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Chapter 1

Introduction

Brief Abstract

Modern semiconductor technology has enabled the development of miniaturized satel-
lites, which are cheap to launch, low-cost platforms for a broad variety of scientific and
commercial instruments. Especially very small satellites (<100kg) can enable space
missions which previously were technically infeasible, impractical or simply uneconom-
ical. However, as discussed in Chapter 2, they suffer from low reliability. Especially the
smallest such satellites are typically not considered suitable for critical and complex
multi-phased missions, as well as for high-priority science missions for solar-system
exploration and astronomical applications [1]. The on-board computer (OBC) and
related electronics constitute a significant part of such spacecraft, and in related work,
e.g., [2], were responsible for a majority of post-deployment failures, which are further
discussed also in Chapter 3.

Indeed, the modern embedded and mobile-market semiconductors used aboard
nanosatellites lack the fault tolerance (FT) capabilities of computer-architectures for
larger spacecraft. Due to budget, energy, mass, and volume restrictions in miniatur-
ized satellites, existing FT solutions developed for such larger spacecraft can not be
adopted. Today, there exist no fault-tolerant computer architectures that could be
used aboard nanosatellites powered by embedded and mobile-market semiconductors,
without breaking the fundamental concept of a cheap, simple, energy-efficient, and
light satellite that can be manufactured en-mass and launched at low cost [3].

To overcome this limitation, in this thesis, we develop a new approach to achieve
fault tolerance for miniaturized satellite computers based upon modern semiconduc-
tors. The method we use to approach this challenge is to first consider protective
measures proposed by science as theoretical concepts, as well as measures that are
in use today in the space industry and other industries in Chapters 2, 3, and 4. We
consider how these can be utilized to systematically protect each component of a
spacecraft’s OBC, as well as the software run on it.

A high-level schematic of the components making up a satellite on-board computer
is depicted in Figure 1. For each OBC component indicated in this figure, we develop
fault tolerance measures that can be used to protect them and describe them in the
different chapters of this thesis. To assure that these concepts are effective, we de-
velop them specifically considering the application constraints and requirements of a
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Figure 1: A high-level component model of an OBC, and the other subsystems within a
satellite interacts with.

satellite operating in the space environment. Based on these concepts, we propose the
hypothesis that fault tolerance can be achieved through hardware-software co-design,
for which we produce a theoretical design in the form of a three-stage fault tolerance
architecture.

We show that by systematically protecting critical key-component of the OBC
using software measures, synergies between different fault tolerance measures can be
achieved. These synergies enable us to protect the system as a whole more effectively,
efficiently and in a way that is economical and feasible even for small-scale professional
CubeSat developers and academic teams working on scientific spacecraft and instru-
ments with a limited project budget. We test our hypothesis through fault-injection
and provide statistics on the results, and implement a proof-of-concept for this system
architecture in a reconfigurable logic device (FPGA).

Our ultimate objective is to allow a suitable miniaturized satellite design to re-
liably achieve a minimum of 2 years of on-orbit operation. At the time of writing,
miniaturized satellite computer components do not include sophisticated fault toler-
ance capabilities, and may fail at any point in time during a space mission. In contrast
to large spacecraft, they therefore can not be designed to achieve a specific mission
lifetime, but designs function as long as no critical faults occur. Therefore, these mis-
sions are kept brief, as is further discussed in Chapters 2 and 3, thus implying risk
acceptance instead of risk mitigation and risk handling.

We realize fault tolerance in software and assure an on-board computer’s long-term
robustness by exploiting partial FPGA-reconfiguration (see Chapter 5) and mixed crit-
icality aspects (see Chapter 6), and develop a multiprocessor System-on-Chip (MP-
SoC) architecture through hardware-software co-design (see Chapter 4). Hence, this
computer architecture also provides spacecraft designers with the capabilities neces-
sary to achieve a given mission lifetime by adjusting our architecture’s parameters,
such as the necessary level of replication of software run on the system, provisioning
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of spares, scrubbing periods, and error correction coding strength.
The MPSoC requires no custom-written IP-cores (library logic) and can be as-

sembled from well tested commercial-off-the-shelf (COTS) components, and powerful
embedded and mobile-market processor cores, yielding a non-proprietary, and open
system architecture. The resulting computer architecture consists only of conventional
consumer-grade hardware, commodity processor cores, standard parts, and openly
available standard library IP.

In the final chapter of this thesis, we provide a proof-of-concept implementation
of this MPSoC for three FPGAs, the Xilinx Kintex Ultrascale+ KU3P (the smallest
of its class), KU11P, and the Xilinx Kintex Ultrascale KU60. Our implementation for
KU3P requires only 1.94W total power consumption, which is well within the power
budget range achievable aboard 2U CubeSats. To our understanding, this is the first
scalable and COTS-based, widely reproducible OBC solution which can offer strong
fault tolerance even for 2U CubeSats.

1.1 Problem Statement
Hardware-based fault tolerance measures for large satellites are effective for older,
large-feature-size technology nodes which have fallen out of use in the mobile-market
and the IT industry decades ago [4]. Modern mobile-market COTS processors depend
upon manufacturing in low-feature size technology nodes, and can not be manufac-
tured anymore using old technology nodes. Traditional hardware-implemented fault
tolerance techniques diminish in effectiveness and efficiency with shrinking feature
size [5]. This has left a protective gap due to a lack of fault-tolerant solutions, and
the reliability of such miniaturized satellites is insufficient for critical missions, which
is further discussed in Chapter 3.

Countless novel academic fault tolerance concepts have been proposed over the
years, which, in theory, could be used to protect modern computer systems. But at
the time of writing, there is a significant gap between fault tolerance research, and its
applications to spacecraft of all classes, as discussed as part of related work in Chapters
4, 6, and 8. Many of the concepts mentioned there have low technological maturity
and do not meet practical application constraints for a use within a real computer
system, regardless of the intended operating environment [1]. Software-implemented
fault tolerance concepts have thus until today been ignored by the space industry
due to lacking maturity, perceived complexity, doubts about their effectiveness and
testability [1].

In this thesis we therefore explore how fault tolerance can be achieved for computer
systems manufactured in state-of-the-art technology nodes with low power-usage, and
small feature-size through scientific means. We do this in collaboration with the
European Space Agency, supported by a Networking Partnership Program grant. In
this thesis we address the following problem:

RQ0 Can a fault tolerance computer architecture be achieved with modern embedded
and mobile-market technology, without breaking the mass, size, complexity, and
budget constraints of miniaturized satellite applications?
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1.2 Research Questions
To show that it is indeed possible to address the problem stated in RQ0 in an affirma-
tive way, we develop a fault-tolerant system architecture which can do exactly that.
Systematically for each component in a satellite’s on-board computer, we develop spe-
cific measures to address challenges regarding fault tolerance. These components are
also depicted in Figure 1. However, we do not try to apply fault tolerance everywhere
in the system as, as this would inflate system complexity and fault potential. Instead,
we place fault tolerance measures strategically within the system to handle and cover
faults where these can be addressed best at a system level.

In this thesis, we investigate the following research questions throughout the dif-
ferent chapters:

RQ1 Considering the design constraints of nanosatellites, can a fault-tolerant com-
puter architecture be achieved with COTS components?
(Chapter 4)

RQ2 How can the correct functionality of a CubeSat’s FPGA-based on-board com-
puter be assured and verified, and its lifetime extended?
(Chapter 5)

RQ3 Can a satellite computer architecture enable novel functionality for a satellite
computer, that improves satellite computing beyond just offering better fault
tolerance and an increased lifetime?
(Chapter 6)

RQ4 Can commercial memories be retrofitted with error detection and correction in
software, to substitute for hardware measures, and to what extent?
(Chapter 7)

RQ5 How can its software-implemented fault tolerance measures of a hardware- soft-
ware hybrid architecture be tested and validated?
(Chapter 8)

RQ6 Can such a computer architecture be practically implemented within the size,
energy, and budget constraints of nanosatellite applications?
(Chapters 9 & 10)

These questions are discussed in this thesis. To do so, we develop a fault-tolerant
computer architecture for irradiated environments which can offer protection for on-
board computer systems based upon modern semiconductors. Through implementa-
tion, testing via fault-injection, and the construction of a proof-of-concept implemen-
tation on FPGA, we show that this approach is technically feasible with contemporary
technology.

The key contribution of this thesis is a computing concept that can allow future
critical commercial and high-priority science missions to be done at low cost, to enable
REAL progress in satellite miniaturization to take us as a species to the stars. My
hope is that this thesis is the beginning of something new and significant, and in
the coming years I plan to advance this technology from its current proof-of-concept
state to maturity. To do so, radiation testing, long-term testing, as well as on-orbit
demonstration aboard a CubeSat will be necessary.
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Figure 2: Chapter guide for this thesis.

1.3 Thesis Organization

A brief outline of the subsequent chapters follows, with a visual chapter guide depicted
in Figure 2.

Chapter 2: A Brief Introduction to Spaceflight and Fault
Tolerance

The research upon which this thesis is based is interdisciplinary. It relies upon con-
cepts and results from several different fields, including computer engineering, nuclear
science, electrical engineering, physics and astronomy, as well as space engineering. In
this chapter, we provide a brief introduction to our application, its design constraints,
as well as fault-tolerant computer architecture. We further provide an overview over
the current status of small satellite space missions, as well as a review on satellite
failures in the past and at the time of writing. This chapter therefore serves also as
motivation and legitimization for our research, including mission success and failure
statistics, which underline the lack of reliability of very small satellites today.

Chapter 3: The Space Environment

A satellite’s on-board computer has to cope with unique challenges, requiring a general
understanding of the physical effects of a spacecraft’s operating environment. Hence,
for the understanding of the fault profile and application constraints for this thesis, in
this chapter we provide an in-depth discussion of the space environment and its effects.
We discuss the physical design restrictions aboard spacecraft, and operational consid-
erations. Most importantly we discuss the impact of radiation on semiconductors, and
how it can be mitigated.
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Chapter 4: A Fault Tolerance Architecture for Modern
Semiconductors

In this chapter, we describe a non-intrusive, integral, flexible, hardware-software-
hybrid approach which enable the use of modern MPSoCs for spaceflight meeting
real-world constraints. Neither traditional hardware- nor software-based FT solutions
can offer the functionality necessary to guarantee fault tolerance for state-of-the-art
SoCs used in miniaturized satellite OBCs. We achieve fault-detection, isolation and
recovery through the use of a co-designed fault tolerance architecture consisting of
multiple interlinked protective measures. In combination, they form a fault tolerance
architecture which can guarantee strong fault coverage even during space missions
with a long duration, for which we provide an early proof-of-concept implementation.
The research in this chapter was published in the proceedings of the IEEE Asian Test
Symposium (ATS) [Fuchs9].

Chapter 5: MPSoC Management and Reconfiguration

In this chapter, we present the concept and proof-of-concept implementation of a
subsystem for autonomous chip-level debugging within a CubeSat via JTAG [6]. This
concept provides all the necessary functionality needed to implement Stage 2 of the
fault tolerance architecture described in Chapter 4. In our multi-stage fault tolerance
architecture, remote debugging is one of several tasks this subsystem performs: It is
now used to control the coarse-grain lockstep implemented within an MPSoC, and
referred to as supervisor in remainder of this thesis. It interacts with an on-chip
configuration controller to control partial reconfiguration and error scrubbing for the
FPGA’s fabric via the internal configuration access port (Xilinx’s ICAP). An early
version of this chapter was presented in the proceedings of the International Conference
on Architecture of Computing Systems (ARCS) [Fuchs11], and an extended paper
[Fuchs10] was published in the proceedings of the ESA/CNES Small Satellites, System
& Services Symposium (4S).

Chapter 6: Mixed Criticality and Resource Pooling

In this chapter, we discuss Stage 3 of our multi-stage fault tolerance architecture,
and the advantages it offers not just for miniaturized satellites, but for spacecraft of
all weight classes. Our architecture allows a satellite to dynamically adjust the fault
tolerance level, compute performance, and energy consumption to meet the vary-
ing performance requirements to a satellite computer during long and multi-phased
space missions. The operator of a spacecraft can prioritize between processing per-
formance, functionality, fault coverage, and energy consumption. The system can be
autonomously adapted to the OBC’s thread assignment to retain a functional system
core by sacrificing performance or availability of less critical applications. This allows
an OBC to to more efficiently handle accumulating permanent faults and to age grace-
fully. The research in this chapter was published [Fuchs7] in the proceedings of the
NASA/ESA Conference on Adaptive Hardware and Systems (AHS).
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Chapter 7: Reliable Data Storage for Miniaturized Satellites

Reliable operation of an OBC can only be guaranteed if the integrity of the OBC’s
operating system, applications, as well as payload data can be safeguarded. Chapter
7 is therefore dedicated to discussing fault tolerance for the various volatile and non-
volatile memories used aboard miniaturized satellites and within our architecture. The
research presented in this chapter was published as finalist paper [Fuchs15] in the pro-
ceedings of the AIAA/USU Conference on Small Satellites (SmallSat). It was awarded
second place and a research grant in the Annual Frank J. Redd Student Competition.
We describe the implementation of FTRFS, a fault-tolerant radiation-robust filesys-
tem for space use. It was published [Fuchs18] in the proceedings of the International
Conference on Architecture of Computing Systems (ARCS). Furthermore, a protective
concept for flash memory and phase change memory is described in the second part of
this chapter. It was published [Fuchs16] in the proceedings of the International Space
System Engineering Conference Data Systems In Aerospace (DASIA).

Chapter 8: Validating Software-Implemented Fault Tolerance

In this chapter, we test and validate the software-mechanisms that are the foundation
of our fault tolerance architecture by injecting faults into an RTEMS implementation
of Stage 1. Traditional computer architectures for space applications are validated
using system-level testing. This is viable for systems relying on hardware measures,
but unsuitable for testing software due to a lack of test coverage and the expanded
test-space. For testing software-based FT measures, a realistic test-setup is considered
good practice and required to deliver representative fault-injection results. Therefore,
a fault-injection campaign was conducted using system emulation through QEMU
into a representative ARMv7a-SoC matching our architecture target, ARM’s Cortex-
A53, and into a RISC-V-based SystemC-model. Our results show that our lockstep
implementation is effective and efficient, and we provide a direct comparison to related
work. An early version of this chapter was published in the proceedings of the IEEE
Asian Test Symposium (ATS) [Fuchs5].

Chapter 9: Combining Hardware and Software Fault Tolerance

As optimal platform for our architecture, we developed a compartmentalized MPSoC
design for FPGA, where Stage 2’s partial reconfiguration functionality can be utilized
to recover defective parts of the MPSoC. This architecture is designed to satisfy the
high performance requirements of current and future scientific and commercial space
missions at very low cost, while offering the strong fault coverage guarantees necessary
for missions with a long duration. We describe the topology of our multiprocessor
System-on-Chip (MPSoC), and show how it can be assembled in its entirety from only
well tested COTS components with commodity processor cores. The MPSoC can be
implemented using only COTS hardware and extensively validated library IP, requiring
no custom logic or space-proprietary processor cores. The research in this chapter was
published [Fuchs6] in the proceedings of the IEEE Conference on Radiation and Its
Effects on Components and Systems (RADECS).
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Chapter 10: On-Board Computer Integration and MPSoC
Implementation

In the final research chapter of this thesis, we discuss practical implementation results
for our MPSoC design. We provide detailed resource utilization results for this MPSoC
for 3 different FPGAs: Xilinx Kintex Ultrascale+ KU3P (the smallest of its class),
KU11P, and the Xilinx Kintex Ultrascale KU60, for which we are collaborating within
the Xilinx Radiation Testing Consortium to achieve a suitable device-test platform
for radiation testing in the future. We provide statistics on power consumption, and
show that even between two FPGA generations power consumption can be reduced
drastically through the use of more modern and efficient technology nodes. This serves
as proof-of-concept for our architecture. This chapter is based on two publications
[Fuchs1,Fuchs2] in the proceedings of to the IEEE International Symposium on Defect
and Fault Tolerance in VLSI and Nanotechnology Systems (DFT) and the AIAA/USU
Conference on Small Satellites (SmallSat).


