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Abstract 
Despite the application of advanced statistical and pharmacometric approaches to pediatric trial data, a 

large pediatric evidence gap still remains. Here, we discuss how to collect more data from children by using 

real-world data from electronic health records, mobile applications, wearables, and social media. The large 

datasets collected with these approaches enable, and may demand, the use of artificial intelligence and 

machine learning to allow the data to be analyzed for decision-making. Applications of this approach are 

presented, which include the prediction of future clinical complications, medical image analysis, 

identification of new pediatric endpoints and biomarkers, the prediction of treatment non-responders and 

the prediction of placebo-responders for trial enrichment. Finally, we discuss how to bring machine 

learning from science to pediatric clinical practice. We conclude that advantage should be taken of the 

current opportunities offered by innovations in data science and machine learning to close the pediatric 

evidence gap.
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Introduction
Historically, the evidence basis of pediatric treatments has lagged behind those in adult patients. A key 

aspect of this is the lack of pediatric data, which originates from the logistic, ethical and legal challenges of 

performing clinical investigations in children.(1) Additionally, the pediatric population is more 

heterogeneous than the adult population, with maturational differences in pharmacokinetics, 

pharmacodynamics and disease etiology across the pediatric age-range from preterm neonates to 

adolescents.(1) Consequently, data collected in children within a narrow age-range might still leave us with 

limited information regarding the treatment of children outside the studied age-range. Finally, similar to 

other patient populations, optimal treatment will also differ for individuals within the same age-group for 

instance because of obesity, genetic polymorphisms or disease severity and should be improved with more 

personalized treatment approaches.(2)

To date, academic hospitals and industry perform clinical studies and randomized clinical trials (RCTs) on 

current and new drugs in children. Many academic studies focus on commonly used drugs in hospitalized 

patients, as the in-patient situation facilitates the collection of data. Generally, to minimize the study burden 

on pediatric subjects, the frequency and amount of data collection is limited and often not standardized. For 

example, to limit the number of venous samples, drug concentrations in plasma might be quantified in 

scavenged samples that were taken as part of standard of care.(3) Population pharmacometric modelling 

approaches have been successfully used to deal with these unbalanced data to better understand pediatric 

pharmacology.(1, 3) More recently, we have seen an increased use of mechanistic or physiologically-based 

models, which leverage prior knowledge regarding the physiological changes in organ weight, blood flow, 

and protein expression during a child’s life.(2, 4, 5) An important aspect of such models is their improved 

predictive performance when used to extrapolate from adults to children.(6) 

These pharmacometric modelling approaches are now, despite limited data, being used with success to 

support neonatal and pediatric drug development as well as dosing of commonly used off-label drugs.(1, 4, 

7) However, recent failures of randomized clinical trials in children have taught us that there is more to 

these studies than confirming model-based predictions.(8) These failures have been attributed to different 

reasons such as an increased placebo effect in children, different disease etiology compared to adults, and 

inadequate dose selection.(8) Another important cause is the failure to recruit sufficient patients, which can 

force investigators to costly increases of the study duration or even premature termination of a study due to 

low feasibility of recruiting the target sample size.(9, 10) Failed drug trials—and the general lack of 

pediatric clinical trials being performed particularly in primary health care—contribute to the high 

prevalence of off-label drug use in children, especially in the first years of life.(11) It is clear that despite 
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the advances in approaches to data collection and analysis, a large need for additional research in pediatrics 

still remains.

To tackle the limitations of conventional clinical research, we need to move beyond the RCTs and their 

analysis with traditional statistical and advanced pharmacometric techniques. In this narrative review, we 

will discuss novel approaches to collecting data in pediatric patients to get more information from both 

clinical trials and real-world data. In addition, we will discuss how large datasets that are derived from new 

data collection approaches enable, and may demand, the use of innovative data science approaches such as 

machine learning. Finally, we will discuss both applications and challenges to the widespread use of 

machine learning in pediatric medicine. Together, these innovations have the potential to greatly support 

our ability to generate high quality evidence to guide optimal pediatric clinical care, thereby closing the 

pediatric evidence gap.

Advances in pediatric data collection
Improving our capacity for pediatric data collection is necessary for closing the pediatric evidence gap. 

Pediatric (randomized) clinical studies are costly and time-consuming to perform, and a sole reliance on 

these studies may limit our capacity for medical research in children. These studies are generally site-

centric, meaning that most data is collected in a hospital or physical study site. Figure 1 illustrates how the 

capacity for pediatric data collection can be increased by moving beyond site-centric pediatric studies 

towards real-world data and new techniques for patient-centric data collection.(12) Below we elaborate on 

the different opportunities and challenges (ethical and privacy) of these advances in data collection in 

pediatrics.

Real-world data collection
The collection of real-world data through electronic health records (EHRs) has sharply increased in the last 

decade, which opens up an unprecedented potential for data collection with more subjects, more variables, 

and lower costs.(13) The use of EHR data for research purposes comes with its own set of challenges, due 

to the large amount of data and variables to be analyzed. Machine learning techniques are often required to 

maximize the information extracted from EHR records. In addition to large amounts of structured data, a 

part of the information in EHR is hidden in clinical or lab notes, which complicates data analysis when this 

information is required to answer a particular question.(12) 

To extract information from such notes into structured data, techniques like natural language processing 

may provide a great opportunity for answering pediatric research questions.(14, 15) These techniques 

enable analyses that would be impossible to perform on the text data itself when it would be too time-

consuming to do a manual extraction of the relevant features from the text data. For example, in radiology, A
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natural language processing was used to automatically notate whether a certain condition or finding is 

mentioned within the text of the report.(16) In another example, Liang and others used natural language 

processing to allow the use of unstructured information from EHR for the development of a deep learning 

model for automatic pediatric diagnoses that surpassed the accuracy of junior, but not senior, 

physicians.(17) Finally, the data extracted using natural language processing might be required to identify 

patients eligible for inclusion in cohorts for observational research.(15)

While effectiveness research with real-world data can be problematic due to the difficulty in controlling for 

confounding variables and non-randomized treatment decisions, real-world data offer many other 

opportunities.(12, 18, 19) First, real-world data might be used to generate or select hypotheses on the most 

effective treatment that can then be tested in a RCT. Alternatively, real-world data might be used to 

confirm that the findings in a well-controlled RCT also apply to the wider, more heterogeneous pediatric 

population or establish that some subpopulations require additional research.(18) Additionally, real-world 

data can also be used to better characterize patients outside clinical studies as natural history cohorts which 

can subsequently be used as an external control to replace placebo arms in pediatric trials.(19) While 

externally-controlled studies require additional considerations to deal with potential biases compared to 

traditional RCTs, this approach might provide an opportunity for performing studies in cases where 

sufficiently powered RCTs are difficult to perform due to rarity of the indication or reluctance of parents to 

consent to a placebo-controlled trial.(19-21) Finally, real-world data may be more suitable than RCTs for 

answering drug safety questions regarding rare adverse effects or adverse effects that present themselves 

years after the initial drug exposure.(18, 22)

To deliver the best medical practice tomorrow, it is important that we harness the full potential of the data 

collected today. At the moment, data in EHR is still primarily collected for medical practice, and may 

sometimes be ill-suited for secondary use as research data. This is compounded by the fact that physicians 

are primarily responsible for treating patients and not for generating high-quality research data.(18) In a 

learning healthcare system, real-world data are not only collected to treat the individual patient, but also 

readily usable to improve clinical practice by contributing to the generation of knowledge and 

innovations.(18, 23) Examples of initiatives include the PEDSnet learning healthcare system, a large 

clinical data research network that currently holds data of over six million children from 2009 onwards and 

has enabled the generating of real-world evidence in a variety of clinical settings, including obesity, 

leukemia and long-term safety of (maternal) drug use.(24) Also important are initiatives like the European 

EHR4CR project(25) that support the integration of data from different EHR systems, as this allows the 

creation of larger datasets, and the external validation of findings in datasets from different sites.(13, 18) 
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Patient-centric data collection

In addition to data from site-centric RCTs, in which most data is collected in one or more physical study 

sites(22), the collection of patient-centric data has the potential to increase the capacity for data collection 

(Figure 1).(22, 23) Patient-centric data refers to data collected from the patient at home or during other 

parts of their daily routine. Depending on the context, data could be collected using mobile applications, 

wearables and social media. A specific advantage of patient-centric data is the increase of study data 

without increasing the study burden associated with additional study visits that may in the case of children 

affect their parents or caregivers as well. The opportunities of patient-centric data collection are particularly 

important for studying chronic diseases in children that do not require hospitalization or frequent hospital 

check-ups as part of their treatment. Another potential application would be the long-term follow-up of 

previously hospitalized patients.

Mobile applications

In its simplest form, a mobile application might be an electronic diary, designed to collect self-reported 

outcomes which can be reported by children when they are beyond a certain age or by the parents in case of 

younger children. Compared to a paper diary, electronic diaries are reported to improve compliance with 

alerts, and to reduce the risk of errors during data entry.(26) In other cases, the primary aim of the 

application is to promote healthy behavior in the child through motivation or education, for example in 

applications that help older children with self-management of asthma or type 1 diabetes.(27) The 

interactions by the child and/or their parents with these applications may offer great opportunities for data 

collection.

Wearables

The use of wearables creates the possibility of continuous data collection in an at-home setting, which 

supports characterizing the intra- and inter-individual variability in disease and drug response, as well as 

quantifying exposure-response relationships for drugs in the pediatric population.(28) The latter is 

especially true if the clinical outcome or a surrogate endpoint can be quantified at home. Similar to mobile 

applications, the wearable itself might not only be used to collect data, but also to motivate desirable 

behavior. For example, Hooke et al. evaluate the use of activity trackers to promote physical activity in 

children with acute lymphoblastic leukemia in an effort to reduce treatment-induced fatigue.(29)

Wearables can also include biochemical sensors to non-invasively measure electrolytes, metabolites and 

proteins in an at-home setting. Wearables worn on the skin can be used to measure analytes directly in 

sweat, but can also non-invasively extract analytes such as proteins and glucose from the skin’s interstitial 

fluid.(30) While many analytes of interest cannot yet be measured using wearable sensors, future A
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developments in this area will likely expand the applicability of these techniques for patient-centric 

collection of pediatric biochemical data.

While these wearables may provide great opportunities for data collection in otherwise difficult to study 

patient populations like children, it is important to note that the field of clinical application of wearables is 

still in its infancy when we consider its clinical utility, even for adult patients.(31) There are a variety of 

challenges that need to be met in scientific, logistic, ethical and privacy aspects, as covered extensively by a 

recent review by Izmailova et al.(26) For example, commercially available wearables frequently do not 

report the raw data, but only the summary or secondary data that has been processed with undisclosed and 

proprietary algorithms. This complicates the interpretation of wearable data, especially when collecting 

data from multiple types of wearables with differing terminology and data standards. For the pediatric 

application of wearables, additional validation will be required to ensure devices are also fit-for-purpose for 

children of a particular age-group, and whether the data measured with these devices have the same 

relevance for the clinical outcome. Finally, the use of wearables by study participants might affect their 

behavior (e.g. they might walk more when wearing a wearable that tracks their daily step count), which 

could be a problem depending on the research question and design of the study. Despite these challenges, 

their ability for continuous data collection at low burden to the patient could provide a great opportunity in 

the effort to fill the pediatric evidence gap, especially if the link can be made to clinical outcomes and 

biomarkers.

Social media data

The use of social media has increased dramatically over the last decade. It has been reported that children 

that use medication might use these platforms to share experiences that are not communicated to their 

healthcare practitioner.(32) As such, social media might contain information useful to pediatric 

pharmacovigilance that is not available elsewhere. Recent studies explored patient reports of adverse 

effects on social media platforms such as Twitter(33) and patient fora.(34) This information was explored 

by counting how many times different adverse effects were mentioned in combination with a certain drug. 

These studies could serve as a method for signal detection of rare adverse effects, or to supplement 

information on known adverse effects that are underestimated in children. 

At the moment, the use of social media data for pharmacovigilance is still in its infancy. In a recent study 

from the IMI project WEB-RADR, natural language processing techniques that were used to automatically 

label social media posts with drugs and adverse effects combinations were only correct in about 40% of the 

cases.(35) Using these imprecise techniques, the authors found no indication that posts on general social 

media platforms like Facebook and Twitter would have an added value to traditional methods of 

pharmacovigilance. Another challenge identified in the WEB-RADR project is that some drugs are hardly A
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discussed in social media posts, thus having little to no potential for advancing pharmacovigilance.(35) The 

use of social media posts in pharmacovigilance might be more beneficial with further advances in natural 

language processing and by directing research efforts towards patient fora which would carry a higher 

percentage of relevant posts than general social media platforms.

Ethical and privacy aspects of pediatric data collection
Innovations in data collection will support our ability to effectively treat pediatric patients in the future, 

especially when the collected data is FAIR (Findable, Accessible, Interoperable, Reusable) to allow 

secondary analyses to be performed by the broader research community. These benefits need to be balanced 

with the right to privacy of the patients whose data is used in this research. Maintaining and further 

developing ethical and data security standards are crucial to ensure ongoing support by patients and their 

parents of data collection for research purposes.(36) Maintaining data security is particularly challenging 

for patient-centric data collection where sensitive data are collected on a mobile phone or wearable, as data 

leaks could occur when the device is lost or during data transfer from the device to the central database.

Appropriate security measures need to be in place to minimize the risk of violating the patient’s privacy. In 

this respect, the removal of identifying information can contribute to maintain privacy when using data for 

research purposes. However, when the research question requires that data from different databases are 

linked, some form of patient identifier might be needed to do this.(37) A potential solution to this issue is to 

add a small amount of noise to the data to ensure patients cannot be identified.(37) Another interesting 

approach is to ‘share the answers, not the data’. In this case, a data analysis or model might be run on the 

data, and only the aggregated results are returned to the researchers.

The issue of consent is particularly complex for pediatrics. Depending on the age of the child, (written) 

informed consent might be obtained from the parents, the child or both. However, in the case of re-use of 

the data, there are questions that remain unanswered.(38) Can the parental informed consent be considered 

to be valid for re-use of the data years later, even if the patient has since reached adolescence or adulthood? 

It is recognized that retrospectively obtaining informed consent for large datasets of observational real-

world data could likely result in lengthy and costly procedures, which would limit their use in practice.(37) 

However, for some observational analyses of de-identified data, the need for informed consent can be 

waived by institutional review board, if appropriate privacy measures are taken.(37)

Machine Learning for evidence generation
Innovations in pediatric data collections provide great opportunities for research and hold great promise in 

closing the pediatric evidence gap, but this promise can only be fulfilled if these data are used effectively to 

address clinically relevant questions. To do so is challenging due to the size and complexity of datasets A
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collected with these novel techniques. Collecting new types of data will therefore go hand in hand with the 

increasing use of artificial intelligence and machine learning in pediatrics.

The term machine learning is often used interchangeably with the term artificial intelligence (AI).AI is an 

area in the discipline of computer science that aims to create intelligently perceiving, reasoning, and acting 

machines. A subset of AI is machine learning, which encompasses a wide range of advanced data analysis 

techniques. Depending on techniques used, machine learning algorithms can predict both numerical 

outcomes (e.g. a disease severity score) or class labels (e.g. healthy versus diseased). 

With respect to the different classes of machine learning techniques, linear models are an easy to interpret 

class of machine learning techniques for the analysis of structured data (Figure 2). Linear regression, which 

is the most common linear modelling technique, can be used for both prediction and hypothesis testing, but 

is not suitable when there are many variables in the dataset. In those cases, penalized regression techniques 

can be used, which have a penalty term to constrain overfitting. Examples of such techniques include 

LASSO(39) and ridge regression.(40) A second class of machine learning techniques are tree-based models, 

such as Classification And Regression Trees(41) and random forests.(42) Depending on specific type of 

technique, the output of a tree-based model might be a form of a decision tree, which can still be relatively 

well explained. A third class of machine learning techniques is deep learning or deep neural networks. 

Deep learning has been used extensively for image analysis and text mining outside the medical world, and 

has recently started to be used on medical images and electronic health records (Figure 2).(43) Complex 

deep learning models can have a good predictive performance when dealing with unstructured data due to 

flexibility of such models (Figure 2). However, deep learning models are often difficult to explain, as it is 

generally difficult to understand how the input data leads to the model prediction. 

Of note, it is important to recognize that machine learning will supplement, and not replace, traditional 

statistics in pediatric research. The use of traditional statistical tests or linear models might be more 

appropriate if the primary goal of the analysis is not to obtain a prediction model.(44, 45) This includes 

situations when the goal of the analysis is hypothesis testing (‘Does the treatment work better than 

placebo?’) or estimation of treatment effect (‘What effect does the treatment have on the outcome?’). 

However, there are various clinical problems in which the predictions made by machine learning can 

contribute to closing the pediatric evidence gap, as will be illustrated with examples in the next section.

Applications of machine learning in pediatrics
The opportunities offered by the various machine learning techniques can benefit pediatric practice in a 

variety of ways. In this section, we will discuss different applications of machine learning in pediatrics 

including: the prediction of future clinical complications, medical image analysis, identification of new A
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pediatric endpoints and biomarkers, prediction of treatment non-responders, and the prediction of placebo-

responders to allow pediatric trial enrichment. 

Predicting future clinical complications
The ability to predict clinical complications in the future can be used to deliver more personalized medicine 

in pediatrics. For this purpose, machine learning plays a crucial role due to its improved potential predictive 

performance compared to traditional statistical methods, especially when the data are unstructured or 

otherwise complex. Children that are predicted to be at high risk for a certain event, can subsequently be 

monitored and treated more intensively. In recent research, new algorithms have been explored to make 

good predictions using data from previous studies or real-world data. Box 1 shows three case studies in 

which machine learning techniques were used to make predictions about future clinical complications such 

as childhood obesity(46), late onset sepsis(47) and neonatal hyperbilirubinemia(48). 

Box 1. Prediction of clinical complications in pediatrics using machine learning 

Case study 1. Childhood obesity

Dugan et al. (2015) explored predictors of childhood obesity, with the aim of eventually being able to 
provide targeted obesity prevention for high-risk children. The answers on a dynamic questionnaire 
and measurements of clinical staff were mined from over 7000 children below the age of 2 years. 
These features were used to predict the prevalence of obesity after their second birthday. Using tree-
based machine learning, an accurate model predicting childhood obesity was obtained, which 
included predictors like pre-existing obesity, ethnicity, height and maternal depression. 

Case study 2. Neonatal sepsis

Mani et al. (2014) evaluated the usefulness of different classification algorithms to predict late onset 
sepsis in neonates, using early results of laboratory tests and nursing observations. The best 
classification algorithm surpassed the clinician in both the sensitivity and specificity of predicting 
neonatal sepsis. After validation, clinical implementation could allow earlier treatment of sepsis while 
reducing the number of patients unnecessarily treated with antibiotics.

Case study 3. Neonatal hyperbilirubinemia

Daunhawer et al. (2019) used machine learning techniques to predict neonatal hyperbilirubinemia. An 
ensemble classifier combining the logistic regression LASSO and random forests was able to predict 
accurately whether a neonate would undergo phototherapy treatment in the next 48 hours. The 
predictions were made using clinical variables, such as birth weight and health information about the 
mother. This model could support a more personalized bilirubin monitoring approach, with more 
intensive monitoring of high-risk patients.

Medical image analysis
Deep learning models have been particularly effective in image analysis, mainly in radiology.(49) A deep 

learning model can learn to classify images as healthy or diseased, or can notate the areas in the image that 

correspond to organs or other anatomical structures. For example, a deep learning model was able to A
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identify the segmentation of white matter, grey matter and cerebrospinal fluid in the brains of babies.(50) 

The automation of these tasks with a deep learning model can reduce the time spent on an image by 

limiting the radiologist’s task to checking and adjusting the lines drawn by the algorithm. In another 

example, a deep learning model was able to identify the skeletal maturity of children by assessing hand 

radiographs.(51) Another common application is the detection of malignant tumors in medical images, 

which could serve as a second opinion to detect malignancies that might have been missed by the 

radiologist.(52, 53)

In addition to increasing efficiency, deep learning models could also extract information from image data 

that is not included in the radiologist report. This would include features that are too complex and time-

consuming to extract manually or features that are not currently being used in clinical decision making.(54) 

With automated extraction of additional information from medical images, deep learning-based image 

analysis can be used to perform research on imaging-based pediatric biomarkers that would not be feasible 

with manual image analysis.

Identifying endpoints and biomarkers in pediatrics
The development and validation of pharmacodynamic endpoints for children is recognized as an important 

methodological step in closing the evidence gap of pediatric medicine.(55) Having suitable disease-specific 

pharmacodynamic endpoints for children is essential for demonstrating efficacy and for establishing the 

exposure-response relationship of drugs needed for pediatric drug labeling. Additionally, these measures of 

patient disease severity or well-being can guide treatment decisions in clinical practice. For this, the 

efficacy and safety endpoints used in adults may not be fit-for-purpose across the pediatric age-range: the 

clinical endpoint might not occur until later in life, might not be directly measurable, or the clinical 

presentation of the disease might differ too much from any adult counterpart.(55) 

Machine learning can be used in biomarker and endpoint discovery by performing variable selection and 

dimension-reduction when there are multiple variables considered to be potentially relevant for pediatric 

outcome. For example, Hartley et al. used EEG data to derive a summary measure for nociceptive brain 

activity in infants.(56) In this example, the EEG-based measure of pain was learned from the context, i.e. 

by comparing the response profiles after non-noxious or noxious stimulation. In another example, a 

supervised learning approach was used to derive a measure of iatrogenic withdrawal severity in children by 

combined analysis of nurse’s expert opinion of the child’s withdrawal severity, and the observed 

withdrawal symptoms.(57) Finally, machine learning may be used to identify early biomarkers that 

correspond to long-term clinical endpoints or quality-of-life.(58) For example, a machine learning tool is 

currently being developed to analyze cough sound data as a digital biomarker of acute respiratory disease in 

children.(59)A
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Predicting treatment responders
Machine learning techniques can also be used to identify non-responders, i.e. children that are unlikely to 

respond to a particular treatment. The clinical benefit lies in avoiding therapy that might give adverse 

effects at low chance of beneficial effects, as well as reducing the need for trial-and-error approaches for 

treatment personalization.(60)

For the adults, machine learning techniques have been used to predict non-responders to drug treatment in 

different settings, including oncology, immunology, and postoperative pain.(60-62) Depending on the 

similarity of disease between adults and children, and the explicability and the biological plausibility of the 

machine learning model, models developed in adults might be also applicable in the pediatric setting after 

validation. In other cases, the pediatric pathophysiology might be too different or the disease might be 

absent in adults. In this case, efforts would be warranted to develop new machine learning models to 

predict drug response in children, so that they can also benefit from these innovations. 

Predicting placebo responders to improve trial success
Prospective (randomized) clinical trials remain the gold standard to get drugs registered for the pediatric 

population. However, some of these RCTs fail to demonstrate efficacy in children.(8) These failures have 

been attributed to a numbers of reasons, one of which is the high placebo response observed in indications 

such as depression, migraine, and bipolar disorder.(8) A high placebo response would limit the ability of a 

trial to demonstrate efficacy or would require a very large sample size to do so. Additionally, it has been 

shown that younger children tend to have a stronger placebo response than older children.(63) This would 

make it especially difficult to demonstrate efficacy in younger children, which is problematic considering 

that the off-label drug use is highest in children in the first year of life.(11) 

One way to limit the impact of placebo response on trial outcomes, would be to identify baseline predictors 

of placebo response so that trials can be enriched pre-randomization with subjects that are less likely to 

respond strongly to placebo.(8) This strategy has been used in pediatric trials, resulting for example in the 

successful application for a pediatric indication of rizatriptan for acute treatment of migraine.(64) For 

adults, it has been proposed machine learning techniques may have better predictive power when using 

multiple variables to predict placebo response, as was demonstrated for depression in a geriatric 

population.(65) The use of machine learning techniques to reduce the placebo response in pediatric trials, 

might therefore increase the success rate of pediatric drug trials and support pediatric drug labeling.

Bringing machine learning to pediatric practice
While promising, more work needs to be done before the machine learning applications mentioned in the 

previous section are ready for widespread clinical use in children. Methods for predicting placebo response A
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need to be developed for different therapeutic indications, and prove their worth in practice by increasing 

the success of pediatric registration trials (Figure 3, left column). Biomarkers and endpoints suggested by 

machine learning need to be validated, and supported by the relevant stakeholders (Figure 3, middle 

column). When this is the case, having better pediatric endpoints and biomarkers will impact not only 

pediatric practice, but also pediatric research. Considerable work is also required to bring a machine 

learning model to the clinic as a medical decision support tool, as this requires extensive external validation 

of the model, the development of a user-friendly software tool, and assessment of the impact of the use of 

this tool in clinical practice (Figure 3, right column). Below, we will discuss the issue of validation of 

machine learning models for clinical use, and the particular challenges of implementing medical decision 

support tools in pediatric clinical practice.

Validation for clinical use in pediatrics
Machine learning models enable us to use complex data to achieve improved predictions of health and 

disease in children compared with traditional methods. However, it is important that the trained model does 

not “overfit” the data. An overfitted machine learning model has good predictive performance in the dataset 

it was trained on, but poor performance when predicting for new cases. Validation of the model on an 

independent test data set is therefore essential to ensure the scientific quality and the clinical utility of the 

model (Figure 3, right column). Obtaining suitable datasets for this external validation can be challenging, 

especially in pediatric research, which underlines the importance of efforts to promote data sharing and the 

use of real-world data for research purposes.(66)

Considering the heterogeneity of the pediatric population aged 0 to 18 years, it is also important to consider 

that a model might have a good predictive performance for children in a particular age-group, but a poor 

performance for others (e.g. preterm neonates vs term neonates). This risk is particularly high if certain 

age-groups are underrepresented or absent in the dataset used to develop the model.(67) Transparency 

about the validity of the model, and for which pediatric population this validity has been shown, is 

therefore crucial.

Finally, it is important to recognize that even externally-validated model predictions are not guaranteed to 

improve patient outcome when used in clinical practice. Some have therefore proposed that the clinical use 

of models as medical decision support tools should supported by studies that demonstrate their impact on 

relevant clinical endpoints (Figure 3, right column).(68) Considering the added difficulty to perform such 

trials in children, we argue that it is important to consider the need for such trials on a case-by-case basis, 

depending on the potential risk and benefits of the use (and non-use) of machine learning tools in clinical 

decision making. In cases where dedicated pediatric trials are not feasible, modeling and simulation A
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workflows used in pharmacometrics might be used to assess the likely clinical benefit-risk ratio of decision 

support tools by integrating available data from adult and pediatric patients.(69)

Implementation of medical decision support tools
Implementation of findings from machine learning studies into pediatric clinical practice will not happen 

without focused efforts and close involvement of the various stakeholders. Currently, the widespread 

clinical implementation of scientific evidence is a lengthy process (>15 years on average) and only 

achieved in about half of the cases.(70) Wittmeier and colleagues have argued in favor of systematic step-

wise approaches to bring scientific knowledge to pediatric clinical practice. An important aspect of this is 

to engage in activities that have been shown to successfully support implementation, such as educational 

outreach and meetings, use of local opinion leaders, computerized reminders, audit and feedback.(71) For 

the implementation of machine learning as a medical decision support tool in pediatrics, there are additional 

challenges to overcome (Figure 3, right column).(36)

Because the predictions or classifications of machine learning tools can incorporate information of multiple 

variables, they are not as readily integrated in clinical guidelines as knowledge that relies on a single 

variable (e.g. age or bodyweight) for decision making. Therefore, software packages might be needed so 

that physicians can easily use models in medical decision making (Figure 3, right column). It is important 

to stress that such software packages should be quick and simple to use, and ideally linked to the EHR 

system so that there is no need for error-prone data entry of a large number of variables by the clinician. 

The need to integrate machine learning tools into software packages does complicate their implementation, 

as they can be classified by the FDA as a medical device if the physician is not able to independently 

evaluate the basis of the recommendation.(72) With complex machine learning models, this is likely the 

case. Many software packages that provide recommendations based on models obtained with machine 

learning would therefore require lengthy regulatory approval procedures before they can be used in clinical 

practice.  

In addition, to being easy to use, the advice of the model should be explicable by the clinician. Here, lies a 

key challenge for machine learning tools, especially for techniques like neural networks which provide 

more ‘black box’ predictions.(73) The integration of such ‘black box’ predictions in clinical decision 

making is problematic, because it means a departure from the paradigm of evidence-based medicine.(74) 

Additionally, shared decision making between the patient and physician also requires that decisions 

supported by machine learning tools can also be explained.(67, 73) Therefore, explicability for both the 

physician and the patient is likely a requirement for meaningful contributions to the decision process. 

Ongoing efforts to improve the explicability of complex machine learning models are therefore crucial to 

support their clinical acceptance and implementation.(75) A
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Conclusions
Innovations in data collection and analysis could revolutionize many aspects of medical science and clinical 

practice in the upcoming decades. With the increased use of real-world data within a learning healthcare 

system and patient-centric data collection there is a potential to significantly expand our capacity for 

pediatric data collection. There are many useful potential applications of the predictive performance of 

machine learning models, and future work may integrate these applications with mechanistic modelling to 

improve understanding of the underlying biology. And even though efforts are required to bring these 

innovations to the clinic, it is crucial that we capitalize on this opportunity to close the pediatric evidence 

gap. 
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Figure legends
Figure 1. Innovative pediatric data collection beyond the site-centric randomized clinical trial 

(RCT). Data from these pediatric clinical studies can be supplemented by increased use of real-

world pediatric data from electronic health records. Additional information can be obtained 

without increasing patient burden by using patient-centric data collection tools, such as mobile 

applications, wearables and social media data. Site-centric RCTs refer to studies in which data 

collection is limited to one or more hospitals or physical study sites. Patient-centric data refers to 

data collected from the patient at home or during other parts of their daily routine. 

Figure 2. Explicability of the various machine learning techniques. On the far left, linear models 

have a clear explanation, but require that the data is structured. Linear regression, the most 

common linear modelling technique, can be used for both prediction and hypothesis testing, but is 

not suitable when there are many variables in the dataset. On the opposite end of the spectrum, 

deep learning models are generally difficult to interpret and explain, and not suitable for 

hypothesis testing. However, due to the flexibility of deep learning models, they are able to handle 

complex and unstructured data such as image and text data. Depending on the data (structured or 

unstructured) and the goal of the analysis (raw predictive performance or testing hypotheses), 

different techniques will be most appropriate.

Figure 3. How applications of machine learning in pediatrics can support pediatric clinical 

practice. 
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