entire launch process over to a “launch broker”, which then can
combine multiple satellite launches into one “ride-share” launch [29]. An example of
a ride-share launch with multiple satellites of various classes is depicted in Figure
3. The main spacecraft launched on a launch vehicle is then referred to as “primary
payload”, with other, often smaller satellites becoming “secondary payloads”. Today

14 2.1. SPACECRAFT AND SATELLITE MINIATURIZATION

Figure 3: A ride-share satellite launch with the Earth observation SmallSat DubaiSat-2 (top
center) being the primary payload. Secondary payloads were 4 microsatellites (top left and
right, 2 bottom center) and 26 other nanosatellites which are located in the blue deployer
boxes. The CubeSat First-MOVE (see Section 2.1.4) is located in the top right deployer.
Image copyright: C. Olthoff at al., Yasny Launch Base, Russian Federation, usage and reprint permissions granted.

even small start-up companies, and universities can bring their spacecraft into orbit
at comparably low cost.

2.1.2 Small Satellites

SmallSats, or Minisatellites, weigh between 500 and 100kg, and traditionally were
used for brief science and commercial missions. Historically, SmallSat missions used
to be shorter than those realized with large satellites [32]. They can be constructed
and launched at drastically lower cost, and in general also more quickly. The term
SmallSat is colloquially also used to refer to all satellites lighter than 500kg in this
field. Due to technological evolution in recent decades, the capabilities of the SmallSats
have increased, and today they increasingly much replace larger satellites.

2.1.3 Microsatellites

MicroSats between 100kg and 10kg are today widely used for a variety of low cost
commercial and novel scientific missions. The upper and lower boundaries between
Nanosatellites, MicroSats, and SmallSats are fluent. MicroSats with a wet mass ap-
proaching 100kg differ little from lighter SmallSats, and usually carry fewer or lighter
payloads and lighter components (e.g., smaller batteries, lighter and smaller solar cell
array structures, ...) [33]. Light MicroSats become similar to a Nanosatellite and may
even utilize Nanosatellite form factor standards, while larger ones can offer very similar
capabilities to SmallSats. Many missions that a few decades ago required SmallSats
can today be performed by MicroSats, which can be manufactured more rapidly and

CHAPTER 2 15

launched at lower cost. Compare also [34] for a market assessment for a corporate
view on this increasing down-scaling trend.

2.1.4 Nanosatellites and CubeSats
Nanosatellites weigh between 1 and 10kg and became popular for educational projects,
especially due to the CubeSat standard. The CubeSat standard was originally intended
to cheaply launch student projects into space at the beginning of the 21st century [35].
Today, it has become the standard form factor for Micro-, Nano-, and Picosatel-
lites, and an example of a CubeSat is depicted in Figure 5. It requires a satellite to
conform to certain design restrictions, e.g., banning the use of explosive substances
within the satellite, and otherwise implies a stackable standard form-factor consisting
of 10x10x10cm CubeSat units (U) and a maximum of 1.33 kg per 1U. CubeSats are
designed to fit a standardized CubeSat deployer. Figure 4 depicts such a deployer
consisting of a spring, and electric latch, which once the latch is released allows Cube-
Sats to be safely be deployed by pushing them out of the box. This enables even
heavy 12U or 24U designs (3x2x2 or 4x2x3U stacked) to be launched at reduced cost,
and allows testing requirements to be reduced for launch qualification, as the failure
of a CubeSat during launch will not interfere with the deployment of other satellites
aboard the same launcher.

At the time of creation of the CubeSat standard, nanosatellites were intended to
perform only simple and short missions in Low Earth Orbit (LEO), e.g., student edu-
cation, or on-orbit concept validation. They rely on cheap commodity technologies and
COTS components, such as lithium-polymer based batteries, and solar-cells intended
for ground use. However, due to the rapidly increasing performance of embedded

Figure 4: A 3U-CubeSat deployer holding First-MOVE (right), and two other 1U CubeSats.
Image copyright: C. Olthoff at al., Yasny Launch Base, Russian Federation, usage and reprint permissions granted.

16 2.1. SPACECRAFT AND SATELLITE MINIATURIZATION

Figure 5: The 1U-CubeSat First-MOVE.

and mobile-market hardware since the early 2000s, the capabilities of nanosatellites
have evolved considerably. At the time of writing, a diverse ecosystem of ready-to-use
CubeSat components has developed. A variety of commercial companies of varying
technical capabilities provide a customizable solutions of mixed quality, with ample
launch opportunities into different orbits being available for 1–12U CubeSats.

The CubeSat First-MOVE (depicted in Figure 5) was one of these educational
projects [36]. In 2013, I joined a research group developing this satellite at Technical
University Munich, Germany, as a master student. Like many other first-generation
educational CubeSats, First-MOVE was designed, constructed, and tested primarily
by university students at the PhD, Master, and Bachelor levels. Planning of the First-
MOVE mission began in 2006, a time when modern smartphones had just arrived in
the consumer market, and construction in earnest began around 2010. It was launched
into LEO on November 21st, 2013, and its malfunction, which is further described in
Section 2.2, was the origin of the author’s research on satellite fault tolerance.

2.1.5 Picosatellites and PocketQubes

PicoSats range in weight from between 0.1 to 1kg, and are today used for education or
very brief proof-of-concepts. The PocketQube form factor and many 1U CubeSats fall
into this category, and the electrical architecture of such PicoSats is often similar or
even identical to that of light Nanosatellites. The main difference is lower mechanical
complexity, and a further constrained power budget due to reduced solar cell surface
(often ranging around or below 5W). In practice, this implies limitations especially
for transceivers and payload, which are the main power consumers aboard modern
miniaturized spacecraft.

CHAPTER 2 17

2.1.6 Femtosatellites

FemtoSats are the smallest miniaturized satellite form factor and weigh less than 0.1kg.
The concept of FemtoSats was theoretical until recently without allowing productive
satellite designs that can take a productive role in a space mission. However, in the
2010s, first proof-of-concepts and practical applications have emerged [37]. FemtoSats
usually consist of a single PCB using wireless energy harvesting or carrying a single
solar cell on one side of the PCB, and electronics on the other [38]. With the emergence
of more advanced energy harvesting and battery technologies in the future and an
increasing level of semiconductor miniaturization, the basic character of FemtoSats
could therefore change. Future FemtoSats will therefore find new niche use-cases, for
which these lightest, cheapest, and expendable spacecraft will be optimal.

2.2 Early CubeSat Reliability and Motivation

Miniaturized satellite design is driven by the principle of designing a “good enough”
spacecraft to do a job. Most Nanosatellites utilize COTS microcontrollers and appli-
cation processor SoCs, FPGAs, and combinations thereof [39–41]. These components
can offer one to two orders of magnitude more processing performance, are equipped
with up to three orders of magnitude more memory, and an abundance of non-volatile
storage capacity in comparison to classical space-proprietary components intended for
larger satellites, while requiring less energy. Therefore, even a 5kg CubeSats can sup-
port a broad variety of commercial payloads and sophisticated scientific instruments,
if these can be be fit into a smaller satellite chassis.

However, miniaturized satellites suffer from lower reliability, which discourages
their use in long or critical missions, and for high-priority science. Most nanosatellites
launched in the first two decades of the 21st Century (until the time of writing) still
experience failure within the first months of their missions [39]. As depicted in Figure
6, even in late 2018 satellite malfunctions and early mission failures are widespread.
The First-MOVE CubeSat is also representative in this regard, and we will use it as
a case study to showcase the problems that still plaque this field.

First-MOVE: A Case Study

As a stereotypical late first-generation CubeSat, First-MOVE’s design consisted of
several microcontrollers. Its OBC was driven by a ARM926 based ATMEL micropro-
cessor, utilized SDRAM, MRAM and NAND-flash memory, and is overall similar to
a contemporary embedded device or smartphone. This fragile system architecture is
representative for an entire generation of CubeSats built at that time.

At the time First-MOVE was designed little information was available on which
components were expected to perform well in space, and which were likely to fail early
on. During the actual construction phase, considerable information on these aspects
became available continuously, and so its OBC was adjusted and retrofitted several
times. E.g., the introduction MRAM was a retrofit to the original NAND-flash based
design, as commercial MRAM was discovered to perform well aboard several earlier
first-generation CubeSats. Further information on this First-MOVE’s OBC is available
in [Fuchs17].

First-MOVE successfully conducted its mission in LEO for two months after launch.

18 2.2. EARLY CUBESAT RELIABILITY AND MOTIVATION

Towards the end of the mission, the OBC began to experience random reboots, which
gradually increased over time. As of early 2014, the satellite could no longer be
commandeered, and the mission was declared over. Both the funding organization
(the german space agency DLR) and the CubeSat community considered the satellite
performance and lifetime positive, and as the overall survival rates for CubeSat at
that time were very low.

Subsequently, a team of three researchers, one of them being the author of this the-
sis, conducted a formal review of the First-MOVE project [Fuchs17]. This showed that
if First-MOVE’s system architecture had been fault-tolerant, the satellite could poten-
tially have been recovered to a safe state. Otherwise, only minor organization issues
related to the special setting of academic environments, which is a widespread prob-

(a) CubeSat Mission Success

Full Mission Success
Partial Mission Success
Early Failure
Dead on Arrival
No Data/Unknown

Documented Launches
Industry:

Individual 59
Constellation 435

Professionals 234
University 223
Total 951

(b) Space Industry (c) Professionals (d) University & co.

Figure 6: CubeSat Mission success and failure for the time span 2000 to 2018. Bottom 3
charts show only data for individual CubeSats without satellites in constellations and swarms
due to data quality reasons. It is reasonable to assume that developers of unsuccessful
CubeSat missions also choose to not share information about the status of their satellites.
Image Credit: Charts produced through the CubeSat Database by Swartwout M. [42]. Military and other sensitive missions

are often not publicly documented.

CHAPTER 2 19

lem in academic satellite and instrumentation projects. A majority of first-generation
Nanosatellite failures back then [43] could be attributed to design issues and manu-
facturing flaws due to developer inexperience (e.g., negative power budgets or dys-
functional communication channels) [39]. At the time of writing, failures caused by
inexperience and design flaws have reduced drastically due to project professionaliza-
tion and an increased staff of full-time developers in small-scale professional projects
and academia.

2.3 Nanosatellites Today and Legitimization

Development on a second satellite, MOVE-II, began in late 2014 and the finished
flight model is depicted in Figure 7. Since work on First-MOVE began in 2006,
miniaturized satellite development has professionalized and fewer satellites fail due to
practical design problems. Instead, the main source of failure aboard CubeSats today
are environmental effects encountered in the space environment: radiation, thermal
stress, and launch issues [2].

Mission result data shows that technological limitations are the main limiting factor
regarding miniaturized satellite reliability at the end of 2018. Figure 6 shows that
even experienced, traditional space industry actors who design such satellites “by the
book” with quasi-infinite budgets struggle to reach 30% mission success. This lack of
reliability and brief mission lifetimes curtails miniaturized satellite usage for critical
and long-term space missions, as well as for high-priority science missions for solar
system exploration, deep-space probes, and space observatories. During development

Figure 7: The MOVE-II CubeSat, which was part of the author’s master thesis research
and the design challenges faced during development initiated the research in this thesis.
Image copyright: Langer et al., MOVE-II Team.

20 2.3. NANOSATELLITES TODAY AND LEGITIMIZATION

of MOVE-II, it became clear to us as spacecraft designers that there were simply no
fault-tolerant OBC solutions that could be used to achieve a more reliable satellite
design within the constraints of a CubeSat.

Fault-tolerant computer design for spacecraft still relies upon radiation tolerant
special purpose hardware These designs primarily rely upon proprietary fault-tolerant
chip designs manufactured in technology nodes with a large feature size (radiation-
hardening by design – RHBD) [44] and specialized manufacturing techniques and
materials (radiation-hardening by manufacturing and process – RHBM/RHBP) [45].
Often, both of these techniques are combined and a RHBD chip design is manufac-
tured in a RHBD process based with much more coarse feature size than commercial
technology. Due to the lower energy efficiency and larger size of and greater distance
between transistors, as well as less refined electrical properties, these components also
require more energy, and offer less compute power compared to consumer hardware
due to decreased clock frequencies and smaller memory sizes.

The use of traditional RHBM/RHBD components at the time of writing is limited
to the civilian and military atmospheric aerospace industries, laboratory instrumenta-
tion for very large particle experiments run by well funded organizations (e.g., parti-
cle accelerators, radiation-testing sites) and traditional space-industry applications in
long-term projects where cost considerations are not of primary concern. Especially
in nanosatellites, the energy consumption, physical size, and cost of these components
are prohibitive, making their use technically impossible and usually uneconomical.
Therefore, nanosatellite computing has historically taken two paths: very simple on-
board computers (OBCs) based on one single or few microcontrollers and very complex
custom-tailored systems. This approach works to a certain extent, as there are a hand-
ful of COTS microcontrollers which are designed and manufactured in a way so that
they unexpectedly turned out to be radiation hard (radiation-hard by serendipity –
RHBS) [46].

At the time of writing, sophisticated fault tolerance capabilities are still absent
in Nanosatellites. Instead CubeSat designers try to mitigate faults at the system
level using custom mitigation circuitry [47], and thereby achieve “workarounds” to still
somehow handle faults encountered in the space environment. The practical effect of
this lack of viable fault tolerance techniques and the use of workarounds is reflected in
the mission success statistics for miniaturized satellites depicted in Figure 6. However,
a few CubeSats have also operated successfully in space for a decade or longer [48]. In
practice, this shows that there is no hard technological limitation that would prevent
the use of COTS technology in satellite missions with a much longer duration.

Many issues in other fields of spacecraft design can be overcome through engineering-
based solutions. Such solutions work well, e.g., for addressing resonance issues, assur-
ing a suitable thermal design and heat-distribution, and for deployable mechanical
structures. Engineers therefore attempted to solve the lack of reliability of CubeSats
similarly, by constructing custom fault tolerance computer design through component-
level redundancy with commodity components. Practical flight results showed that
such designs are fragile due to high complexity [39, 49], and tend to perform worse
than much simpler designs without fault tolerance capabilities.

Today, nanosatellite designers have to forego fault tolerance in the hope of mini-
mizing failure potential and thereby meeting satellite lifetime requirements for a given
space missions by chance [50]. Designers are aware that such satellites may fail at any
given point in time during a mission.

CHAPTER 2 21

Figure 8: The launch of MOVE-II aboard SpaceX SSO-A: SmallSat Express on December
3rd, 2018 from Vandenberg Air Force Base, USA.
Image source: SpaceX SSO-A press material for public use.

MOVE-II was launched into LEO on December 3rd, 2018 with Space-X “SSO-A:
SmallSat Express” (depicted in 8), where it operates successfully until at the time of
writing this thesis. It utilizes only a few basic fault tolerance techniques that were
available in commodity embedded components and COTS CubeSat subsystems. Its
overall system architecture is still not fault-tolerant. Risk acceptance at this level is a
viable approach only for educational, and uncritical, low-priority missions with brief
duration. To construct future, more reliable miniaturized satellites, a robust, fault
tolerance on-board computer architecture is needed. However, such an architecture
do not exist yet, and with the research in this thesis I intend to change that.

2.4 Fault-Tolerant Computer Architecture

Fault tolerance in the most abstract sense, implies the capability of a system to over-
come and gracefully handle failures. It is crucial for satellite computer design and
a practical necessity to assure reliable operation of a satellite computer during space
missions with an extended duration. As described in the previous section, the lack
of such functionality within contemporary miniaturized satellites has become a major
constraint to increase adoption of these spacecraft.

Fault-tolerant computer architecture, which is discussed briefly in this section,
covers only a small part the entire field of fault tolerance and reliability engineering.
Among others, systems can be designed to tolerate human error [51] and external at-
tacks, which would require the discussion of aspects of psychology and human interface

22 2.4. FAULT-TOLERANT COMPUTER ARCHITECTURE

design. In the remainder of this section, we discuss fault tolerance modes, measures,
and testing from the perspective of computer architecture for spaceflight applications
to provide the necessary background for this thesis. A more complete look on the dif-
ferent aspects and sub-fields of fault tolerance are available in literature, e.g., in [52].

Considering fault-tolerant computer architecture, the faults we must protect a
system from depend on the application, the environment it operates in, as well as
practical operating conditions (e.g., temperature and system load). Besides that,
faults can occur due to technological wear and aging, and sometimes by chance. Many
protective measures can be used to achieve fault tolerance for computer systems [53,54].
Often, the practical purpose for the application of these techniques is often not fault
tolerance itself, but the need to increase scalability [55,56], manufacturing yield [57,58],
higher clock frequencies and data throughput [59–61].

Different industries apply different fault tolerance techniques due to a variety of
practical reasons, and today often maintain their own, proprietary implementations
to tackle their domain-specific challenges. For proprietary fault tolerance implemen-
tations in different industrial applications, there is usually no immediate incentive to
share and generalize such fault tolerance techniques by themselves, unless they can be
patented, commercialized, and thereby protected [62]. This gap in turn is covered by
scientists and researchers in industry and academia.

Today there is an entire field of science that tries to generalize application specific
fault tolerance techniques, to produce new fault tolerance concepts through recom-
bination. Unfortunately, this recombination is often done without considering the
original application and its boundary conditions. As we show in Chapters 4 and 6,
academic research and publications covering this topic are kept very abstract and
do not consider a specific real-world application anymore. This works well for cer-
tain fields of science and even some fault tolerance topics2. However, for practical
applications to system-architecture this is not the case, as generic solutions without
proper boundary conditions and a realistic fault profile, can usually not be applied
anymore to a real system. Today, academic fault tolerance research has produced a
vast amount of publications and generated many theoretical concepts. But, only a
handful of fault tolerance concepts envisioned by academic fault tolerance research
have been implemented and tested in practice, and most have been ignored entirely
by the industry. One could argue that this is the way science works, but knowingly
publishing invalid and research without validation can also be seen as dishonest and
only hinders publication of actually valuable research.

The path to validate such concepts is long, time-consuming, costly, and requires
large amounts of engineering work [64–66]. The obtained validation results are often
not considered publishable by academics, as they require a high degree of labor just
to achieve one brief paper, while multiple theoretical journal publications could be
produced in their stead. Industrial users are aware of such research [67], but are often
skeptical. In the space industry, for example, concerns regarding validity, testability,
verifyability and a perceived general lack of maturity of academic research has caused
an entire industry to conservatively use very old technology [1].

When designing fault-tolerant systems, we must consider an application’s operating
environment, its fault profile, and system design constraints [68]. Generic fault tol-

2E.g.: erasure codes and performance overhead calculations to achieve quality of service under
faults [63] can largely be discussed without a specific application in mind, as long as key parameters
match.

CHAPTER 2 23

erance concepts can serve as building blocks to design a comprehensive fault-tolerant
architecture, assuming they are validated in a realistic manner.

2.4.1 Terminology and Fault Tolerance Objectives

Today, scientists and engineers use the terms ECC, EDAC, FDIR, and error correction
almost interchangeably, while reliability, redundancy, fault tolerance, and robustness
are surrounded by a shroud of marketing. In practice, error detection and correction
(EDAC), fault-detection, isolation, and recovery (FDIR), redundancy, and failover all
are distinct tools. They can be applied to achieve different kinds of fault tolerance,
e.g., computational correctness, continuous non-stop operation, failover, and simple
error correction.

Error detection and correction (EDAC) implementations usually utilize one or
multiple erasure codes [69] to implement error correction coding (ECC), which allows
errors in stored and transmitted data to be corrected. EDAC is efficient only for
protecting the integrity of frequently access data, and may do so passively in the
background without requiring a computer system to actively handle a fault in software.
These limitations can be mitigated only in combination with other design measures
such as error scrubbing and by generating error syndromes to notify the system about
a fault [70].

FDIR instead assures that a fault-induced error is not just detected and corrected,
but also that side-effects are isolated and resolved (e.g. discussed in [71] for space
applications). In contrast, in case EDAC logic encounters errors when decoding data,
it may inform the system about the result through an ECC syndrome and corrects
data passing through. FDIR does not necessarily imply computation correctness,
usually utilizes fault tolerance measures to achieve error detection and correction, but
otherwise implies only that a fault is corrected and the system is restored to a working
state.

Fail-over, in contrast, can be implemented as one-shot measure, e.g., with simple
redundancy as discussed in [72], by falling from a primary to a secondary system in-
stance and do not have to assess correctness, but only need be capable to detect faults.
One of the most common applications for this approach is RAID1 with 2 memories
or disks [72], but similar applications exist for avionics and network architecture in
spaceflight and atmospheric aerospace applications [73].

2.4.2 Fault Detection and Correctness

To facilitate fault detection, we can exploit algorithmic measures as well as result
comparison achieved through component replication (spatial redundancy) or repeat-
execution (temporal redundancy). With algorithmic approaches detected errors can
be reconstructed using parity data (informational redundancy) information, or by uti-
lizing an alternative result generated through spatial or temporal redundancy. We
refer to this type or error correction as forward error correction (FEC) [74]. Alterna-
tively, backwards error correction (BEC) can be achieved with temporal redundancy
and algorithmic measures, and implies message retransmission or re-execution of a
failed operations [75].

24 2.4. FAULT-TOLERANT COMPUTER ARCHITECTURE

Algorithmic Fault Detection and Informational Redundancy

The algorithmic approach exploits an inherent property of a system to detect faults.
It can only be used if there is an inherent property in a system or protected data that
can be used to judge the occurrence of a fault [76, 77]. Fault detection then does not
imply the ability of the system to determine a correct result, but only the ability to
asses if the protected data or system is faulty.

Algorithmic fault detection often exploits informational redundancy, but it may
also use other inherent mathematical properties of data or logic-design properties of
a system [77]. To a limited extent, algorithmic fault-detection can also be used to
protect a program’s data and control flow, e.g., by computing or modifying checksums
for each executed instruction passing through a CPU’s pipeline [78]. However, this
requires a non-standard processor pipeline [79], a custom compiler toolchain [80], and
therefore is feasible only for embedded software with a very specific structure.

E
C
C

Repair
Algorithm

Check
Algorithm

Output

Protected
Input

Error Syndrome
Fail

Figure 9: An example of algorithmic redundancy where extra algorithmic information is
indicated separately as ECC. This extra information could also be an inherent property of
the input data, instead of separate.

Spatial Redundancy

When utilizing spatial redundancy, we can realize fault-detection by comparing the
output of multiple redundantly implemented system modules or equivalent but differ-
ently implemented variants of a subsystem run in parallel. Spatial redundancy can be
implemented at all scales: for individual transistors and circuits, sets of logic, logic
blocks, IP-cores, IP-core groups, ICs, components, to even an entire computer. At

Module 3

Module 1

Module 2 VoterInput Output

Figure 10: An example of spatial redundancy with 3 replicated modules in a TMR setup.

CHAPTER 2 25

different scales spatial redundancy will offer different protective properties and dif-
ferent a level of scalability. A simple implementation of spatial redundancy requires
replication of the actually protected modules as depicted in Figure 10.

We refer to systems consisting of N modules collectively as NMR systems. With 2
redundant modules, we can detect faults through supervision or in conjunction with a
watchdog, to which we refer to as dual modular redundancy (DMR). We can determine
correctness through a simple majority vote, for which at least 3 modules are needed
(triple modular redundancy – TMR). These systems can be scaled up to realize 2k+ 1
redundancy, as an odd-number of modules is needed to avoid a draw during voting.
With more than 3 modules, more sophisticated voting concepts can be realized which
then do no longer require a centralized and guaranteed-correct voting oracle [81] or
allow a distributed majority decision [82]. An NMR systems can also be outfitted with
spare modules to handle multiple subsequent transient faults or permanent faults.

Temporal Redundancy

Temporal redundancy implies re-execution of an operation multiple times in sequence,
and example of which is depicted in Figure 11. Like in spatial redundancy, this is often
done in 2k+1 setups to assure error correction. This favors checkpoint implementation
in software and the use of software diversity [83]. It is suitable for protecting appli-
cations where failed results can be discarded, individual operations can be repeated,
or where an application as a whole can be restarted in a side-effect free manner. For
most control systems and software running on general purpose computers, however,
this is not the case.

The use of temporal redundancy introduces a degree non-determinism to an ap-
plications application, which can conflict with a requirements for real-time guaran-
tees [84]. Thus, temporal redundancy concepts usually can only be applied to real-
time systems unless the protected software implements a very specific structure [85].
Protection of applications at the scale of an operating systems, and programs with
a complex program state or structure may incur a high performance overhead [86].
Due to the time-dependent nature of temporal redundancy, this form of redundancy
is vulnerable to faults occurring in bursts or groups [87].

VoteT T a bT a

Task Schedule:

T a VoteInput

Frame 2

T b T b

Frame 1

VoteT a T a T a

Frame 3

Figure 11: Task schedule of a temporal redundancy where every scheduled task (Tn) is
executed 3 times with majority voting.

Fault Detection Granularity

The granularity and frequency for performing voting in spatial and temporal redun-
dancy, as well as erasure coding parameters should be chosen based on the expected
fault model and environmental conditions.

26 2.4. FAULT-TOLERANT COMPUTER ARCHITECTURE

Most systems implementing spatial redundancy in use today implement instruction
or clock-cycle bound lockstep for processor cores or larger system components [54].
This allows rapid error detection and correction without requiring the software or
software to actively participate in fault handling [88]. Usually, the voter logic is
combined with state-synchronization logic, to assure that all modules in a redundant
set utilize the same input data. For more sophisticated computer designs, the level
of complexity necessary to realize voting and state synchronization in hardware is
non-trivial. Thus, such systems are limited to low clock frequencies than conventional
designs [54].

As with temporal redundancy, we can also utilize software to realize lockstep func-
tionality in spatial redundancy using checkpoints triggered through scheduling [89],
or an external signal [90]. As we show in this thesis, lockstep-concepts implemented
in software can enable more powerful dynamic, and runtime-configurable voting in
conjunction with spatial redundancy to achieve FEC.

2.4.3 Effect Isolation
To achieve side-effect-freeness, the effect induced by a faults must be isolated, so
they can not propagate within the rest of the system at large. However, the scope
and way in which fault isolation can be implemented depends on the fault-detection
measure, on the protected component, the high-level system architecture, as well as on
the specific application scenario. For pure software-based measures utilizing temporal
redundancy, this can be achieved by buffering results [91] and outputting a correct
result after correctness has been assured.

Not all fault-tolerant systems require fault-isolation. The emission of incorrect data
due to a fault can also be mitigated through a system architecture and instruction-
set means [92], topological measures [93], or network-side [94]. Hence, a computer
operating in such an environment does not have to be equipped with fault-isolation
properties, as the overall system setup can already guarantee fault isolation.

2.4.4 Fault Recovery
In conjunction with or subsequent to effect isolation, the effects of a fault induced into
a system should be resolved to prevent bit-rot and voter degradation due to transient
faults [95]. It also reduces the need for over-provisioning redundant instances and
parity data. For data storage, this can be achieved through parity in RAID- [72] or
RAIF-like [96] systems, which can again be combined well with erasure coding [97]. It
can make a system more robust especially if it has to operate for extended periods of
time, or without maintenance.

Fault-recovery capabilities, thus, are not necessary for all applications, and may
sometimes even be undesirable. For applications where maintenance can be performed
frequently and the failure probability is low, simpler failover implementations can be
of advantage since they are simpler, and therefore have a reduced failure potential.
Examples include atmospheric aerospace applications for civilian use [98] or marine
shipping [99]. This can allow a component to be implemented with lower complexity,
thereby reducing overall failure potential, cost, and weight.

Depending on application requirements and if service interruption is acceptable,
hot, cold, or warm [100] stand-by can be used to achieve failover [101]. Hot redundancy
requires at least one redundant module executing in parallel to the primary module, to

CHAPTER 2 27

allow the system to switch to failover without service interruption. Warm redundancy
just implies a second module to be in standby mode, e.g., so it can rapidly take over
operation by loading a correct application state. With cold redundancy, a redundant
module is kept available but inactive, and has to be brought up when needed. This can
allow energy saving and reduce wear in redundant module, but implies a time delay
until regular operation can resume. In this thesis, we utilize warm standby when
migrating applications from a permanently failed processor core to a new location.

Fault Recovery with Temporal Redundancy

In systems utilizing temporal redundancy to achieve backwards error correction, the
generated incorrect application state of a failed operation has to be reverted. As
temporal redundancy implementations usually require operations to be isolated or
self-contained already, no further steps beyond discarding faulty data are necessary.
By design, changes in the operating system state due to faults in temporal redundancy
protected software will in practice be detected and subsequently not propagated.

Fault Recovery with Informational Redundancy

With informational redundancy, data containing a fault should be corrected and re-
written. In most memory-access based EDAC implementations, this step has to be
performed independently from error correct, e.g., in software by an ECC syndrome or
in hardware suitable error scrubber logic. In case of non-correctable erasure coding
errors, or if backward error correction is used, data or a messages have to be retrans-
mitted or rewritten. In memory-access based EDAC systems, non-correctable ECC
errors can only be resolved with more redundancy and additional parity information,
or through replacement and blacklisting.

Composite erasure coding systems combine multiple layers of erasure codes, to
achieve the advantages of multiple different types of codes or parameter configurations
[102]. These enable us to achieve overall stronger protection and mitigate weaknesses
of individual erasure codes, e.g., symbol based block-codes are vulnerable to single
bit-rot degrading their performance [103]. We describe the practical implementation
of a composite erasure coding system combined with RAID-like features in Chapter 7.

Fault Recovery with Spatial Redundancy

In systems exploiting spatial redundancy, a fault may cause a failure of a redundant
module, resulting in redundant system to become degraded.

To recover from transient faults, a failed module can be recovered using data from
another module [104]. For voters replicating processor cores or larger system struc-
tures, this can be done with or without performing a reboot. For some cases, just
copying the application or software state from a healthy module is insufficient, requir-
ing a reboot to recover from a transient fault.

Conventional semiconductors affected by permanent faults can become dysfunc-
tional, or may ceasing to function completely. To allow a system to tolerate ad-
ditional, subsequent faults, additional spare modules are needed. We refer to this
measure as over-provisioning. In practice, this can lead to large and very complex
voter designs with high energy usage and large logic footprint [54]. With ASICs, the
need for over-provisioning can only be alleviated through hardened manufacturing,

28 2.4. FAULT-TOLERANT COMPUTER ARCHITECTURE

which is expensive [44]. This approach today is widely used in spaceflight applications
to reduce the impact of transient and permanent faults. By design, such systems still
become defunct once no further spare resources are available and a fault has occurred
in system with only two intact modules.

Programmable logic devices such as FPGAs allow more refined permanent fault
handling: permanent faults in the FPGA fabric can be mitigated by utilizing a config-
uration variant where no functionality-critical logic is placed in defective regions [105].
This can be used to restore a redundant module to a functional state. In practice,
this approach can be exploited to allow a system to age gracefully by adapting to
accumulating permanent faults over time, instead of failing spontaneously.

2.4.5 Fault Tolerance in the Real-World

Individual fault tolerance measures can be combined, allowing a vast amount of pos-
sible combinations. However, not all possible combinations are effective and efficient
for protecting a system operating in a specific application environment and threat
profile [106]. Certain combinations can even reduce reliability, or cause an increased
failure potential [107]. However, if done right, fault tolerance measures deployed sys-
tematically in appropriate locations across a system [108], can allow for certain a
defense-in-depth effect [109,110].

Many fault-tolerant systems in use today are meant to isolate and recover from
faults within the bounds of what their design constraints specified. However, this
means that most fault-tolerant systems are not actually tolerant to faults, but that
they are systems that can not fail so long as faults adhere to the specifications and
“obey the rules set by the designer.” In practical system design, these systems are then
instead often treated not as robust and reliable, but as infallible systems that always
work correctly and do not malfunction [111].

Validating Fault Tolerance Measures

To assess the effectiveness and strength of a fault tolerance architecture for a specific
application, it must be validated in a realistic setup with a representative fault pro-
file [112]. Such a profile is not just a statistical distribution over time, but should
consider the impact of all relevant expected fault types (transient, intermittent, and
permanent).

A variety of different test methods are available to analyze fault tolerance measures
implemented at different scales and levels in hardware, in software, and both [52]. His-
torically, these methods included fault injection into hardware and software at different
scales [65, 66], circuit simulation [64], mathematical correctness-proofs [113], statisti-
cal modeling [114], and even prototype experimentation for technology validation in a
representative environment [115]. However, mathematical and logical proofs for mod-
ern processor based computer systems are non-trivial [116] and have been done only
for individual algorithms, simple software, protocol state machines, and for simple
circuits [113], but not for complex, OS-scale applications.

However, properly testing and validating software- and hardware-implemented
fault tolerance measures is not trivial, requiring considerable time and development
effort. Due to these challenges practical applications in industry tend to rely upon just
a few widely used standard measures and combinations thereof, and disregard science.

CHAPTER 2 29

Applied Fault Tolerance

Memory-access based EDAC through ECC is widely used in critical and always-on
applications [117] due to its scalability, simplicity and low cost [118]. Due to tech-
nology scaling effects, technological reasons, and for the sake of yield enhancement, it
has also become increasingly popular in consumer products [119]. All popular conven-
tional high-speed interface and connector standards such as USB3 [120], SATA [121],
Ethernet [122], and PCIexpress [123] rely upon powerful erasure coding systems to
achieve high clock frequencies on serial channels [124]. Traditionally, ECC has been
applied widely to protect non-volatile data storage solutions (e.g., nvRAM, memory
cards) [125]. However, to increase yield in microfabrication, ECC has become com-
mon also to protect on-chip memories with a short data lifetime such as BlockRAM,
caches, registers and the various scratchpad memories [126]. Designing systems for
high-performance computing or critical applications without it would be impossible
without erasure coding.

Today, most space-borne systems rely strongly upon spatial redundancy [54]. Most
such systems rely upon hardware-voting, and only since the turn of the century has
there been an increasing drive to realize FDIR functionality in software [127, 128]
and using network topology and functionality [94]. This is an ongoing development,
and this thesis should be read in context of this shift from traditional hardware to
software and co-designed fault tolerance concepts [129]. Software-implemented fault
tolerance concepts, however, have existed since the emergence of mainframes [130].
Even for space applications, they identified as promising already in the early days of
microcomputers [131], but it was considered technically infeasible and inefficient until
recently.

Technological Evolution and Heritage

The high stakes involved in operating critical systems in different fields, encourages
the use of old and less efficient, but well understood architectures instead of more mod-
ern, and more powerful ones [54]. Hence, different industries progressed in developing
fault tolerance concepts at different paces. While some innovated rapidly to achieve
functional systems (e.g., the industrial and high-performance computing market, and
the new space industry), others try to maintain a balance between old and new (e.g.,
automotive and medical embedded applications). Some chose to remain very conser-
vative, preferring to re-use decades old concepts at extreme cost over using cheaper
but more novel designs (e.g., the traditional space industry [54,104,132]).

Ultimately, however, all of industries are pressed hard to innovate, as technology
progresses. An illustration of this need to innovate is the beginning adoption of the
CAN bus standard [55], which was widely used by the automotive industry. The
traditional space industry has just begun to adopt this standard few years ago and
will benefit from its advantages over older standards considerably, though the interface
and protocol are is currently being replaced in automotive industry by Flexray [56]
and the use of high-speed computer network standards such as Ethernet [73].

However, the risky but fast-paced transfer of cutting edge technology from the
embedded- and mobile market to spaceflight has resulted in the emergence of an en-
tirely different, “new space industry”. Relevant industrial players try hard to utilize
modern technology which can enable innovative space mission concepts that were com-
pletely unrealistic and often unimaginable just a few years ago. To do so, this industry

30 2.4. FAULT-TOLERANT COMPUTER ARCHITECTURE

accepts an increased level of risk for failure. At the time of writing, the reduced cost of
this engineering approach and the thereby produced designed spacecraft designs has
succeeded and left a mark on the industry as a whole.

