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Chapter 4

Structure formation

In this Section we briefly describe the observed Large-Scale Structure of the Universe (LSS)
and its origin. We define the Large-Scale Structure as those inhomogeneities in the matter
distribution of the Universe that are roughly larger than the scale of a galaxy. It appears that
galaxies form groups of galaxies, individual groups form clusters of galaxies, while clusters
of galaxies can be a part of superclusters. These objects are randomly distributed in the
Universe and are connected by quasi-1D structures called filaments or quasi-2D structures
called walls. In addition to these overdense regions there are areas with low density of
matter called voids. All these features together are called the Cosmic Web. We will discuss
them in Section 4.1.

It appears that these complicated and non-trivial structures can be described using basic
equations of matter dynamics (see Section 4.3) starting from very simple initial conditions
(see Section 4.3.4). At early times the Universe is almost homogeneous and evolution
of the seeds of the current structures can be describe by a simplified linear equations,
see Section 4.3. At later stages the evolution of the overdensities cannot be described
analytically because of the non-linear nature of basic equations. The widely used way to
overcome this problem is to use numerical simulations, so-called N-body simulations, see
Section 4.4.1. In Section 4.6 we describe in some details numerical simulations that will be
used in our own work, described in Chapter 5. We conclude that the approach reviewed
here and applied for the ΛCDM model can describe the observed LSS with a high precision,
see Section 4.7.

4.1 Observations of the Large-Scale Structure

Almost one century ago it has been noted by Edwin Hubble that the distribution of the
nebulae outside our galaxy is fairly uniform on large scales, but starting from the angular
scales . 10◦ it becomestak clumpy [112–114]. Let us discuss the main blocks of the LSS.
The smallest objects of the LSS that we consider here are individual galaxies. They have
different sizes from a few to tens of kpc with the total mass from 109M� to 1013− 1014M�
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Figure 4.1: The distribution of galaxies found by the 2dF Galaxy Redshift Survey [115].

for the large elliptical galaxies. We expect that there are O(1011) galaxies in the observable
Universe [116].

Group of galaxies is a collection of galaxies that consists of O(50) gravitationally
bound members; the collections of galaxies larger than groups in which galaxies are not
clustered in some smaller aggregations are called galaxy clusters [117]. The Milky Way
galaxy is part of a group of galaxies called the Local Group. A group of galaxies have the
typical size of a few Mpc and the typical masses from 1013M� to 1014M�, while galaxy
clusters are from 1014M� to 1015M�. Typically, galaxy clusters contain O(103) individual
galaxies.

The largest known structures in the Universe are superclusters. They are a large
group of smaller galaxy clusters or galaxy groups. The large size and low density of
superclusters means that they, unlike clusters, expand with the Hubble expansion. The
number of superclusters in the observable universe is estimated to be 10 million. The map
of the nearby superclusters is shown in Fig. 4.2.

It is known from observations, that small structures such as galaxies, start to form
before large structures (see [118] and references therein). The first galaxies are observed at
redshifts z ∼ 10, while the first galaxy clusters start to grow relatively recently, z ∼ 2− 3.
This is called the bottom-up structure formation and such a scenario exclude, for example,
hot dark matter in which large structures (clusters) are formed before galaxies [33].

Because of the stochastic nature of the LSS the main observables that describe it
are different distribution and correlation functions: halo mass function, galaxy-galaxy
correlation function, matter power spectrum, etc. The interesting feature that can be found
in the galaxy-galaxy correlation function is baryon acoustic oscillations (BAO). The same
oscillations that are present in CMB are also imprinted in the density of the baryons and can
be observed in the distribution of galaxies at cosmological scales, see Fig. 4.3. The possible
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Figure 4.2: A map of superclusters around the Sun.
The figure is from atlasoftheuniverse.com.

application of BAO to cosmology is an independent measurement of the Hubble constant,
that can be done using calibration of distances to galaxies using the SN Ia data [120, 121].
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Figure 4.3: The baryon acoustic oscillations in the power spectrum of each of the BOSS
data releases, DR9, DR10, and DR11 [119].

4.2 Description of the matter distribution

Matter distribution is defined by its mass density ρ(~r, t). The inhomogeneities result in
appearance of the overdensity δ(~x, t) – a relative difference between the local density and
the average density of the Universe ρ̄(t):

ρ(~x, t) = ρ̄(t)[1 + δ(~x, t)] ⇔ δ(~x, t) =
ρ(~x, t)− ρ̄(t)

ρ̄(t)
. (4.2.1)

Structure formation was seeded by a quantum process that led to a random distribution
of tiny over- and under-densities at very early times. In this case, the particular values of
matter density are not instructive – i.e., observing a galaxy at a particular point by itself
does not provide useful information. Only the collective properties of the structures, their
positions relative to each other, sizes and numbers are important. Hence, we treat δ(~x, t) as
a random field, the statistical properties of which we want to study. A random field can be
completely described by a series of moments – correlations between 1, 2, 3 to infinitely
many points defined as:

〈δ〉 =

∫
δ(~x)d3~x (4.2.2)

〈δ (~x1) δ (~x2)〉 =

∫
δ (~x1) δ (~x2) d3~x1d

3~x2 ≡ ξ( ~x1, ~x2) (4.2.3)
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etc. Moments of the distribution characterize the generating process leaving out the
information about the particular realization of the field. For simple distributions like
Gaussian, the first two moments contain all the information while the others are identically
zero. Moreover, in general case, the higher-order moments will decrease in amplitude.

When applied to the observed Universe, where the average overdensity is zero by
definition 〈δ〉 = 0 while primordial1 three-point and higher-order correlations are measured
to be consistent with zero. Hence unless we expect some specific non-gaussianity, the
two-point correlation function ξ( ~x1, ~x2) is the main source of information. According to
the Cosmological Principle, the Universe we live in is homogeneous and isotropic at large
scales. This also means that ξ( ~x1, ~x2) is invariant under rotations and translations:

ξ( ~x1, ~x2) ≈ ξ(| ~x1 − ~x2|) (4.2.4)

Power spectrum. At small overdensities the gravitational equations can be linearized.
This in turn allows for decoupling of scales and simple solutions for these equations in
Fourier space. Hence the Fourier image of the correlation function is a particularly useful
quantity:

ξ (|~x1 − ~x2|) =

∫
d3~k1d

3~k2

(2π)6

〈
δ̂
(
~k1

)
δ̂
(
−~k2

)〉
e−(~i~k1·~x1−i~k2·~x2) (4.2.5)

where δ being a real field, means δ(−~k) = δ∗(~k)〈
δ
(
~k1

)
δ∗
(
~k2

)〉
= (2π)3P

(
~k1

)
δD

(
~k1 − ~k2

)
(4.2.6)

ξ (|~x1 − ~x2|) = ξ(r) =

∫
d3~k

(2π)3
P (k)e−i

~k·~r (4.2.7)

4.3 Basic equations governing Large Scale Structure and methods of
solution

4.3.1 Equations for a self-gravitating fluid

A simplified description of the density perturbations evolution can be obtained from Newto-
nian theory if we treat a discrete medium of dark matter particles as a perfect fluid over the
expanding background satisfying the Friedmann equations. This approximation is valid as
long as we are interested in scales that are both sub-horizon and much larger than the mean
free path of the particles.

A perfect fluid is characterized by 3 functions: density distribution ρ(~r, t), entropy per
unit mass S(~r, t) and velocity field ~v(~r, t). The density distribution satisfies the continuity

1Non-gaussianity can be generated during structure formation
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equation:

∂ρ

∂t
+ ~∇(ρ~v) = 0. (4.3.1)

The forces acting on a small matter element with a mass M are gravity and pressure p:

~Fgr = −M~∇φ, (4.3.2)

~Fpr = −
∮
pd~σ = −

∫
V

~∇pdV ≈ −~∇pV, (4.3.3)

where φ is the gravitational potential and ~σ is the surface element.

Acceleration of this mass element on the trajectory is

a ≡ d~v(~r(t), t)

dt
=

(
∂~v

∂t

)
r

+
dri(t)

dt

(
∂~v

∂ri

)
=
∂~v

∂t
+ (~v · ~∇)~v. (4.3.4)

This leads to the equation

∂~v

∂t
+ (~v · ~∇)~v +

~∇p
ρ

+ ~∇φ = 0. (4.3.5)

The self-consistent gravitational potential is given by the Poisson equation

∆φ = 4πGρ. (4.3.6)

If the dissipation is negligible, the entropy is also conserved:

dS(~r(t), t)

dt
=
∂S

∂t
+ (~v · ~∇)S = 0. (4.3.7)

The final equation that closes the system is the equation of state that defines the pressure:

p = p(ρ, S) (4.3.8)

4.3.2 Linearized theory

The system of equations above is non-linear, but it can be considerably simplified in the
case when the perturbations are small: ρ = ρ0 +ρ1, ρ1/ρ0 � 1. Expanding density, entropy,
velocity, pressure and gravitational potential around the averages, we obtain:

∂δρ

∂t
+ ρ0

~∇ ~δv = 0 (4.3.9)

∂ ~δv

∂t
+
~∇δp
ρ0

+ ~∇δφ = 0 (4.3.10)
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∂δS

∂t
= 0 (4.3.11)

∆δφ = 4πGδρ (4.3.12)

The first-order perturbation of pressure is constrained by the equation of state to be

p = p(ρ0 + δρ, S0 + δS) = p0 + δp (4.3.13)

δp =

(
∂p

∂ρ

)
S

δρ+

(
∂p

∂S

)
ρ

δS ≡ c2
sδρ+ σδS (4.3.14)

where cs is the speed of sound.

The equation for the entropy perturbation state that the entropy is an arbitrary time-
independent function. Since the entropy perturbations are not observed, we can put δS = 0

without loss of generality.

Then the system becomes

∂δρ

∂t
+ ρ0

~∇ ~δv = 0 (4.3.15)

∂ ~δv

∂t
+
c2
s

ρ0

~∇δρ+ ~∇δφ = 0 (4.3.16)

∆δφ = 4πGδρ (4.3.17)

By taking the divergence of the velocity equation and using other equations to express
~∇δ~v and ∆δφ in terms of δρ, we obtain:

∂2δρ

∂t2
− c2

s∆δρ− 4πGρ0δρ = 0 (4.3.18)

Since the coefficients of equations do not depend on the coordinates, a transition to the
Fourier space can considerably simplify it:

δρ(~r, t) =

∫
δρk(t)e

ı~k·~r d3k

(2π)3/2
(4.3.19)

δρ̈k + (k2c2
s − 4πGρ0)δρk = 0 (4.3.20)

This equation has two independent solutions

δρk ∝ e±ı
√
k2c2s−4πGρ0t ≡ e±ıω(k)t (4.3.21)

The sign under square root governs the behaviour of δρk modes. We define the so-called
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Jeans scale kJ for which ω(kJ) = 0:

kJ =

√
4πGρ0

c2
s

(4.3.22)

For k > kJ the density perturbation behaves as a sound wave driven by pressure and
for k < kJ the perturbation exponentially grows or decays, reflecting the gravitational
instability:

δρk ∝ e±|ω|t (4.3.23)

When considering large scales k → 0, |ω|t→ t/tgr ≡
√

4πGρ0t. We interpret tgr as
the gravitational timescale characteristic to the collapse of the region with density ρ0.

4.3.3 Perturbations in the expanding Universe

The background density and average velocity fields are subject to Friedmann equations:

ρ̇0 = −3H(t)ρ0 (4.3.24)

~v0 = H(t)~r (4.3.25)

Ḣ +H2 = −4πG

3
ρ0 (4.3.26)

Note that the Hubble flow velocity explicitly depends on the coordinates, which will
complicate the form of the equations in the Fourier space. To avoid this, we can switch to the
so-called comoving frame where coordinates are multiplied by the scale factor ~x = a(t)~r.
In this frame the derivatives operators become

~∇ → 1

a
~∇ (4.3.27)

∂

∂t
→ ∂

∂t
−
(
~v0 ·

1

a
~∇
)

(4.3.28)

The system in the comoving frame takes form

∂δ

∂t
+

1

a
~∇δ~v = 0, (4.3.29)

∂δ~v

∂t
+Hδ~v +

c2
s

a
~∇δ +

1

a
~∇δφ = 0, (4.3.30)

∆δφ = 4πGa2ρ0δ, (4.3.31)

where δ ≡
(
δρ
ρ

)
is called density contrast.

Following the logic of the static background, we find the equation for the density

94



perturbation:

δ̈ + 2Hδ̇ − c2
s

a2
∆δ − 4πGρ0δ = 0. (4.3.32)

Finally, after Fourier transform with the respect to the comoving coordinate ~x the equation
becomes

δ̈k + 2Hδ̇k +

(
c2
sk

2

a2
− 4πGρ0

)
δk = 0 (4.3.33)

On the scales much larger than the Jeans scale, we can neglect the k-term and find the
most general solution

δ = C1H

∫
dt

a2H2
+ C2H (4.3.34)

For a flat, matter-dominated universe a ∝ t2/3 and H ∝ t−1:

δ = C1t
2/3 + C2t

−1 (4.3.35)

Note that in expanding Universe, perturbations grow much slower than in a static
Universe – only as a power-law of time instead of exponential.

Multicomponent case. When the Universe is filled with multiple kinds of matter that
interact mainly through gravity (e.g. dark matter and baryons), the dynamical equations for
each component remain unchanged, while the Hubble rate and the gravitational potential
are given by the total energy density.

4.3.4 Initial conditions for inhomogeneities

We have discussed above how the inhomogeneities evolve in the expanding Universe. What
is the simplest possible power spectrum?

In the case of P (k) = 0 the density field is completely homogeneous. Next to that,
what power spectrum would contain the least information?

Let’s assume a power-law shape of P (k) = Akn. First of all, observationally n ∼ 1.
And indeed, for n = 1 (known as the Harrison-Zeldovich spectrum) the variation of the
gravitational potential is scale-independent. Indeed, if we write the Poisson equation in
proper coordinates for a perturbation δ giving rise to a perturbation of the potential δΦ, we
have

∇2δΦ = 4πGρ̄δ (4.3.36)

in Fourier space

δΦ̂k = −4πGρ̄
δ̂k
k2

(4.3.37)

95



meaning that

∆2
δΦk
∝ k3

〈∣∣∣δΦ̂k

∣∣∣2〉 ∝ k3
〈
|δ̂(k)|2

〉 1

k4
∝ kn−1 (4.3.38)

4.4 From linear theory to N-body simulations

At some point, the growing perturbations achieve level δ ∼ 1 breaking the defining
assumption of the linear theory. These perturbations have to be described by non-linear
gravitational equations for which there are no analytical solutions.

However, it is possible to approximate the solutions by replacing individual DM
particles with large super-particles. In this case, we can follow the evolution of each
particle using computer simulations. This approach is called N-body simulations.

4.4.1 N-body simulations

Dark matter can be thought of as a collision-less self-gravitating fluid. If we associate a
distribution function to it, the equations of motion can be expressed in a form of collisionless
Boltzmann equation:

∂f

∂t
+ ~̇x

∂f

∂~x
− ~∇φ∂f

∂~̇x
= 0 (4.4.1)

where f(~x, ~̇x, t) is defined as number of particles at phase-space point (~x, ~̇x)

ρ(~x, t) =
m

a3(t)

∫
d3~̇xf(~x, ~̇x, t) (4.4.2)

We can approximate the solution of the Boltzmann equation by replacing the continuous
phase space with a collection of N pseudoparticles with mass M = ρ0V/N . By solving
in essence Newtonian equations of motion for the pseudo particles we can recover the
resulting distribution of matter up to the resolution scale given by the number of particles.

d~pi
da

= −
~∇φ
ȧ

(4.4.3)

d~xi
da

=
~pi
ȧa2

(4.4.4)

4.4.2 How to put initial conditions?

The starting configuration of DM and gas particles is typically computed at linear stages of
the perturbation revolution (z ∼ 100). The smallest scales to resolve control the precise
limit of the starting redshift – since the smallest scales reach the non-linear regime first.
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We extract the statistics of the primordial perturbations from the temperature of CMB.
The spatial correlations are measured to be Gaussian which means that all information is
contained inside the mean and the two-point correlation function (or power spectrum).

Two define the initial conditions for second-order Newton equations, we need to specify
the distribution and velocity fields.

Particle velocities depend on the initial distribution function of the matter which is
taken to be thermal for baryons but might be different for DM (depending on the model).
On larger scales, the gravitational potential causes bulk motion of the matter.

The power spectrum provides the amplitudes for the plane wave decomposition, but
not the phases which are considered random. Hence, a single power spectrum corresponds
to an infinite number of the density field realizations.

Translation between the density field and the discretized distribution of particles is
done using the Zeldovich approximation [122].

We represent the proper positions of the particles as a combination of the Hubble flow
and some displacement field:

~x(t) = a(t)~q + b(t)~f(~q) (4.4.5)

The particles are assumed to move along the displacement field ~f(~q) with velocity increasing
according to the ”growth” function b(t). The Lagrangian coordinates ~q are equal to the
initial positions of the particles and have a property that ρ(~q) = const. The proper density
is computed using ρ(~x)d~x = ρ(~q)d~q:

ρ(~x) = ρq

∣∣∣∣d~qd~x
∣∣∣∣ = ρq

∣∣∣∣d~xd~q
∣∣∣∣−1

= ρq

∣∣∣∣a(t)δij + b(t)
dfi
dqj

∣∣∣∣−1

= (4.4.6)

= ρ0

∣∣∣∣δij +
b(t)

a(t)

dfi
dqj

∣∣∣∣−1

≈ ρ0

[
1− b(t)

a(t)
~∇~f
]

(4.4.7)

δ(~x) ≡ ρ(~x)− ρ0

ρ0

= − b(t)
a(t)

~∇~f (4.4.8)

In linear theory the perturbations are non-rotational and displacement field can be written
as a gradient of the scalar field:

δ(~x) = − b(t)
a(t)

∆Φ (4.4.9)

Notice that this equation becomes the Poisson equation for the density perturbation
(4.3.31) if we identify b(t)Φ ≡ − 1

4πGaρ0
δφ at t = 0.

Finally, we obtain

~x(t) = a~q + ~∇(b(t)Φ) = a~q −
~∇δφ(~q, 0)

4πGaρ0

(4.4.10)
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This equation provides the displacements of the perturbations at time t using the initial
gravitational potential. Velocity field is given by a time derivative ~̇x(t).

So, to define the initial conditions for the simulation, we can define a grid of pseudopar-
ticle positions ~qi and correct them according to the Zeldovich approximation (4.4.10).

However, it has been shown that Zeldovich approximation might be insufficient to
correctly set the initial conditions on the smallest scales. A more precise approach is called
the Second-order Lagrangian Perturbation Theory and is implemented in a code 2LPT
[123].

Glass initial conditions. The choice of a regular grid for initial positions ~qi can introduce
artificial patterns in the simulation that survive until late times (Fig. 4.4).

The way to mitigate this is to choose an explicitly irregular grid. This can be done
by applying an N-body code to a regular grid with the direction of the gravity reversed.
Particles will attempt to separate as far as possible from each other while still keeping the
density more or less unaffected.

Figure 4.4: Initial conditions built from the evenly spaced grid (left panels) contain small-
scale regularities that survive until late time. Glass initial conditions (right panels) have the
same properties on large scales, but also are disordered on the small scales.
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4.5 Numerical methods of N-body simulations

Direct summation approach. The force experienced by each pseudoparticle is the sum
of the regular 1/r2 Newtonian forces. This poses a difficulty for computation when the
particles are close to each other. So to avoid divergences, the gravitational interaction is
regularized using Plummer softening:

~Fij = GM2 ~xi − ~xj
(|~xi − ~xj|2 + ε2)3/2

(4.5.1)

This corresponds to smearing the particles such that the majority of their mass is
contained inside a sphere of radius ∼ 3ε. This allows the particles to freely pass through
each other (~Fij(~xi = ~xj) = 0 without causing numerical problems.

The total force for each particle can be obtained as a direct sum over all other particles
and the system of equations can be solved by several numerical schemes, including Runge-
Kutta, Predictor-Corrector or Leap-Frog (we defer the discussion of them to [45].

Unfortunately, despite the simplicity of this method, it suffers from the O(N2) com-
plexity which limits its applicability to relatively small particle systems. Even though
specialized hardware has been developed to efficiently compute the forces (see GRAPE
computer [124], modern simulations do not use this method.

Tree methods. Using the same 1/r2 characteristic of the gravitational force, it is possible
to make meaningful approximations that reduce the complexity of computation fromO(N2)

to O(N logN).
The main idea lies in separating the nearest neighbors from the particles located far

away. Small errors in positions of the latter do not significantly influence the resulting force
– hence, we can group them into clusters reducing the number of pairs to consider.

One the simplest ways to achieve this is to form a binary tree out of particles by
grouping together the closest pairs, then pairs of pairs and so on. Each node of the tree
is annotated with center-of-mass location, total mass, and its ”size”. Then, to compute
the force one iterates over the tree starting from its root (the largest cluster) considering
whether each given node is ”far enough” to be considered a point particle. For a node of
size L at a distance D this can be expressed as{

if L� D treat node as a point particle

else repeat for its descendants
(4.5.2)

The precision is controlled by some tolerance parameter equal to the ratio L/D that is
”far enough”. When tolerance is set to 0, the algorithm becomes the direct summation.

Higher accuracy can be achieved if a low-order multipole expansion of each node is
computed in addition to the monopole contribution.
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This approach significantly reduces the time of force computation, but at the same time
at each simulation step, the tree needs to be rebuilt.

An evolution of this approach is represented by the Barnes-Hut algorithm [125] where
the tree is built by successively splitting the simulation volume into octants until each of
them contains 1 or 0 particles (Fig. 4.5). This structure allows to efficiently look for nearest
neighbors and to only partially rebuild the tree when particles leave their cells.

Figure 4.5: In Barnes-Hut algorithm [125], the particles are organized into hierarchical
structure (Quad-Tree) that allows for efficient nearest-neighbour search and multipole
expansion of the gravitational force.

Particle Mesh methods. An alternative approach to force computation uses the Fast
Fourier transform to efficiently solve the Poisson equation for the gravitational potential
and compute the resulting force from it.

The first step is to create a regular grid to evaluate the potential. The matter density is
interpolated to this grid using some kernel interpolation function W :

ρ(~gi) =
∑
j

mjW (~xj − ~gi) (4.5.3)

.
Given a density estimate, the Poisson equation is solved in the Fourier space:

φk = −4πGa2ρk
k2

(4.5.4)

Then the potential is transformed back to the real space and the force is computed
using a discretized derivative operator. Finally, the force is interpolated back to the particles
using the same kernel.
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This method is very efficient because the Fast Fourier Transform for grid size Ng

has the complexity of O(Ng logNg). At the same time to achieve a significant speed-up
compared to the tree methods, it is desired to have Ng � N which significantly limits the
force resolution.

P 3M methods. A combination of particle mesh and direct summation (or tree) methods
can be used to achieve the best of both worlds. The limited force resolution of the particle
mesh is compensated by the direct summation on short distances.

4.5.1 Interacting fluid

In the case of an interacting fluid, the Boltzmann equation governing the particle distribution
gains the collision term

∂f

∂t
+ ~̇x

∂f

∂~x
− ~∇φ∂f

∂~̇x
=

[
df

dt

]
c

(4.5.5)

The collision term encompasses all the information about the thermodynamical prop-
erties and phenomena occurring in the gas: pressure, viscosity, molecular and atomic
processes. In the whole generality, one would need to introduce the distribution functions
for all states possible in the system like atoms, ions, free electrons, etc. However, thanks
to the separation of scales, we can assume that the quantum phenomena are local and the
system can be adequately described by a distribution function of matter supplemented by
position-dependent fields describing the ”subgrid” physics (e.g., ionization fraction ξ(~x)).
One of the notable exceptions to this is the high energy radiation which can have a large
mean-free path.

The equations of motion of gas can be expressed as a system containing the continuity,
momentum and energy equations:

∂ρ

∂t
+ 3Hρ+

1

a
~∇ρ~v = −Γ∗ρ (4.5.6)

∂~v

∂t
+

1

a
(~v · ~∇)~v +H~v = − 1

aρ
~∇P − 1

a
~∇φ (4.5.7)

∂E

∂t
+ 2HE +

1

a
~∇((E + P )~v) =

Q− Λ(ρ, T )

ρ
(4.5.8)

where Γ∗ is the gas destruction rate due to star formation, E is the energy of gas per unit
comoving volume, Q and Λ account for heating and cooling of the gas. As before, these
equations need to be supplemented by the Poisson equation for the gravitational potential
and the gas equation of state.

The approaches to solving this system are divided into two groups: Eulerian and
Lagrangian methods. The difference between them lies in the way the fields are discretized.
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In Eulerian methods, the equations are solved on a static grid and the interactions such as
the flow of matter from point to point are computed. While Lagrangian methods are more
similar to particle systems that are mobile themselves.

Eulerian methods. This approach is a standard of computational fluid dynamics. These
methods are good at conserving integrals of motion and handling hydrodynamical shocks.
However, equations are solved on a grid which limits the resolution. In the context of
cosmological simulations, this is a problem because of the huge dynamical range: empty
voids versus galaxies, stars, etc.

A modern approach to avoid the computational complexity at high resolution is called
Adaptive Mesh Refinement (AMR) [126].

Lagrangian methods (Smoothed Particle Hydrodynamics). Since the highest resolu-
tion is required in regions of the matter collapse, assigning the fluid variables to the particles
moving with the fluid is a natural solution. However, this requires the introduction of
artificial viscosity to handle shocks.

Most methods are based on the Smoothed Particle Hydrodynamics by Gingold and
Monaghan [127]. The most important idea of the SPH is the interpolation scheme that
connects the ”physical” fields with their values at a set of particles.

First, let’s introduce an estimate of the physical field A(~x, t) smoothed over scale h:

AS(~x, t) =

∫
d~yA(~y, t)W (~x− ~y, h) (4.5.9)

W (~x, h) is the kernel interpolation function satisfying conditions

∫
W (~x− ~y, h)d~y = 1 (4.5.10)

lim
h→0

W (~x− ~y, h) = δ(~x− ~y) (4.5.11)

The definition of the smoothed field has the advantage that the derivatives of the
smoothed quantities are computed through the derivatives of the kernel function

~∇AS(~x, t) =

∫
d~yA(~y, t)~∇yW (~x− ~y, h) (4.5.12)

If we discretize the integral by splitting the volume into particles, we can compute the
physical quantities using the expression
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A(~y) =
∑
j

mj
Aj
ρj
W (~y − ~xj, h) (4.5.13)

ρ(~y) =
∑
j

mjW (~y − ~xj, h) (4.5.14)

Example derivation of gas equations can be found e.g. in a SPH review by Monaghan
[128].

d~vi
dt

= −
∑
j

mj

(
Pi
ρ2
i

+
Pj
ρ2
j

+ Πij

)
~∇iW (~xi − ~xj, h)~∇φ (4.5.15)

dεi
dt

=
∑
j

(
Pi
ρ2
i

+
Πij

2

)
(~vi − ~vj) · ~∇iW (~xi − ~xj, h) +

Qi − Λi

ρi
(4.5.16)

where Πij represents the mentioned artificial viscosity term.
In this approach, the shocks are spread over several smoothing lengths ∼ 3h. Because

of this, most modern implementations use a spatially-variable smoothing scale h ∝ ρ−1/3.

4.5.2 Subgrid physics

Equations describing the evolution of baryonic fluid 4.5.6 contain external functions like
gas destruction, cooling, and heating rates.

Cooling depends on the thermodynamical quantities as well as chemical composition. It
happens through the emission of radiation and redistribution of the kinetic energy between
particles during collisions, ionizations, and recombinations. A typical description of the
cooling involves a hot cloud of gas that radiates away from the thermal energy. But this
cloud is surrounded by medium so ultimately there is no ”thermal sink” and energy is just
redistributed between the components of the plasma.

Plasma of primordial composition at early times consists from free electrons e−,
chemical elements like H and He and their ionized states H+,He+,He++. From primordial
nucleosynthesis (Sec. 3) we know that Hydrogen and Helium constitute more than 99%
of the nuclei in the Universe, so these two species are enough to satisfactorily describe
gas at large scales. Other chemical elements could play a role in special conditions like in
galaxies or stars. The cooling rates for this very important case is shown in Fig. 4.6.

Note that the cooling function is proportional to the squared density of the gas (since
two-body processes are dominating the plasma). This means that cooling is much more
effective in the denser regions. An overdensity also represents a minimum of gravitational
potential that attracts particles. In the case of collisionless DM, particles are prevented
from falling directly into the center of the overdensity because of the angular momentum
conserved for all particles individually. On the other hand, radiating particles like baryons
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Figure 4.6: Cooling rates as a function of temperature for a primordial composition gas
in collisional equilibrium [129]. The heavy solid line shows the total cooling rate. The
cooling is dominated by collisional excitation (short-dashed lines) at low temperatures and
by free-free emission (thin solid line) at high temperatures. Long-dashed lines and dotted
lines show the contributions of recombination and collisional ionization, respectively.

will on average move closer to the center. This, in turn, will increase the density and cooling
further.

This mechanism leads to the generation of compact, dense baryonic structures that
eventually become stars and galaxies. DM plays an important role in providing the deep
potential wells for baryons to fall in.

Star formation. One of the factors playing against the cooling and contraction of baryonic
overdensities is the heating due to the increasing pressure. Particles falling in the potential
well gain some momentum that compensates for the energy radiated away. At some point,
the density and temperature in the center of the cloud might overcome the Coulomb barrier
of the nuclei and spark fusion. This would start a chain reaction since fusion is a potent
source of energy radiation that will further heat the surrounding plasma.

As a net result, a star is born that on cosmological scales can be treated as a point-like
radiation source. The precise details of this process have not been modeled and in any
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case, would require tremendous resolution in the context of the cosmological simulation.
Typically a single pseudoparticle in simulation is orders of magnitude heavier than stars.
Because of this, star formation is treated as a local process happening ”inside” a pseudo
particle that converts baryons into star particles. Naturally, this requires additional models
to specify the conditions and rate of star formation.

For galaxy formation, the feedback processes from the stellar winds and explosions are
important and require dedicated modeling. However, they are relevant only to relatively
small scales.

Photo-heating and -ionization. Nuclear reactions inside the stars serve as radiation
sources capable of heat and ionize the surrounding gas. In general, the treatment of this
phenomenon requires solving the radiative transfer equations. However, given a sufficiently
homogeneous distribution of sources that is dense in relation to the mean free path of the
radiation, we could treat this radiation as a homogeneous field covering all space – the
cosmic Ultraviolet Background (UVB).

The interaction of the UVB with the gas depends on the cross-section for interaction
of a particular atom specie σi(ν) and can be encapsulated in photoionization Γγi and
photoheating εi rates:

Γγi ≡
∫ ∞
νi

4πJ(ν)

hν
σi(ν)dν [s−1] (4.5.17)

εi ≡
∫ ∞
νi

4πJ(ν)

hν
σi(ν) (hν − νi) dν [ergs s−1] (4.5.18)

where J(ν) is the intensity of the UVB (in units of ergs−1cm−2sr−1Hz−1). These rates
describe how frequently atoms are ionized by radiation and what excess energy is introduced
into plasma by photoelectrons.

Stars might not be solely responsible for the formation of the UVB. Quasars have
been long recognized as important sources of ionizing radiation. Other sources like decay-
ing/annihilating DM or evaporating black holes might also participate.

The intensity of the UVB is another quantity that has to be determined from external
models. When supplied, it yields the total heating rate of the gas:

Q =
∑

niεi (4.5.19)

4.6 Simulation codes

Since typical cosmological simulations include both dark matter and gas evolved at the
same time, usually the codes layer some kind of an N-body method for DM with either SPH
or AMR handling the baryons. Depending on the desired processes, additional numerical
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ingredients are added, ranging from subgrid physics for star and black hole formation to
radiative transfer schemes for the propagation of radiation.

4.6.1 Code used in this work

In our simulations, we use a modified version of the code P-Gadget3 by Volker Springel et
al. [45]. This code uses a TreePM method for collisionless dynamics that complements
the accuracy of the tree method on small scales with the efficiency of the particle mesh on
large scales. SPH in an explicitly entropy-conserving formulation is used for gas dynamics.

Since we are interested in the physics of the Intergalactic Medium which is either only
slightly overdense or underdense, it is not necessary to model precisely the dense regions.
This allows us to cut on computing time by using an extremely simple placeholder of the
star formation model.

Star formation heuristic. Stars occur only in dense regions and besides their role in the
formation of UVB does not participate in structure formation. We use a simple criterion of
transforming gas particles into stars: if the temperature of the particle is < 105K while its
overdensity is larger than some critical overdensity (which we take equal to 103).

4.7 Comparison between observations and simulations of Large Scale
Structure

As the result of the approach presented in the previous sections it is possible to produce
simulations of the LSS at different scales. For example, Fig. 4.7 shows the comparison
between the Millennium simulations [130] (red) with the 2dFGRS galaxy survey [115]
(blue). We see the remarkable similarity between them, without hint it is not possible to
distinguish simulations from observations.

To be more quantitative, let us look at the galaxy-galaxy correlations function produced
in the modern IllustrisTNG simulation [132], see Fig. 4.8. Comparing it to the data of the
Sloan Digital Sky Survey we see the excellent agreement between them. These, and other
comparisons between the simulations and observations convince us that ΛCDM cosmology
perfectly fits the data on the LSS.
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Figure 4.7: Comparison of the galaxy surveys with the simulations. The small slice at the
top shows the CfA Great Wall, with the Coma cluster at the centre. Drawn to the same
scale is a small section of the SDSS, in which an even larger Sloan Great Wall has been
identified. This is one of the largest observed structures in the Universe, containing over
10,000 galaxies and stretching over more than 1.37 billion light years. The cone on the left
shows one-half of the 2dFGRS, which determined distances to more than 220,000 galaxies
in the southern sky out to a depth of 2 billion light years. The SDSS has a similar depth but
a larger solid angle and currently includes over 650,000 observed redshifts in the northern
sky. At the bottom and on the right, mock galaxy surveys constructed using semi-analytic
techniques to simulate the formation and evolution of galaxies within the evolving dark
matter distribution of the Millennium simulation are shown, selected with matching survey
geometries and magnitude limits. Credit: Springel et al. [131]
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Figure 4.8: Comparison of the projected two-point galaxy correlation functions of the
TNG300 simulation (solid) and the TNG100 simulation (dotted) at z = 0.1 with the Sloan
Digital Sky Survey, in six different stellar mass ranges. Taken from [132].
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