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Chapter 3

Big Bang Nucleosynthesis1

Big Bang Nucleosynthesis (BBN) is the earliest probe of the Universe that we currently
have. It is sensitive to the physics that happened from ∼ 1 to ∼ 200 seconds after the Big
Bang. The observable quantities are abundances of light elements that were fused during
nuclear reactions in the Early Universe. They are sensitive to the presence of new particles
that exist or decay during BBN.

In this chapter we describe the basic idea of the primordial nucleosynthesis (Sec-
tion 3.1), discuss the prediction of the Standard Model (SM) with standard cosmology
(Section 3.2) and compare it with observations (Section 3.3). Next, we discuss the effects
of Beyond the Standard Model physics on BBN (Section 3.4) and specifically in the case of
Heavy Neutral Leptons (HNL, see Section 3.5) that we would like to constrain. To do this
we developed a numerical code that is described in Section 3.6. In the final section 3.7 we
present our result and give conclusions.

3.1 Origin of chemical elements

Discovery of the constituents of atomic nuclei and their ability to combine into chemical
elements posed a question: how the observed distribution of elements has been generated?

We know that many elements that are present at the Earth can be created by stellar
evolution. However, there are regions in the Universe that are not much influenced by star
formation (see detailed discussion in Section 3.3). Measurement of abundances of chemical
elements in such regions indicates the existence of large amount of Helium-4 (about 25%

mass fraction) and some other light elements like Deuterium, Helium-3, Lithium. The
stellar origin of Deuterium is not probable because of its depletion in stars [75, 76]. Even
more striking evidence is a measurement of Helium at the time of the decoupling of

1Results of this chapter are presented in papers [3, 4]. The main contribution of Andrii Magalich is the
development of pyBBN, the numerical code that models primordial nucleosynthesis in presence of Heavy
Neutral Leptons with masses above the pion mass that haven’t been modelled previously. Treatment of chains
of meson decays has been developed with major contribution by Nashwan Sabti.
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cosmic microwave background [21]. The possible explanation of these measurements is
the primordial origin of these elements.

Most of the heavy chemical elements originate from stars. However, we have reasons
to believe that some chemical elements are primordial – created in the Early Universe
when it was hot and homogeneous.

This poses a paradox: usually we imagine the Early Universe as being in equilib-
rium, but then the most abundant element would be Iron, because it has the largest
binding energy per nucleon (Fig. 3.2).

We observe only light primordial elements, but not Iron. This means that nuclear
reactions took place in the Early Universe, but were not in the thermodynamic equilibrium.
It is possible if the rate of nuclear reaction Γnuc has the same order as the rate of expansion
of the UniverseH at the time of BBN and the conditions for nuclear reactions to be effective
existed only for a relatively short period of time.

For the beginning of nuclear reactions the electric repulsion between protons has to
be overcome. Strong interactions are extremely short-range, therefore either a very high
density is needed, such that the distance between nucleons is of the order of characteristic
scale of strong interactions (as it happens e.g. in neutron stars) or the temperature should
be large enough, such that protons have enough kinetic energy to overcome electrostatic
barrier and approach each other closely enough.

For the second scenario the temperature about T ∼ 109 K ∼ 100 keV is needed (this is
a typical temperature in the cores of stars [77]). At such a temperature, the energy density
of photons is very large. To estimate the concentration of baryons, Gamov assumed that a)
it should be such that the reaction rate of nuclear reactions is of the order of the expansion
rate of the Universe (see the discussion above) and b) the Universe is radiation dominated,
as the density of baryons will be much lower. The latter assumption can be verified by the
calculation (see below).

Assuming that the Universe is radiation-dominated, the Hubble rate can be estimated
as

H ∼ T 2

Mpl
(3.1.1)

The rate of nuclear reactions is given by

Γnuc = 〈σnucv〉nb, (3.1.2)

where σnuc ∼ 10−29 cm2 is a capture cross section of fast neutrons in hydrogen [77],
v ∼

√
T/mp and nb is a number density of baryons. From this one can easily estimate the

baryon-to-photon ratio
ηb =

nb
nγ
∼ 10−10 (3.1.3)
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The Early Universe was radiation-dominated with baryon-to-photon ratio ηB ∼ 10−10.

3.2 Standard Model Nucleosynthesis

In this section, we will discuss the Standard Model BBN. We will start with a simplified
qualitative picture, that is still able to predict helium abundance with precision ∼ 10%

(Section 3.2.1). Next, we will discuss a method on how to predict abundances of other light
elements and how to estimate helium abundance more accurately (Section 3.2.2).

3.2.1 Simplified picture of Big Bang Nucleosynthesis

As we discussed in the previous section, the Early Universe was radiation-dominated
(ηb ∼ 10−10). At the temperature ∼ 100 keV that is relevant for nucleosynthesis there are
only e−, γ, ν, p, n in the plasma. At some point protons and neutrons start to fuse into
nuclei.

In the Early Universe, only nuclear reactions with 2 initial particles are effective, as the
probability of 3-particle reactions is low. Also, we know that stable elements with atomic
numbers A = 5 and A = 8 are absent, see Fig. 3.1. This results in the absence of elements
with a mass number larger than 7 during BBN.

Figure 3.1: Chart of the nuclei stability. Here N is a number of neutrons, Z is a number of
protons. Red dashed lines indicate the absence of a stable elements with atomic number
A = 5, 8. Adopted from [78].
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Production of the heavy elements is limited by the absence of stable nuclei with atomic
numbers A = 5 and A = 8 – all elements heavier than Li7 and B7 are created through
the 3-particle interactions in the dense medium of stars.

Among the lightest nuclei Helium-4 has the maximal binding energy per nucleon
among light elements, see Fig 3.2. This means that the most probable reaction with light
nuclei will be the formation of Helium-4, while reactions of helium dissociation have a
much lower probability.

Figure 3.2: Mass per nucleon of stable nuclei. Credit: oa-abruzzo.inaf.it

Almost all neutrons and protons will fuse into Helium. The resulting amount of Helium
is defined by the neutron-to-proton ratio at the start of the nuclear reactions.

Assuming that (almost) all available neutrons will be used to create helium, the mass
abundance of Helium-4 can be estimated as

Y4He ≈
4mpnn/2

mpnp +mpnn
=

2
nn
np

(tBBN)

1 +
nn
np

(tBBN)
, (3.2.1)

where nn and np are number densities of neutrons and protons, and tBBN is a time of
start of nucleosynthesis. Therefore, it is important to understand what is the value of
neutron-to-proton ratio.
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At large temperatures neutrons and protons were in thermal equilibrium because of
weak reactions. In order to estimate nn/np(tBBN), we need to establish whether the neutrons
are in equilibrium at tBBN. Let us consider the effectiveness of weak p↔ n processes

e+ p↔ n+ ν, ν̄ + p→ e+ + n (3.2.2)

Before the decoupling density of neutrons or protons are given by thermal distribution,

nA = gA

(
mAT

2π

)3/2

e(µA−mA)/T , (3.2.3)

where
µp + µe = µn + µνe (3.2.4)

Electron chemical potential is negligibly small, since

µe
T
∼ ∆ne

T 3
∼ np
nγ
∼ ηb ∼ 10−9 (3.2.5)

So neutron-to-proton ratio at the temperature of freeze out Tn is

nn
np

(Tn) ≈ exp

(
µn −mn

Tn
− µp −mp

Tn

)
= exp

(
−∆m

Tn
− µνe
Tn

)
, (3.2.6)

where ∆m = mn −mp ≈ 1.293 MeV. In SM there is no reason to consider that µνe � µe,
so we take µνe ≈ 0 and get

nn
np

(Tn) = exp

(
−∆m

Tn

)
(3.2.7)

The simple estimate of Tn is given by

〈Γn→p〉(Tn) ' H(Tn) =
T 2
n

M∗
Pl
, M∗

Pl =
MPl

1.66
√
g∗

(3.2.8)

where g∗ ≈ 10.75 is the number of ultra-relativistic DoF at Tn ' MeV and 〈Γn→p〉 is
thermally averaged neutron conversion rate,

〈Γn→p〉 = 〈σne+→pν̄evne+〉ne + 〈σnνe→pevnνe〉nνe , (3.2.9)

where vne+ and vnνe are relative velocities. Also we neglect neutron decays. Very rough
simple estimate obtained assuming T � ∆m = mn −mp,me gives 〈Γn→p〉 ' G2

FT
5 and

provides
Tn ' 1/(m∗PlG

2
F )1/3 ' 1.4 MeV (3.2.10)

More accurate estimate for the interaction rates [79], that keep me,∆m and include elec-
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troweak corrections, gives
Tn ≈ 0.72 MeV (3.2.11)

This temperature is larger than TBBN ' 100 keV, so we need to trace changing of the n-p
ratio for T . TBBN. The neutron-to-proton ratio at this temperature Tn is

nn
np

∣∣∣∣
Tn

≈ 1

6
. (3.2.12)

At high temperatures, neutrons and protons are in thermal equilibrium. Because of
the expansion of the Universe, the weak interactions decouple from equilibrium. This
interrupts the nucleon conversion and fixes the initial neutron-to-proton ratio.

After freeze-out the ratio (3.2.7) changes only due to neutrons decays and comoving
number densities change as

nn(t) = nn(Tn)e−t/τn , np(t) = np(Tn) + nn(Tn)
(
1− e−t/τn

)
, (3.2.13)

where τn is neutron lifetime and t is a time after freeze out Tn. So, the neutron-to-proton
ratio at the beginning of BBN is

nn
np

(tBBN) =
exp

(
−∆m

Tn

)
e−tBBN/τn

1 + exp
(
−∆m

Tn

)
(1− e−tBBN/τn)

(3.2.14)

Because of the neutron decay, the neutron-to-proton ratio at the beginning of BBN is
very sensitive to the time tBBN when nuclear reactions become effective. This is called
the cosmic chronometer.

3.2.1.1 Start of nuclear reactions

The chain of 2-body nuclear reaction for the light elements is shown in Fig. 3.3. We see
that to start nuclear reaction Deuterium should be formed in the first place. However, it has
low binding energy and cannot be abundantly generated in the Universe full of high energy
photons that can disintegrate it. The relative number of baryons to photons is very low
(ηb ∼ 10−10), so typically there are many photons with energy E > ∆D for each nucleus
even when T < ∆D because of the high-energy tail of photon distribution.

One can estimate the time when the abundance of Deuterium becomes large as a time
when the number of the high-energy photon approximately equal to the number density of
baryons,

nγ(E > ∆D) ∼ nb. (3.2.15)
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Figure 3.3: Nuclear reaction framework of nucleons and light elements.
Credit: www.aldebaran.cz

Using Bose-Einstein distribution one can estimate number density of high-energy photons
as

nγ(E > ∆D) = 4π

∫ ∞
∆D

p2dp

e
p
T − 1

≈ 4πT 3

∫ ∞
∆D/T

e−xx2dx = (3.2.16)

= 4πT 3

(
2 + 2

∆D

T
+

∆2
D

T 2

)
e−

∆D
T ≈ 4πT∆2

De
−∆D

T (3.2.17)

Hence, Deuterium becomes abundant starting from the temperature TD satisfying

ηb ·
ζ(3)

2π3
≈ ∆2

D

T 2
D

e
−∆D
TD (3.2.18)

For ηb = 10−10 this results in TD ≈ 65 keV (which is consistent with assumption
TD � ∆D).

To produce Helium (or any other element) through 2-particle interactions, nucleons need
to go through Deuterium ”bottleneck”. Naively, its production should become effective
at temperatures around the binding energy ∆D = 2.2 MeV. However, Deuterium
generation is challenged by a large amount of high-energy radiation. This delays
nucleosynthesis until T ∼ 65 keV� ∆D

We are now ready to make a simple prediction for He abundance. The neutron-to-proton
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ratio (3.2.14) is decreased to

nn/np(tBBN) ≈ 1

6
× e−(t(tBBN)−t(Tn))/τn ≈ 1

7
. (3.2.19)

So, the primordial abundance of Helium-4 we can be estimated from Eq. (3.2.1) as

YHe ≈ 0.227. (3.2.20)

This simple estimate has uncertainty of only ' 10%.

A simple analytic prediction of He abundance based on two numbers: neutron freeze-
out temperature Tn and beginning of deuterium nuclei TD gives Helium abundance
YHe ≈ 23%.

3.2.1.2 Neutron decay during Big Bang Nucleosynthesis

The intuitive picture that was used above for estimation of Helium abundance was that all
available neutron at the beginning of BBN combines with protons to form Helium-4. This
is correct if one can neglect neutron decay during BBN. Let us check that the rate of nuclear
reaction is high in comparison to the rate of neutron decay, so the neutrons quickly become
part of nuclei and do not decay.

At the start of the BBN the neutron decay competes with the neutron burning. Let us
compare the decay rate

Γn,decay = 1/τn ≈ 1.1 · 10−3 s−1 (3.2.21)

with the rate of the nuclear reaction Γpn→γD. A simple estimate of the nuclear rate is
given by

Γpn→γD = nn · 〈σv〉 '
2

π2

ηb
7
ξ(3)T 3 · α

m2
π

√
T

mn

≈ 6 · 10−2

(
T

TD

)7/2

s−1, (3.2.22)

where we considered

〈σv〉 ' αEM/m
2
π

√
T/mn ≈ 1.5 · 10−25 m2/s. (3.2.23)

Here m−1
π corresponds to the spatial range of strong interactions and α is the fine structure

constant related to the creation of a photon, and used the neutron-to-proton ratio (3.2.19)
and baryon-to-photon ratio to estimate nn = 1

7
ηbnγ .

Comparing (3.2.21) and (3.2.22), we conclude that Γpn→γD � Γn,decay, and therefore
the most of neutrons are captured in D before decaying.
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As soon as BBN starts, we do not need to consider the decay of neutrons since most of
them are incorporated in nuclei.

3.2.1.3 End of nuclear reactions

In this section, we will discuss when nuclear reactions stop. First, we will consider the
general mechanism of freeze-out of nuclear reactions because the rate of reaction becomes
smaller than the Hubble rate. However, as nuclei are positively charged their fusion can be
stopped because of the Coulomb repulsion, which is known as the Coulomb barrier, so we
will consider this effect below as well.

Freeze-out of nuclear reactions Let us make of conservative estimate of the nuclear
reaction decoupling considering some schematic nuclear reaction A + B → C + D.
Similarly to the p+ n→ D + γ process, the reaction rate can be roughly approximated as

Γnuclear = nA · (σv) ' 2

π2
ηbξ(3)T 3 · 1

m2
π

√
T

mC

≈ 10−16

(
T

1 MeV

)7/2

, (3.2.24)

where

〈σv〉 ≈ 1

m2
π

√
T

mA

≈ 1.7 · 10−6 MeV−2

√
T

1 MeV
, (3.2.25)

and we considered nA ' nn, mA ' mn.
Comparing the interaction rate (3.2.24) with the expansion rate of the Universe, we

can determine the decoupling temperature:

T 2

mPl∗
= H ' Γnuclear (3.2.26)

The solution is given by
Tdec ' 1.9 · 10−1 keV (3.2.27)

So we expect that at lower temperature nuclear reactions stop.

Coulomb barrier Let us now estimate the temperature at which the nuclei reaction is not
possible because of the Coulomb barrier. Due to Coulomb repulsion, a typical cross-section
contains an exponential factor depending on nuclear charges [80, 81]

〈σv〉 ∝ e−η, η =
Z1Z2αEM

v(T )
≈ Z1Z2αEM√

T
·
√
A1A2√

A1 +
√
A2

(3.2.28)

where Z is atomic number and A is mass expressed in atomic units.
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As soon as this factor becomes small, reaction inevitably will freeze out. Then, for each
pair of interacting nuclei we can compute a tentative interaction freeze-out temperature:

η ' 1⇒ TCoulomb '
A1A2Z

2
1Z

2
2

(
√
A1 +

√
A2)2

keV (3.2.29)

Coulomb barrier kick-in temperatures for some reactions are given in Fig. 3.1. They are

A1
Z1

X1
A2
Z2

X2 T, keV
1
1 p 2

1 D 0.34
2
1 D 2

1 D 0.5
2
1 D 3

1 T 0.6
3
1 T 4

2 He 3.4
7
3 Li 1

1 p 4.7
3
2 He 4

2 He 13.8

Table 3.1: Coulomb barrier suppression temperature T for 2-body nuclear reactions with
initial nuclei A1

Z1
X1 and A2

Z2
X2.

close to the scale of decoupling of nuclear reactions, but Coulomb barrier is especially
important in the generation of heavier nuclei of Lithium and Beryllium.

For a complete understanding of when nuclear reactions fall out of equilibrium and
stop, one has to consider a full cross-section for each reaction.

Nuclear reactions between charged nuclei cease because of the freeze-out of nuclear
reactions at the temperature of about 0.2 keV. Some nuclear reaction freeze-out earlier
because of the Coulomb barrier.

3.2.2 Predictions beyond 4 He

Above we have shown how to predict the abundance of Helium. What about other elements?
Before the start of BBN, the concentration of Deuterium is very low because of the

high amount of radiation. Because of this, the rate of reactions involving Deuterium as the
reactant is also low (Γ � H). The chain of nuclear reactions starts when Deuterium is
generated in significant numbers (nD ∼ nn). This system is not in thermal equilibrium and
its dynamics can be described by the kinetic approach.

The abundance of Helium is easily estimated because of its high binding energy (using
a simple estimate (3.2.20) one can get it with ∼ 10% precision). To predict the
abundances of other elements we need to use kinetic Boltzmann equations because
rates of nuclear reactions do not exceed Hubble rate and nuclei are not in equilibrium.
We write these equations for nucleons and nuclei using the laboratory information about
the nuclear cross-sections.
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Boltzmann equations for different particles. Naively, to describe the system kinetically,
one would write all possible Boltzmann equations [82] including all possible interactions.
However, electromagnetic interactions are sufficiently fast at all times, so all electrically
charged particles are considered to be in dynamical (but not necessarily chemical) equilib-
rium. These particles have a thermal distribution that is fully characterized by temperature
(equal to photon temperature) and chemical potential. Fast interactions equilibrate individ-
ual temperatures of the species with the temperature of radiation (photons). This fact greatly
reduces the system of kinetic equations and the number of quantities to find solutions for.

Nuclei are heavy and charged. Because of EM interaction, they are in kinetic equilib-
rium, so their velocity distribution is given by Boltzmann distribution. We can integrate the
Boltzmann equations for nuclei to get equations on number density n.

Then, the following system of equation arises:

∂fνi(t, y)

∂t
−Hp∂fνi

∂p
= Ifcoll{f, n} (3.2.30)

∂nn(t)

∂t
+ 3Hnn = Incoll{f, n} (3.2.31)

∂nX(t)

∂t
+ 3HnX = Incoll{f, n} (3.2.32)

These equations describe the evolution of neutrinos νi, neutrons n and nuclei
X = D,T,He, Li, . . .

Electrons and photons are in thermal equilibrium and we know their distribution
functions. Nucleons and nuclei are in kinetic equilibrium with the medium, so it is
enough to use for them an integrated Boltzmann equation for number density. As
neutrinos freeze-out, we need to use the full Boltzmann equation for them.

Because of the tiny baryon-to-photon ratio, nuclei negligibly influence the cosmo-
logical expansion. This allows separating the nuclear reactions as a subsystem on the
cosmological background.

To close the system of equations, one has to supply the Friedmann equation and
condition of energy conservation:

H2 =
8πGρ

3
(3.2.33)

dρ

dt
= −3H(ρ+ P ) (3.2.34)

These equations contain the following independent variables: distribution functions of the
particles that departed from equilibrium fν , number densities of the neutrons and nuclei
nn, X , temperature T and scale factor a.
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3.2.2.1 Big Bang Nucleosynthesis codes

Kinetic equations described above together with an expansion of the Universe give us a
closed system of equations that can be solved numerically. There are plenty of codes that
compute the abundances of the chemical elements:

• KAWANO [83] (also known as NUC123; 1992) – modified version of the Fortran
code by Wagoner (1972). Solves the nuclear reactions network with simple neutron-
to-proton conversion rates in presence of lepton asymmetry and various cosmological
parameters

• FASTBBN [84] (1999) and JAVA calculator [85] (1999) – simple codes designed
primarily to impose bounds on Neff .

• AlterBBN [86] (2011) – public rewrite of KAWANO. Designed to compute abun-
dances in alternative cosmologies (extra dof, quintessence, etc).

• PArthENoPE [87] (2018) – Fortran code that builds on KAWANO and adds the
following effects. Improved calculations for the neutron-to-proton reactions are
implemented via new fits, not as effective corrections added a posteriori. They also
include effects of finite nucleon mass and non-thermal neutrino spectral distortions.

• PRIMAT [79] (2018) – Mathematica code that claims to provide 10−4 Helium ac-
curacy. Comes with precomputed neutron-to-proton rates in various assumptions:
radiative, zerotemperature, corrections, finite nucleon mass corrections, finite temper-
ature radiative corrections, weak-magnetism, and QED plasma effects, which are for
the first time all included and calculated in a self-consistent way.

The codes all agree in the predictions of the SM BBN and give the following results for the
mass abundances of Helium-4 and Deuterium:

YHe ≈ 0.247, D/H ≈ 2.68 · 10−5. (3.2.35)

3.2.3 Summary of Standard Model Nucleosynthesis

BBN predicts the existence of light primordial nuclei: mainly Deuterium, Helium-3/4,
Lithium, and Boron. The abundance of Helium-4 depends only on the neutron-to-proton
ratio at the time of the start of nuclear reactions. Simple estimates allow us to obtain
this value with accuracy of ∼ 10% (Sec. 3.2.1.1). To get better accuracy and predict the
abundances of other elements, we need to use the kinetic approach (Sec. 3.2.2).

Standard Model predictions depend on the baryon-to-photon ratio which can be mea-
sured in some independent experiment – e.g. from CMB. Additional uncertainty comes
from the contradictory measurements of the neutron lifetime [88]. However, the effect of
this uncertainty on Helium abundance is quite small.
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Standard nucleosynthesis theory gives specific predictions for abundances of elements
with high precision. The only free parameter of the Standard BBN is the baryon-to-
photon ratio ηb. It can be measured in some independent experiments – e.g. from
CMB.

3.3 Observations

In this section, we want to discuss which observables can be deduced from the experiments
and compare our theoretical predictions with measured values. Moreover, since any
measurement carries also an error, available data instructs us to what precision it is required
to do theoretical calculations.

3.3.1 Helium-4

Primordial helium abundance has to be measured in regions with no star formation.
Below, we discuss 3 methods that utilize metal-poor extragalactic regions, intergalactic
medium and CMB.

Why these targets are used to infer He abundance? At the time of formation of CMB, the
Universe was homogeneous and did not contain any stars – hence no star formation by
definition. Later the Helium abundance will be the closest to the primordial in metal-poor
environments (by “metals”, astronomers refer to all elements heavier than He), like HII

regions (zones of ionized Hydrogen around hot stars that emit a lot of UV radiation) of
metal-poor star-forming galaxies, and gas clouds observed in absorption against a distant
quasar. These environments have a composition very close to primordial because they
were virtually not affected by star formation. This is confirmed by the observation of low
metallicity in these objects (100 times lower than in Sun), which is known by the extreme
weakness of emission/absorption lines of metals in their spectra (dominated by H and He

lines). If there was vigorous star formation occurring at some epoch in these objects, the
metals lines observed in spectra, will be significantly stronger, which is not the case. Thus,
extremely low metallicity indicates that these targets didn’t undergo processes responsible
for change of chemical composition, and that’s why they are believed to have nearly original
(primordial) composition.

3.3.1.1 Low-metallicity extragalactic method

Using the measurements in low-metallicity HeII regions, one can build the Y − O/H

relation. Extrapolating it to 0 metallicity one is able to compute the primordial Helium
abundance [89, 90], see Fig. 3.4. This method gives [90] at 95% confidence

Y = 0.2551± 0.0022 (3.3.1)
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Figure 3.4: Helium abundance in 28 HII low metallicity regions as a function of Oxygen-
to-Hydrogen ratio. The lines show the results of the linear regression to the data. The
primordial value is measured by extrapolation of O/H to zero. Credit: Izotov et al. [90]

Although formal statistical error bar of this method are at sub-% level, the measurement
is known to be dominated by the systematic uncertainties, see [91, Section 4.3] for a critical
overview in this method.

The method of measuring Yp from low-metallicity extragalactic regions formally gives
very precise results (∆Y/Y < 1%), but is expected to have large systematic errors.

3.3.1.2 Intergalactic medium method

The work [92] uses observational data of gas clouds with low metal content, which are
observed against a quasar, located far behind the cloud (not in its vicinity). These clouds
are composed mostly of Hydrogen and Helium, and very little of other elements. They are
highly suitable for robust determination of the Helium abundance because the concentration
of Hydrogen is high enough to produce strong absorption that can be detected, but at the
same time not too high to distort the absorption line profile and make it impossible to
extract exactly the H and He abundances. If the density is too high in the cloud, the atoms
absorbing photons are colliding with other atoms before they de-excite. The lifetime of
the electron in the excited state is reduced, and this yields a broader line profile due to the
Heisenberg uncertainty principle, eventually saturating and distorting the absorption line
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profile. Reconstruction of the column densities for saturated spectral lines is not reliable.
On the other hand, at moderate densities, the atom is de-excited before colliding with
another atom, and the resulting line profile has a pure Lorentzian shape determined only by
the lifetime of the atom in the excited state (∼ 10−8 s.) and the column density of the atom.
Using pure Lorentzian profiles one can unambiguously and reliably find the column density
of an element.

The neutral Hydrogen (HI) column density is inferred from the flux decrease beyond
91.2 nm wavelength (13.6 eV, the threshold energy for ionization of Hydrogen). The
photons having shorter wavelengths are able to ionize Hydrogen and thus less of these
photons will reach us. The flux decreased Nobs/Nemit is proportional to the column density
of neutral Hydrogen nHI :

Nobs = e−τNemit, τ = L/λ, λ =
1

σionnHI
, (3.3.2)

where τ is the optical depth, L is the distance and λ is the mean free path given by ionization
cross section σion. The Helium column density is retrieved from neutral Helium (HeI)
absorption lines. The equivalent width of an absorption line (the area of the line divided by
the continuum emission level) is a measure of how much flux was absorbed, and thus is
proportional to the column density.

Important remark: since only neutral elements are seen in these spectra, it is necessary
to estimate the ionization level of the cloud. The authors of [92] use simulations to
illuminate gas with UV radiation imitating conditions (exposure due to quasars, galaxies,
etc) in the observed cloud and extracting the corresponding ionization level.

The same method has been earlier applied to the determination of Deuterium [93].

Y = 0.250+0.033
−0.025, D/H = (2.527± 0.030) · 10−5 (68% confidence) (3.3.3)

The IGM method studies the regions of lower metallicity than the extragalactic
method (by∼ 30%). These regions are supposedly closer to the primordial composition.
However, this method has a much larger statistical error of ∆Y/Y ∼ 10%.

3.3.1.3 Cosmic Microwave Background method

Planck collaboration [21] provide a Helium measurement based on the free electrons density
between Helium and Hydrogen recombination. The damping tail of CMB anisotropies is
sensitive to the electron density and it is possible to measure this effect when Helium is
already recombined (z ∼ 2000), but before Hydrogen recombination (z ∼ 1100).

This effect of Helium abundance is however partially degenerate with the effective
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number of relativistic degrees of freedom Neff , requiring a simultaneous fit:

Y = 0.246± 0.035 (3.3.4)

Neff = 2.97+0.58
−0.54 (3.3.5)

at 95% confidence interval, using Planck TT,TE,EE+lowE+lensing+BAO [21, Section
7.6.2].

Measurement through CMB guarantees that the Helium abundance is not affected
by stellar nucleosynthesis. The error of this method is about ∆Y/Y ∼ 14%. However,
Planck’s collaboration emphasizes those systematics of the polarization spectra have
not been accurately characterized.

3.3.2 Deuterium

Because of its small binding energy, Deuterium is not created by other sources and is
destroyed in stars [94]. This means that any measurement of Deuterium is guaranteed
to be not higher than the primordial value. The local interstellar value of D/H ratio is
D/H = (1.56± 0.40) · 10−5 [95].

High-resolution absorption spectra of quasars allow measuring Deuterium in Inter-
galactic Medium environments with metallicities ∼ 103 times smaller than Solar. Since
the Lyman-series transitions of different elements are shifted, this is in principle can be
used to identify absorption lines of two elements like Hydrogen and Deuterium (or Helium)
and to deduce the abundance from the relative intensities. In reality, this, however, is
difficult because of contamination by Hydrogen Lyman-α forest lines and requires accurate
knowledge of the HI column density corresponding to absorbers.

Damped Lyman-α systems corresponding to dense regions in high-redshift galaxies
allow to measure the HI density independently of the cloud model and there exists a number
of systems where Deuterium line was identified and D/H abundance was measured:

D/H = (2.569± 0.027) · 10−5 (3.3.6)

This method is also used as an independent probe for 4 He.

Any measurement of Deuterium provides an upper bound on primordial abundance.

3.3.3 Helium-3

There is no reliable data on the primordial abundance of Helium-3. This isotope is only
measured in the Solar system and HII regions of the Milky Way (that also have high
metallicity) [96]. At this point, it is not possible to make conclusions about the effect of
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stellar nucleosynthesis on the Helium-3 abundances since theoretical models are inconsistent
with observations [97].

At the moment there is no 3 He data available to constrain BBN.

3.3.4 Lithium

Lithium is best measured in the Population II metal-poor stars of the Milky Way. It is
notable that Lithium abundance exhibits the Spite plateau – is nearly constant in stars with
metallicity . 1/30 of the Solar value [98]. Considering this abundance as a primordial one
gets

Li/H = (1.6± 0.3) · 10−10 (3.3.7)

However, in extremely metal-poor stars with Fe/H ratio . 10−3 than Solar, no Lithium
is detected. This suggests some mechanism destroying 7 Li as well as that the abundance at
the Spite plateau might also be modified from the primordial value. This, in fact, makes
the method of 0-metallicity extrapolation inapplicable to Lithium. Instead, the measured
abundance (3.3.7) should be considered a lower bound on the primordial value [99].

Recent observations indicate that Lithium might be destroyed in low metallicity stars
and hence the measurements constitute the lower bound on primordial ratio 7 Li/H.

3.3.5 Comparison of measurements with
Standard Model Nucleosynthesis predictions

Since Standard BBN predictions depend only on measurements of the baryon-to-photon
ratio and neutron lifetime, abundances of the elements can be used to check the validity of
the theory.

Baryon-to-photon ratio can be independently measured from CMB [100]:

ηB = (6.118± 0.041) · 10−10 (3.3.8)

Fig. 3.5 summarizes the available measurements and predictions. This figure shows
long-standing Lithium Problem: Standard BBN theory predicts Lithium abundance ∼ 3

times larger than measured in metal-poor stars. However, new observational data of
Lithium show that the previous measurements should be considered as a lower bound on
the primordial abundance, so the Standard BBN theory is consistent with observations.
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Figure 3.5: Predictions of the Standard BBN theory (with uncertainty due to error in
neutron lifetime τn; black curves with coloured bands) compared to the measurements of
primordial elements (yellow rectangles) and determination of the baryon-to-photon ratio
ηB from CMB (vertical crosshatched band). Credit: Cyburt et al. [101]

Theoretical predictions of Standard BBN are in good agreement with the modern
measurements of baryon-to-photon ratio and element abundances.

The only significant deviation is with the measurement of Lithium which is lower
than predicted value by a factor of ∼ 3. However, recent observations indicate that
Lithium might be destroyed in low metallicity stars and hence the measurements
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constitute the lower bound on primordial ratio 7 Li/H.
Any Beyond the Standard Model physics should not break this agreement.

3.4 New physics and Big Bang Nucleosynthesis

As we have seen above, the predictions of the SM nucleosynthesis are consistent with
observations. This puts a requirement on any extension of the Standard Model – its
predictions for nuclear abundances should be different from the SM ones only within
observational error bars. This makes BBN a powerful tool to constrain new physics.

Possible effects of new physics on BBN include:

• Change of Hubble expansion rate during BBN

• Change of neutron-to-proton ratio at and after freeze-out of weak interactions

• Disintegration of nuclei due to collisions with the new particle or its decay products

• Entropy production: the creation of additional photons or electrons between BBN
and CMB and, therefore a change of the baryon-to-photon ration at BBN time (as
compared to the value observed e.g. by CMB).

3.4.1 Excluded domain of the parameter space

Typically a new particle is characterized by its mass M and coupling constant θ. Then the
lifetime of the particle is inversely proportional to it: τ ∝ θ−2. This naturally gives us a
bound when τ � 1sec – these particles vanish long before the BBN. On the other hand,
there also exists a lower bound on the particle coupling, since the interaction rate becomes
negligible.

New physics particles (NPPs) can contribute to each of the effects of new physics on
BBN considered above. As lifetime is related to the coupling constant as τ ∝ θ−2, it is
convenient to separate the effects of independence on the lifetime τX of NPP.

3.4.1.1 τX & 0.1 s

Sufficiently long-lived non-relativistic NPPs can contribute a major part to the energy
density, thus changing the Universe from radiation dominated to matter-dominated during
the BBN.

Ultrarelativistic decay products of NPPs can contribute to the energy density, thus
increasing Neff, neutron decoupling temperature and the neutron-to-proton ratio.

Weakly interacting particles (leptons) produced in decays of NPPs participate in weak
interactions involving neutron and are able to decrease the neutron decoupling temperature,
thus decreasing the neutron-to-proton ratio.
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Heavy NPPs can decay into mesons, which can convert p→ n in strong interactions
before decaying themselves, e.g.

π(K) + p→ n+ π(K)/γ (3.4.1)

and therefore increase the neutron-to-proton ratio.

3.4.1.2 τX & tBBN

Muons and mesons from decays of heavy NPPs,mX & mµ, are able to dissociate primordial
nuclei, e.g.

π +4 He→ D + 2n, π +D → 2n (3.4.2)

directly changing the primordial abundances.

3.4.1.3 τX & 104 s

If NPPs survive down to small temperatures Tphotodiss ' few keV, the photons produced in
its decay or in decays of its daughter particles are able to dissociate primordial nuclei.

Tphotodiss can be estimated from the requirement that the maximally possible energy of
photons in SM plasma, Eγ,max ≈ m2

e/22T [102],2 becomes comparable with the binding
energy of the nuclei. For example, for D and 4He we have

Eγ,max '
{

∆D ≈ 2.2 MeV→ T ' 5 keV,

∆4He ≈ 20 MeV→ T ' 0.6 keV,
(3.4.3)

This translates for the requirement τX & 5 · 104 s for D dissociation and τX & 106 s for
4He dissociation.

Different effects of new particles on BBN can be classified by the lifetime of a new
particle. Namely, short-lived particles that decay before decoupling of weak interactions
do not produce observable effects. Vice versa, particles produced in small numbers and
very long-lived influence BBN negligibly. Therefore constraints from BBN usually
have an upper and lower bound by particle’s lifetime.

Below we provide several examples of modifications to the BBN by new physics.

Example 1: additional relativistic particles. Assume that there exists additional neu-
trino species. Then the number of effective degrees of freedom change as Neff →
Neff + ∆Neff. This effect increases a Hubble rate H = T 2/M∗

Pl ∝ g∗, where g∗ depends on

2The cut-off is determined by the process γ + γSM → e+ + e−.
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Neff as

g∗ = 2·Nγ+
7

8
·2·2·Ne+

7

8
·2·
(
Tν
Tγ

)4

·Neff ≈
{

10.83 + 1.75∆Neff, before annihilation

3.38 + 0.45∆Neff, after annihilation
(3.4.4)

Here number of photons Nγ = 1, effective number of neutrinos in SM Neff = 3.046 [103].
Before electron-positron annihilation (Tγ ' me) Ne = 1, Tν = Tγ . After electron-positron

annihilation Ne = 0, Tν =

(
4

11

)1/3

Tγ .

Let us estimate effect of faster Universe expansion on Tn. From Eq. (3.2.8) we have a
condition

〈Γn→p〉(Tn) = H(Tn) ≈ 1.66
√
g∗
T 2
n

MPl
. (3.4.5)

Using approximate temperature dependence 〈Γn→p〉(Tn) ∼ T 5
n we get

Tn ∼ (g∗)
1/6 ⇒ ∆Tn

Tn
≈ ∆g∗

6g∗
(3.4.6)

Using (3.4.6) and simple analytic estimates (3.2.14), (3.2.1) for nn/np(TBBN) and Y4He,
we can constrain the value ∆Neff from the Helium abundance. Indeed, a shift ∆Tn changes
nn/np(TBBN) and, correspondingly, the Y4He. Corresponding corrections can be found
expanding the expressions (3.2.14), (3.2.1) in series on ∆Tn/Tn:

∆YHe ≈ ∆

(
nn
np

)
Y 2

He,SM

2(nn/np)2
SM
, ∆

(
nn
np

)
≈ etBBN/τn+∆m/Tn

(
nn
np

)2

SM

· ∆m∆Tn
T 2
n

(3.4.7)
Plugging in the numbers Tn ≈ 0.716 MeV, (nn/np)SM ≈ 1/7, YHe,SM ≈ 0.227, tBBN ≈
200 s corresponding to analytic estimates, we obtain

∆(nn/np) ≈ 0.28
∆Tn
Tn

,
∆YHe

YHe
≈ 1.54

∆Tn
Tn

= 0.024∆g∗ = 0.041∆Neff (3.4.8)

Requiring ∆YHe/YHe < 0.05, we get

∆g∗ < 2.08, ∆Neff . 0.82 (3.4.9)

Assuming the relative error of Helium to be ∆YHe/YHe ∼ 5%, the maximal allowed
∆Neff = 0.82

Example 2: additional energy density. Consider the NPP that was in thermal equi-
librium, decoupled being relativistic but being non-relativistic during the BBN (i.e.,
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mX � Tn). We estimate the corresponding energy density as

ρX ≈ mXYXs ≈ 2 · 10−4 Y

4 · 10−4
g∗(T )e−t/τXT 3mX (3.4.10)

The ratio of ρX to the energy density of the SM plasma is

ρN/ρSM ≈ 3.1 · 10−4 YX
4 · 10−4

e−t/τXmX/T (t) (3.4.11)

with the maximal value

ρX/ρSM
∣∣

max ' ρX/ρSM
∣∣
t'τX

≈ 0.4
YX

4 · 10−4
(mX/1 GeV)

√
τX/1 s, (3.4.12)

where we assumed radiation dominated time-temperature relation. Having the parametric
dependence of Y, τX on the mass of NPPs and its coupling to the SM, we can impose a
constraint using the requirement

ρX/ρSM � 1 (3.4.13)

3.5 Big Bang Nucleosynthesis in the presence of Heavy Neutral Leptons

We are interested in HNLs that can generate the masses of the SM neutrinos – in
particular, the observed mass difference

√
∆m2

atm ≈ 0.05 eV. No HNLs heavier than
mN & 1 GeV with lifetimes τN & 0.1 s are able to provide such difference.

Indeed, to provide the observed mass difference, the mixing angle must be larger than the
see-saw bound [49]:

θ2 & θ2
see-saw '

√
∆m2

atm/mN ≈ 5 · 10−11

(
1 GeV
mN

)
(3.5.1)

The comparison of the parameter space of HNLs with the lifetimes τN = 0.1 s, τN =

tBBN ' 200 s with the bound (3.5.1) is shown in Fig. 3.6. We see that the see-saw bound
intersects the line τN = 0.1 s at mN ' 1 GeV. Based on the figure, we conclude that for
heavy enough HNLs, mN & mπ, the only possible effects above the see-saw bound are:

• change of the Hubble expansion rate

• decrease of neutron decoupling temperature due to injection of weakly interacting
particles

• increase of n-p ratio due to injection of muons or mesons
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τN = 0.1 s
τN = tBBN
See-saw bound
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Figure 3.6: Parameter space of HNLs with lifetimes τN = 0.1 s (black line) and τN = tBBN

(blue line); solid lines corresponds to the mixing with νe, while dashed lines – to the
mixing with ντ . The shaded gray region corresponds to the parameter space excluded if
we consider HNLs that are able to provide observable mass difference of SM neutrinos√

∆m2
atm ≈ 0.05 eV.

HNLs lighter than pion mass can also affect the BBN at the later stages.

To account for the influence of HNLs we make the following changes in the equations
of BBN:

• HNLs introduce additional Boltzmann equations (on fHNL and their decay prod-
ucts – muons, pions and heavier mesons) and corresponding matrix elements

• Processes with HNLs or their decay products should be added to other Boltzmann
equations

• HNLs and their decay products have pressure and energy density that modify the
law of expansion

At this point, we do not consider the effect of the increase of n-p ratio due to the
injection of muons and mesons.

3.6 Description of numerical methods and code

The physical system of BBN consists of the particles, some of which are in thermodynamical
equilibrium with each other and some of which are not. All properties of the equilibrium
plasma are given by the evolution of temperature. Non-equilibrium particles (neutrinos,
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nucleons, and nuclei) evolve with the expansion of the Universe (according to Friedmann
equations) and particle collisions (Boltzmann equations).

Hence the complete set of unknowns in our system of equations is:

• plasma temperature T (t)

• distribution functions of neutrinos fνi(t, p)

• densities of nucleons and nuclei nX(t)

• distribution function of sterile neutrino and its decay products fN(t, p), fproduct,i(t, p)

In the cosmological setup it is convenient to use the scale factor a(t) as a parametrization
of time.

Equilibrium density is defined by the temperature, while non-equilibrium density is
given by distribution functions. Their evolution is given by Friedmann and Boltzmann’s
equations. Below we will discuss our method of their numerical solution.

Temperature evolution equation. The energy conservation equation can be used to
derive the temperature evolution of the plasma. We can split the total energy density into
equilibrium and non-equilibrium parts ρ = ρeq + ρnoneq. Then the derivative of ρeq is
given by Ṫ while the time evolution of non-equilibrium density depends on the Boltzmann
collision integrals:

ρ̇ =

(
dρeq

dT

dT

dt
+

dρnoneq

dt

)
= −3H (ρ+ P )

dT

dt
= −3H(ρ+ P ) + dρnoneq

dt
dρeq

dT

(3.6.1)

where P is the total pressure and H is the Hubble rate.
Expressions for ρeq and ρnoneq can be substituted in this equation to obtain an explicit

formula for the temperature evolution. This is done in detail in Appendix 3.A.

Comoving coordinates Because of the expansion of the Universe, even non-interacting
particles evolve non-trivially. This significantly complicates the computations and analysis.

According to Friedmann equations, particle positions and momenta behave as ~r ∝ a(t)

and ~p ∝ a−1(t). From this it is easy to conclude that particle densities n ∝ a−3(t).
Combining the latter two facts, we also find that the energy density of relativistic particles
necessarily ρrel ∝ a−4(t) while for non-relativistic ones ρnonrel ∝ mnonrela

−3(t).
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It is convenient to switch to the comoving frame of reference that is expanding along
with the Universe:

~r → ~r/a (3.6.2)

~p→ ~y = ~p · a (3.6.3)

In this frame, many comoving quantities (denoted by )̃ become constant with respect to the
expansion (e.g. photon energy density ρ̃γ ≡ ργa

4 = const).
A huge additional advantage is a fact that in comoving coordinates the Boltzmann

equations lose the term with the Hubble rate:

df(t, p(t))

dt
=
∂f

∂t
−Hp∂f

∂p
= aH

∂f(a, y)

∂a
= Icoll (3.6.4)

∂f(a, y)

∂a
=
Icoll
aH

(3.6.5)

This change of variables also suggests rewriting the temperature evolution equation
for the quantity T̃ ≡ a · T . For relativistic particles, temperature evolves with expansion
as T ∝ a−1. Then ˙̃T describes the change of entropy of the system due to transitions in
the plasma (like electron-positron annihilation) or influence of non-equilibrium particles.
Finally, we introduce the comoving mass m̃ = m · a for particles.

BBN physics formulated in terms of comoving positions, momenta and masses look
in a sense very similar to physics in non-expanding Universe, but with interaction rates
decreasing with time.

The evolution of physical quantities even in the simplest cases is non-trivial because of
the expansion of the Universe. However, if we consider the comoving frame (expanding
with the Universe), we can significantly simplify the description for numerics.

3.6.1 pyBBN: code for non-standard nucleosynthesis

Our goal is to put constraints on the Heavy Neutral Leptons from the primordial nucle-
osynthesis. This task has been to some extent done by [104–106]. Papers [107, 108]
also consider relevant aspects of the influence of new physics on the BBN (like entropy
injection). This is, however, not sufficient to describe all effects of HNLs (e.g., HNL
decays produce non-equilibrium neutrinos that can directly influence the weak reactions of
nucleons).

Code by [106] is based on [105] and implements the physics of HNLs with masses up
to M < mπ. We extend this analysis to larger masses M < mφ in a new code pyBBN3 [3].
Our main contribution is the treatment of hadronic decay channels of HNLs and incremental
improvements and fixes to the approach of [106].

3https://github.com/ckald/pyBBN
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General structure. Simulations are done in two stages:

1. The cosmological background physics and the rates of the reactions

n+ e+ ↔ p+ ν̄e, n+ ν ↔ p+ e, n→ e+ ν̄e + p (3.6.6)

are computed in pyBBN. This involves solving the system of equations for the
evolution of temperature, scale factor and distribution functions of decoupled species
like neutrinos, HNLs and relevant decays products (see Sec. 3.2.2).

2. The cosmological quantities together with the aforementioned rates are tabulated and
passed to an external code, the modified KAWANO code (also known as NUC123
[83]), that takes care of the nuclear part of the simulation and outputs the light element
abundances. This is done to avoid reimplementing the complicated system of nuclear
physics with experimental fits to the cross-sections. KAWANO is a relatively outdated
code that does not implement a number of corrections introduced in PArthENoPE
[87] or PRIMAT [79], but these corrections are small in SBBN and KAWANO is the
easiest to modify for custom cosmological evolution and neutrino spectral distortions.

Time evolution. The system of equations step-by-step for values of scale factor evenly
spaced in logarithmic scale (as opposed to linearly-spaced values). This is done to naturally
increase the timestep at late times when interaction rates are low. The numerical schemes
used for time-evolution equations are the Adams-Bashforth explicit linear multistep method
for temperature evolution equation and Adams-Moulton implicit linear multistep method
for Boltzmann equations. We decided to use these particular schemes (as opposed to the
Runge-Kutta family) since they allow us to reuse the previously computed values (we use
up to 5 previous steps) and proved to be stable enough for our purposes.

The implicit methods are known to help mitigate the problem of stiffness in Boltzmann
equations when it is possible to apply them. However, the temperature evolution equation
in our system can be solved only explicitly.

Boltzmann integrals for distribution functions are in general of high dimension. Typi-
cally this would suggest the usage of Monte Carlo methods. But in the particular case of
the Fermi-like theory of HNLs, it is possible to reduce the number of integrations to 1 or 2
(this is described in detail in App. 3.C). The accuracy of this computation is critical to the
evolution of the neutrinos which constitute a large fraction of the total energy density as
well as directly influence the neutron-to-proton ratio. Hence we elected to use the adaptive
integration algorithm QAG from GNU Scientific Library [109]. Integration is done using
the Gaussian quadrature and the error is estimated by dividing the integration region into
subintervals and repeating the procedure until the required global tolerance is met. Note
that the integrand of the problem is piecewise smooth while the Gaussian quadrature is
designed for the polynomials. Because of this the Gaussian quadrature might require
arbitrarily large number of points to converge. However, we find that the integration using
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the Gaussian quadrature of the order 60 provides the same accuracy as the adaptive method
for four-particle interactions. For three-particle interactions we employ adaptive integration
with Gauss-Kronrod quadrature of the order 31.

Unstable HNL decay products. Sterile neutrinos of high masses decay into short-lived
mesons – e.g. π0 lifetime is ∼ 10−17 sec and π± lifetime is ∼ 10−8 sec. These timescales
are orders of magnitude smaller than any practical computational timestep for a simulation
spanning 104 sec.

To the first approximation, short-lived particles can be immediately destroyed without
populating their distributions. However, some of them are charged and thermalize with the
plasma and transfer some energy.

For illustration, we will consider the case of a muon. HNLs with masses MN < 105

MeV will decay into stable particles. HNLs with higher masses will have decay products
that are unstable. Some of these unstable decay products will interact with the plasma
before they decay. The analysis here will be done for muons but can be applied to all other
particles as well.

There are three important events to consider:

1. µ± is created from HNL decay
The distribution function of these muons is a non-thermal distribution of fnoneq.

2. µ± thermalizes
The muon-photon scattering rate is higher than the muon decay rate: Γγµ ∼ α2

mµEγ
T 3
γ ∼

10−9 MeV vs. Γµ,decay ∼ 10−16 MeV. This means that the muons will release their
energy into the plasma and equilibrate before they decay. This process increases the
temperature of the plasma and makes the muons non-relativistic. After thermalization,
the muons will share the same temperature as the plasma and will have a thermal

distribution fthermal = e−
mµ−µ
T e

− p2

2mµT , where µ is determined by the condition that
the number density before and after thermalization must be equal. The collision term
corresponding to this process is then estimated as

Ithermalization ≈
fthermal − fnoneq

∆t
,

with ∆t the timestep of the simulation. The same procedure is followed for charged
pions and charged kaons.

3. µ± decays
The main decay channel of muons is µ− → e− + νe + νµ. The muon has a lifetime,
τµ ∼ 10−6 sec., that is much smaller than the timestep of the simulation. This poses a
problem right away: when the evolution of the distribution function for the muon and
active neutrinos is computed as ∆f = Icoll∆t, the behavior of Icoll is not resolved. It
is assumed to be constant during the whole timestep ∆t, which is not true; the created
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muons have already decayed well within this timestep. What therefore happens is
that the number of muons that have decayed and the number of neutrinos that are
created are overestimated. This issue can be solved by using a dynamical equilibrium.
Consider the chain The timestep ∆t is much smaller than the lifetime of the HNL,

which means that there is approximately a constant inflow of muons during each
timestep. Since the number of muons created ∆N decays almost instantaneously, the
same number of active neutrinos is created: for each muon that decays, one electron
neutrino and one muon neutrino is created. Now a scaling α can be introduced in ∆f

= Icoll∆tα such that
∫

d3p∆f/(2π)3 = ∆N .

3.6.2 Code testing

pyBBN had been tested in multiple situations modeling both Standard BBN theory as well
as in the presence of HNLs. Below we will list only the most representative selection of
them.

The main areas of interest are thermodynamical properties (i.e., evolution of tempera-
ture) and computation of Boltzmann equations (collision integrals and integration of the
equations themselves).

According to scope, tests can be divided into low-level (i.e., checking that formulas or
numerical schemes are correct) and integration tests (i.e., those defining a toy model for
which we can produce analytical results or can make a comparison with other codes).

3.6.2.1 Temperature of the Cosmic Neutrino Background

Decoupling neutrinos to the first approximation preserve their thermal distribution function
with the same temperature as photons.

However, at the temperatures about T ∼ me = 0.511keV , electrons and positrons
annihilate into additional photons. Since neutrinos decouple earlier, do not get heated up as
well. This results in a difference in the temperature of Cosmic Microwave and Neutrino
Backgrounds.

This effect is easily quantified through the comoving entropy conservation law (sa3 =

const):

Tγ
Tν

=
aTγ
aTν

=

(
g∗(Tbefore)

g∗(Tafter)

) 1
3

=

( 7
8
· 4 + 2

2

) 1
3

≈ 1.401 (3.6.7)
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This law is not explicitly enforced in the code, but comoving entropy is an integral
of motion. Check of the Cosmic Neutrino Background temperature allows to test the
thermodynamics in the code as a whole: Fig.3.7. The neutrinos are assumed to decouple
instantly with any non-equilibrium dynamics beside free propagation.
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pyBBN

Ruchayskiy & Ivashko

Figure 3.7: The photon temperature divided by active neutrino temperature. The increase
here is due to electron-positron annihilation into photons. Dashed curve is from [106].

In the Universe filled with electrons, positron, photons and decoupled neutrino – photons
and neutrinos have different temperatures after electrons-positron annihilation. The
ratio of their temperatures can be predicted from the conservation of comoving entropy.
Fig. 3.7 shows that the thermodynamic evolution in the code predicts this ratio with
accuracy . 0.1%.

3.6.2.2 Increased Hubble rate

pyBBN predicts Helium-4 abundance for the SM BBN (SBBN) to be equal to 24.8%. This
value agrees with a simple analytic estimate (3.2.1) within 10%. In this test we will check
that increase of a Hubble rate during BBN result in the correct qualitative behavior of Y4He.

An increase in the Hubble parameter leads to an earlier decoupling of neutron-proton
weak reactions and therefore a higher neutron-to-proton ratio. This is shown in the scenario
where the Hubble rate in SBBN is increased artificially by a factor of 2, see Fig. 3.8.
We check the prediction of the code using analytic estimate (3.2.1), (3.2.14) of the 4He
abundance. The neutron decoupling temperature obtained using Γn→p(T ) = H(T ) gives
Tn ' 0.92 MeV, which translates into nn/np(TBBN) ≈ 0.195 and Y4He ≈ 0.37, in good
agreement with the result shown in Fig. 3.8.
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Figure 3.8: Evolution of the neutron-to-proton ratio in SBBN (red line) and SBBN + twice
as large Hubble parameter (green line). The dotted line indicates the equilibrium evolution.

The prediction of the code for the value of Y4He in SM BBN agrees with analytic
estimate. The result of the simulation with increase Hubble rate also agrees with our
expectations.

3.6.2.3 Neutrino spectral distortions

In Fermi theory the cross section increases with momentum as σ ∝ G2
Fp

2, which means that
neutrinos with higher momenta stay longer in equilibrium. Since these neutrinos decouple
later, they will in fact briefly experience the heat-up of the plasma due to electron-positron
annihilation, shown in Figure 3.7, and the corresponding increase in aT . On the other
hand, oscillations of neutrinos are mixing the distributions of different flavours, bringing
the spectra closer to each other.

At temperatures of O(1) MeV electron neutrinos interact through both charged and
neutral currents, while muon and tau neutrinos only interact through the neutral current.
The temperature is too low for muons and tau leptons to be present in the plasma or to
be created from muon and tau neutrinos through the charged current channel. The cross
section of electron neutrinos is therefore larger and they get larger spectral corrections. The
results are shown in Fig. 3.9.

56



Figure 3.9: Ratio of active neutrino decoupled spectra to their equilibrium distribution
before the onset of BBN. The upper curves show the distortion of the electron neutrino
spectrum and the lower of muon and tau neutrinos. Dashed curves are from [106], dotted
from [103].
Upper panel: no neutrino flavour oscillations. Lower panel: neutrino flavour oscillations
with sin2 θ12 = 0.3, sin2 θ13 = 0.5 and θ23 = 0 (rotated νµ − ντ basis).

In this test we considered the spectral distortions of neutrinos during decoupling of
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weak reactions. We reproduce the results of codes by [106] and [103] up to . 1%

accuracy even for very sparsely populated momentum values of neutrinos (f(p, T ) ∼
exp(−p/T ) ∼ 10−3).

3.6.2.4 Heavy Neutral Leptons decay width

To check the computation of collision integrals and integration of Boltzmann equations, we
restore the decay width of HNLs for the computed evolution of their number density using
that

ni − ni−1

∆t
+ 3Hni ≈ ΓNni (3.6.8)

We consider an HNL of mass MN < Mµ that mixes only with electron neutrino
through mixing angle |θe|. There are four decay channels:

N → νe + νe + νe N → νe + νµ + νµ

N → νe + ντ + ντ N → νe + e+ + e− , (3.6.9)

The theoretical vacuum decay width is

ΓN =
G2
F |θe|2M5

N

(
1
4

(
1 + 4 sin2 θW + 8 sin4 θW

)
+ 1
)

192π3
. (3.6.10)

We check that our code correctly reproduce this value. The result is shown in Fig. 3.10.

We have confirmed that decay width of HNL computed using collision integrals in our
code recovers the theoretical decay width with accuracy ∼ 0.2%

3.6.2.5 Reheating due to neutral pion decay

As a check of energy conservation in 3-body interactions, we check the energy injected by
decays of MN = 135 MeV sterile neutrino.

N → π0 + νe (3.6.11)

π0 → γ + γ (3.6.12)

For each HNL that decays, one neutral pion is created. If the HNL has a mass very close
to that of the neutral pion, then the neutral pion created will be very non-relativistic. The
energy injected in the plasma due to neutral pion decay during each step is therefore
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Figure 3.10: Relative difference between averaged HNL decay width calculated in pyBBN
and its theoretical value (Eq. 3.6.10) of reactions Eq. 3.6.9. Here an HNL of massMN = 30
MeV and mixing angle |θe|2 = 10−4 is chosen. The initial temperature of the simulation is
Tini = 10 MeV.

approximately

∆E ≈ 2mπ0∆N , (3.6.13)

with ∆N the number of HNLs that have decayed during the step. The factor of 2 comes
from the fact that the charge conjugated channel also creates a neutral pion. Comoving
photon energy density becomes

gγ
π2

30
(aT )4 = ργ,c = ργ,c,old + a4∆E = ργ,old + 2mπ0a4∆N (3.6.14)

and

(aT )new =

(
30

gγπ2
ργ,c

)1/4

. (3.6.15)

The result of this test is shown in Fig. 3.11.

Sterile neutrinos with masses mN > mπ have qualitatively new decay channels into 2
particles. This involves a different expression of the collision integral that haven’t been
tested before. We have confirmed that 3-body interactions conserve particle number,
energy and comoving entropy up to . 0.1%.
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Figure 3.11: Reheating of plasma due to decays 3.6.11 and 3.6.12. Theoretical value
aTtheory is given by Eq. 3.6.15. Here an HNL of mass MN = 135 MeV with |θe|2 = 10−4

is taken.

3.6.2.6 Chain of decays with short-lived particles

Sterile neutrinos of high masses can decay into heavy mesons that themselves trigger the
decay chains. Since mesons have very short lifetimes compared to the timescales of the
simulation, their decays are treated by a different numerical scheme than neutrinos or
nucleons. Eventually, all mesons decay into photons, leptons and neutrinos. For a given
mass of HNL we can compute the total number of decay products and compare it with the
code.

Consider the chain of decays

N → νe + φ (3.6.16)

φ→ π0 + ρ0 (3.6.17)

π0 → γ + γ ; ρ0 → π+ + π− (3.6.18)

π− → µ− + νµ (3.6.19)

µ− → e− + νe + νµ (3.6.20)

The total comoving number density of electron and muon neutrinos created is

nνe,c = (1 + 2BRφ→π0ρ0)nini (3.6.21)

nνµ,c = 4BRφ→π0ρ0nini (3.6.22)
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with BRφ→π0ρ0 the branching ratio of the corresponding decay and nini the initial comoving
number density of HNLs. The factor of 2 comes from the fact that the charge conjugated
channel N → νe + φ also creates a phi meson. Results are shown in Fig. 3.12.

Figure 3.12: Comoving number density nc of HNL, electron neutrino and muon neutrino
normalized by the initial HNL comoving number density nini when the decays 3.6.16 -
3.6.20 are considered. The mass of the HNL here is MN = 1200 MeV and |θe|2 = 10−8.
The initial densities of all particles except for HNLs, electrons and photons are taken 0 for
convenience. The dynamical equilibrium mechanism discussed in Subsection 3.6.1 is used
here.

Even for particles with lifetimes much smaller than the timestep of the simulation
τ � ∆t, we correctly reproduce the expected concentrations of the decay products.

3.6.2.7 Helium-4 and Deuterium abundance in Standard Model Nucleosynthesis

We present the predictions for Helium and Deuterium in Standard BBN as computed by
pyBBN in Fig. 3.13. Our result is consistent with state-of-the art precision BBN code
PArthENoPE [87]. In both cases we used the neutron lifetime τn = 880.2 sec from [1].

3.6.2.8 Non-equilibrium neutrinos vs thermal neutrinos

The current generation of high-precision BBN codes (e.g. PArthENoPE [87] and
PRIMAT [79]) include many corrections not included in KAWANO. However, they
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Code Y4He D/H

PArthENoPE2.0 [87] 0.24676 0.26800 · 10−4

pyBBN 0.24678 0.26776 · 10−4

Relative difference -0.008% 0.09%

Figure 3.13: Comparison of pyBBN with PArthENoPE

were designed for the SBBN and treat neutrinos as thermal-like particles, ignoring
possible spectral distortions. We show that in presence of HNLs the spectral distortions
can have the leading effect on the neutron-to-proton ratio.

In modern BBN codes (e.g. PArthENoPE [87] and PRIMAT [79]), neutrinos are assumed
to have a thermal-like Fermi-Dirac distribution at all times. The neutrino temperature Tν is
determined such that

gν

∫
d3pν

Eν

e
Eν
Tν + 1

= ρν (3.6.23)

with ρν the energy density.

The energy density is computed by the evolution equation

∂ρν
∂t

+ 4Hρν = C (3.6.24)

with C the source function (integrated collision integral). In this way they account for the
gravitational effect of incomplete neutrino decoupling.

Spectral distortions are ignored. In order to track spectral distortions, it is necessary to
use the full machinery of the Boltzmann equation. On the other hand, the authors of [110]
have compared their results with the authors of [111] (where spectral distortions are taken
into account) and found a correction of only order 10−3.

Since we expect production of neutrinos after decoupling, we expect a larger influence
on the neutron-to-proton rates. Therefore, we have performed paired simulations: one
using the non-equilibrium neutrino distribution in the calculation of the neutron-to-proton
rates, while the other uses a thermal distribution with temperature that gives the same
energy density as the non-equilibrium distribution. Note: this is only done at the level of
the computation of the neutron-proton weak rates, in order to understand whether spectral
distortions can be neglected. The evolution of the neutron-to-proton ratio is shown in Figure
3.14 and the final Y4He abundances are displayed in the table below.
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Non-equilibrium Thermal Rel. diff.
SBBN 0.24790 0.24743 0.19%

HNL (MN = 30 MeV, τ = 0.075 s) 0.24824 0.24714 0.44%

HNL (MN = 105 MeV, τ = 0.11 s) 0.29266 0.24405 16.6%

Figure 3.14: Comparison of nucleon reaction rates and neutron-to-proton ratio in SBBN
(upper row) and in a model including HNL of mass 105 MeV and lifetime 0.11 s (lower
row). ”noneq” quantities are computed using the electron neutrino distribution function as
obtained from the Boltzmann equation , while ”eq” quantities are given under assumption
of a thermal-like electron neutrino distribution (with the same energy density).
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Fig. 3.14 indicates that spectral distortions can be the dominant effect that change the
neutron-to-proton ratio in presence of sterile neutrinos.

3.6.2.9 Summary on tests

We have performed a large number tests, verifying the correctness of the equations,
numerical schemes and conservation of basic integrals of motion. We payed special
attention to the most computationally intensive and difficult part of the code – the
evaluation of Boltzmann integrals. We checked

• integration of the expansion laws

• behaviour of the thermodynamical quantities under expansion

• energy transfer between non-equilibrium particles and plasma

• non-equilibrium corrections to particle species

We have implemented most of the tests previously done in literature. However,
since physics of sterile neutrinos with masses mN > mπ have not been implemented
elsewhere, we have created a number of sanity checks which we believe to give us
reasonable control.

3.7 Results and conclusions

We have extended the constraints on sterile neutrinos from pion mass up to phi-meson
mass. To achieve this, we have developed a numerical code pyBBN that we use to predict
abundances of light chemical elements.

We implemented hadronic decay modes of HNLs, subsequent hadronic decays and
their influence on the BBN. We validated the code comparing it with other codes and
analytic estimates, and making consistency checks.

The comparison between bounds on the HNL parameter space provided by our code
and codes from [105, 106] for HNLs in the mass range mN < mµ ≈ 105 MeV is shown
in Fig. 3.15. Our results are in good agreement with previous studies in the mass range
mN < 105 MeV considered there. In the Figures 3.16 and 3.17 we show the predictions
of our code for HNLs with masses up to mN ' 1 GeV, comparing it with the simple
constraint τN & 0.1 s from [49].

So far we have not implemented the effect of the interaction of massive decay products
of HNLs – mesons and muons – with nucleons. Even if the lifetimes of these particles are
much shorter than characteristic times of BBN, their production rate can be large enough to
give a significant effect on n-p ratio [81]. To take into account this effect, we need to add in
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Figure 3.15: Constraints from BBN on the lifetime of HNLs up to the muon massM ≈ 105
MeV. Mixing with electron neutrino only is assumed here. Dashed curve is from [106],
dotted from [105].

Boltzmann equations for nucleon number densities additional terms describing not decay of
mesons, but their scattering on nucleons. This effect increases the neutron-to-proton ratio
and hence the Helium abundance. Therefore, our constraints obtained without this effect
are conservative. We will investigate this effect in the future.
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Figure 3.16: Bounds on HNL mixing angles. Left: mixing only with electron neutrinos.
Right: mixing only with muon neutrinos.
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Figure 3.17: Constraints from BBN on the lifetime of HNLs up to the phi-meson mass
M ≈ 1 GeV (for electron and muon mixing).
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Appendix

3.A Temperature evolution

Consider a plasma consisting of four particle species representing the contents of the
Universe. For example, the four species here are photons, electrons, active neutrinos and
HNLs. The addition of other species (e.g. muons) will then follow a similar procedure. In
what follows: T̃ = aT, Ẽ = aE. The total energy density and total pressure are given by

ρtot = ργ + ρe + ρν + ρN Ptot = Pγ + Pe + Pν + PN

ργ = gγ
π2

30
1
a4 T̃

4 Pγ = 1
3
ργ

ρe = ge
2π2

1
a4

∫
dyy2 Ẽe

e
1
T̃
Ẽe

+1
Pe = ge

6π2
1
a4

∫
dy y

4

Ẽe

1

e
1
T̃
Ẽe

+1

ρν = gν
2π2

1
a4

∫
dyy3fν Pν = 1

3
ρν

ρN = gN
2π2

1
a4

∫
dyy2

√
y2 + a2m2

NfN PN = gN
6π2

1
a4

∫
dy y4

ẼN
fN

The energy conservation law is

dρtot

d ln a

d ln a

dt
+ 3H (ρtot + Ptot) = 0 =⇒ dρtot

d ln a
+ 3 (ρtot + Ptot) = 0
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Taking derivatives:

dργ
d ln a

= gγ
π2

30

(
−4

1

a4
T̃ 4 + 4

1

a4
T̃ 3 dT̃

d ln a

)
= −4ργ + 4

ργ

T̃

dT̃

d ln a

dρe
d ln a

= −4ρe +
ge

2π2

1

a4

∫
dyy2


(
e

1

T̃
Ẽe + 1

)
a2m2

e

Ẽe
− Ẽee

1

T̃
Ẽe
(
a2m2

e

T̃ Ẽe
− Ẽe

T̃ 2

dT̃
d ln a

)
(
e

1

T̃
Ẽe + 1

)2


= −4ρe +

ge
2π

1

a4

∫
dyy2

a2m2
e

Ẽe

1

e
1

T̃
Ẽe + 1

−

a2m2
e

T̃
−

(
Ẽe

)2

T̃ 2

dT̃

d ln a

 e
1

T̃
Ẽe(

e
1

T̃
Ẽe + 1

)2


dρν

d ln a
= −4ρν +

gν
2π2

1

a4

∫
dyy3 dfν

d ln a
= −4ρν +

gν
2π2

1

a4

∫
dyy3 1

H
Iν

dρN
d ln a

= −4ρN +
gN
2π2

1

a4

∫
dyy2

[
a2m2

N

ẼN
+ ẼN

dfN
d ln a

]
= −4ρN +

gN
2π2

1

a4

∫
dyy2

[
a2m2

N

ẼN
+ ẼN

1

H
IN

]
The equation is also valid for individual species:

dργ
d ln a

+ 3 (ργ + Pγ) = 4
ργ

T̃

dT̃

d ln a

dρe
d ln a

+ 3 (ρe + Pe) =
1

a4

[
−a

2m2
e

T̃
R1 +

1

T̃ 2

{
R2 + a2m2

eR1

} dT̃

d ln a

]
dρν

d ln a
+ 3 (ρν + Pν) =

gν
2π2

1

a4

∫
dyy3 1

H
Iν

dρN
d ln a

+ 3 (ρN + PN) =
gN
2π2

1

a4

∫
dyy2ẼN

1

H
IN ,

with

R1 =
ge

2π2

∫
dyy2 e

Ẽe
T̃(

e
Ẽe
T̃ + 1

)2

R2 =
ge

2π2

∫
dyy4 e

Ẽe
T̃(

e
Ẽe
T̃ + 1

)2
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Adding all these terms together and solving for the temperature derivative gives:

dT̃

d ln a
=

a2m2
e

T̃
R1 − gν

2π2

∫
dyy3 1

H
Iν − gN

2π2

∫
dyy2ẼN

1
H
IN

2π2gγ
15

T̃ 3 + 1

T̃ 2
R2 + a2m2

e

T̃ 2
R1

(3.A.1)

3.B Relevant matrix elements

The matrix elements listed here are not averaged over any helicities. Subsection 3.B.1
contains the reactions involving SM particles only, Subsection 3.B.2 the reactions involving
HNLs above QCD-scale and Subsection 3.B.3 the reactions involving HNLs below QCD-
scale. HNL decay channels with a branching ratio of at least 1% for some mass below ∼1
GeV are considered in this work (see Figure 3.18). The results for HNLs do not take into
account charge conjugated channels, which are possible if they are Majorana particles.

The explicit determination of matrix elements involving multiple mesons can be extremely
challenging. Therefore, an approximation has been used by assuming the matrix element to
be constant and using the definition of decay width,

Γ =
1

2gM

∫ (∏
i

d3yi
(2π)32Ei

)
|M|2(2π)4δ4(P −

∑
i

Pi) ,

together with its measured value (from e.g. [88]) to solve for |M|2. For three-particle
reactions this method gives the exact matrix element.

The values of the meson decay constants used in Subsection 3.B.3 are from [74] and
summarized below.

fπ0 fπ± fη fρ0 fρ± fω fη′ fφ
130.2 130.2 81.7 208.9 208.9 195.5 -94.7 229.5 MeV
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Figure 3.18: List of HNL decay channels with branching ratios more than 1% for some
HNL mass below ∼ 1 GeV. The left border indicates the HNL mass where the branching
ratio exceeds 1%, the right border when it falls below the 1 % threshold. In this plot a
model was assumed where all three mixing angles are equal to each other.
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3.B.1 Matrix elements in the Standard Model

3.B.1.1 Four-particle processes with leptons

Process (1 + 2→ 3 + 4) S SG2
Fa
−4 |M|2

να + νβ → να + νβ 1 32 (Y1 · Y2) (Y3 · Y4)

να + νβ → να + νβ 1 32 (Y1 · Y4) (Y2 · Y3)

να + να → να + να
1
2

64 (Y1 · Y2) (Y3 · Y4)

να + να → να + να 1 128 (Y1 · Y4) (Y2 · Y3)

να + να → νβ + νβ 1 32 (Y1 · Y4) (Y3 · Y2)

νe + νe → e+ + e− 1 128
[
g2
L (Y1 · Y3) (Y2 · Y4) + g2

R (Y1 · Y4) (Y2 · Y3)

+gLgRa
2m2

e (Y1 · Y2)
]

νe + e− → νe + e− 1 128
[
g2
L (Y1 · Y2) (Y3 · Y4) + g2

R (Y1 · Y4) (Y3 · Y2)

−gLgRa2m2
e (Y1 · Y3)

]
νe + e+ → νe + e+ 1 128

[
g2
L (Y1 · Y4) (Y3 · Y2) + g2

R (Y1 · Y2) (Y3 · Y4)

−gLgRa2m2
e (Y1 · Y3)

]
νµ/τ + νµ/τ → e+ + e− 1 128

[
g̃L

2 (Y1 · Y3) (Y2 · Y4) + g2
R (Y1 · Y4) (Y2 · Y3)

+g̃LgRa
2m2

e (Y1 · Y2)
]

νµ/τ + e− → νµ/τ + e− 1 128
[
g̃L

2 (Y1 · Y2) (Y3 · Y4) + g2
R (Y1 · Y4) (Y3 · Y2)

−g̃LgRa2m2
e (Y1 · Y3)

]
νµ/τ + e+ → νµ/τ + e+ 1 128

[
g̃L

2 (Y1 · Y4) (Y3 · Y2) + g2
R (Y1 · Y2) (Y3 · Y4)

−g̃LgRa2m2
e (Y1 · Y3)

]
Table 3.2: Squared matrix elements for weak processes involving active neutrinos and
electrons/positrons. S is the symmetry factor and α, β ∈ {e, µ, τ}, where α 6= β. Here:
gR = sin2 θW, gL = 1/2 + sin2 θW and g̃L = −1/2 + sin2 θW, with θW the Weinberg
angle.
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3.B.1.2 Three-particle and four-particle meson decays

Process (1→ 2 + 3) S |M|2

π0 → γ + γ 1 α2
emm

4
π [2π2f 2

π ]
−1

π+ → µ+ + νµ 1 2G2
F |Vud|2 f 2

πm
4
µ

[
m2
π

m2
µ
− 1
]

Table 3.3: Squared matrix elements for pion decays.

Process (1→ 2 + 3 + 4) |M|2

K+ → π0 + e+ + νe 1.42906 · 10−13

K+ → π+ + π− + π+ 1.85537 · 10−12

K0
L → π± + e∓ + νe 2.80345 · 10−13

K0
L → π± + µ∓ + νµ 3.03627 · 10−13

K0
L → π0 + π0 + π0 1.05573 · 10−12

K0
L → π+ + π− + π0 8.26989 · 10−13

η → π0 + π0 + π0 8.70984 · 10−2

η → π+ + π− + π0 6.90629 · 10−2

η → π+ + π− + γ 4.66530 · 10−3

ω → π+ + π− + π0 1.14569 · 103

η′ → π+ + π− + η 4.38880 · 101

η′ → π0 + π0 + η 2.00986 · 101

Process (1→ 2 + 3) |M|2 [MeV2]

K+ → π+ + π0 3.28177 · 10−10

K+ → µ+ + νµ 8.78918 · 10−10

K0
S → π+ + π− 1.53713 · 10−7

K0
S → π0 + π0 6.71800 · 10−8

η → γ + γ 1.42174 · 101

ρ0 → π+ + π− 1.86839 · 107

ρ+ → π+ + π0 1.86390 · 107

ω → π0 + γ 8.55086 · 104

η′ → ρ0 + γ 8.04463 · 103

φ→ K+ +K− 1.28798 · 106

φ→ K0
L +K0

S 1.03471 · 106

φ→ ρ0 + π0 2.86706 · 105

Table 3.4: Squared matrix elements for meson decays, where the constant matrix element
approximation is used. For Majorana particles that can also decay through the charge-
conjugated channel, the factor of 2 in the decay width is already taken into account here.
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3.B.2 Matrix elements for Heavy Neutral Leptons above ΛQCD

3.B.2.1 Four-particle processes with leptons only

Process (1 + 2→ 3 + 4) S SG−2
F a−4 |M|2

N + νβ → να + νβ 1 32 |θα|2 (Y1 · Y2) (Y3 · Y4)

N + νβ → να + νβ 1 32 |θα|2 (Y1 · Y4) (Y2 · Y3)

N + να → να + να
1
2

64 |θα|2 (Y1 · Y2) (Y3 · Y4)

N + να → να + να 1 128 |θα|2 (Y1 · Y4) (Y2 · Y3)

N + να → νβ + νβ 1 32 |θα|2 (Y1 · Y4) (Y3 · Y2)

N + νe → e+ + e− 1 128 |θe|2
[
g2
L (Y1 · Y3) (Y2 · Y4) + g2

R (Y1 · Y4) (Y2 · Y3)

+gLgRa
2m2

e (Y1 · Y2)
]

N + e− → νe + e− 1 128 |θe|2
[
g2
L (Y1 · Y2) (Y3 · Y4) + g2

R (Y1 · Y4) (Y3 · Y2)

−gLgRa2m2
e (Y1 · Y3)

]
N + e+ → νe + e+ 1 128 |θe|2

[
g2
L (Y1 · Y4) (Y3 · Y2) + g2

R (Y1 · Y2) (Y3 · Y4)

−gLgRa2m2
e (Y1 · Y3)

]
N + νµ/τ → e+ + e− 1 128

∣∣θµ/τ ∣∣2 [g̃L2 (Y1 · Y3) (Y2 · Y4) +

g2
R (Y1 · Y4) (Y2 · Y3)

+g̃LgRa
2m2

e (Y1 · Y2)
]

N + e− → νµ/τ + e− 1 128
∣∣θµ/τ ∣∣2 [g̃L2 (Y1 · Y2) (Y3 · Y4) +

g2
R (Y1 · Y4) (Y3 · Y2)

−g̃LgRa2m2
e (Y1 · Y3)

]
N + e+ → νµ/τ + e+ 1 128

∣∣θµ/τ ∣∣2 [g̃L2 (Y1 · Y4) (Y3 · Y2) +

g2
R (Y1 · Y2) (Y3 · Y4)

−g̃LgRa2m2
e (Y1 · Y3)

]
Table 3.5: Squared matrix elements for weak processes involving HNLs and leptons. S
is the symmetry factor and α, β ∈ {e, µ, τ}, where α 6= β. Here: gR = sin2 θW, gL =
1/2 + sin2 θW and g̃L = −1/2 + sin2 θW, with θW the Weinberg angle.
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Process (1 + 2→ 3 + 4) S SG−2
F a−4 |M|2

N + νµ → e− + µ+ 1 128 |θe|2 (Y1 · Y4) (Y2 · Y3)

N + νe → e+ + µ− 1 128 |θµ|2 (Y1 · Y3) (Y2 · Y4)

N + e− → νe + µ− 1 128 |θµ|2 (Y1 · Y2) (Y3 · Y4)

N + e+ → νµ + µ+ 1 128 |θe|2 (Y1 · Y4) (Y3 · Y2)

N + νµ → µ+ + µ− 1 128 |θµ|2
[
g2
L (Y1 · Y3) (Y2 · Y4) + g2

R (Y1 · Y4) (Y2 · Y3)

+gLgRa
2m2

µ (Y1 · Y2)
]

N + νe/τ → µ+ + µ− 1 128
∣∣θe/τ ∣∣2 [g̃L2 (Y1 · Y3) (Y2 · Y4) +

g2
R (Y1 · Y4) (Y2 · Y3)

+g̃LgRa
2m2

µ (Y1 · Y2)
]

Process (1→ 2 + 3 + 4) S SG−2
F a−4 |M|2

N → να + νβ + νβ 1 32 |θα|2 (Y1 · Y4) (Y2 · Y3)

N → να + να + να
1
2

64 |θα|2 (Y1 · Y4) (Y2 · Y3)

N → νe + e+ + e− 1 128 |θe|2
[
g2
L (Y1 · Y3) (Y2 · Y4) + g2

R (Y1 · Y4) (Y2 · Y3)

+gLgRa
2m2

e (Y1 · Y2)
]

N → νµ/τ + e+ + e− 1 128
∣∣θµ/τ ∣∣2 [g̃L2 (Y1 · Y3) (Y2 · Y4) +

g2
R (Y1 · Y4) (Y2 · Y3)

+g̃LgRa
2m2

e (Y1 · Y2)
]

N → νµ + e− + µ+ 1 128 |θe|2 (Y1 · Y4) (Y2 · Y3)

N → νe + e+ + µ− 1 128 |θµ|2 (Y1 · Y3) (Y2 · Y4)

N → νµ + µ+ + µ− 1 128 |θµ|2
[
g2
L (Y1 · Y3) (Y2 · Y4) + g2

R (Y1 · Y4) (Y2 · Y3)

+gLgRa
2m2

µ (Y1 · Y2)
]

N → νe/τ + µ+ + µ− 1 128
∣∣θe/τ ∣∣2 [g̃L2 (Y1 · Y3) (Y2 · Y4) +

g2
R (Y1 · Y4) (Y2 · Y3)

+g̃LgRa
2m2

µ (Y1 · Y2)
]

Table 3.6: Squared matrix elements for weak processes involving HNLs and leptons. Note:
low temperatures are assumed here. At high temperatures, reactions such as N + µ− →
e− + νµ are possible. The corresponding matrix elements can be trivially deduced from the
ones given above.

74



3.B.2.2 Four-particle processes with leptons and quarks

Process (1 + 2→ 3 + 4) S SG−2
F a−4 |M|2

N + `+
α → U +D 1 128 |θα|2 |Vud|2 (Y1 · Y4) (Y2 · Y3)

N +D → `−α + U 1 128 |θα|2 |Vud|2 (Y1 · Y2) (Y3 · Y4)

N + U → `−α +D 1 128 |θα|2 |Vud|2 (Y1 · Y4) (Y3 · Y2)

N + να → U + U 1 32
9
|θα|2

[
16g2

R (Y1 · Y4) (Y2 · Y3) +

(3− 4gR)2 (Y1 · Y3) (Y2 · Y4)

+4gRθW (4gR − 3) a2m2
U (Y1 · Y2)

]
N + U → να + U 1 32

9
|θα|2

[
16g2

R (Y1 · Y4) (Y2 · Y3) +

(3− 4gR)2 (Y1 · Y2) (Y3 · Y4)

−4gR (4gR − 3) a2m2
U (Y1 · Y3)

]
N + U → να + U 1 32

9
|θα|2

[
16g2

R (Y1 · Y2) (Y3 · Y4) +

(3− 4gR)2 (Y1 · Y4) (Y3 · Y2)

−4gR (4gR − 3) a2m2
U (Y1 · Y3)

]
N + να → D +D 1 32

9
|θα|2

[
4g2

R (Y1 · Y4) (Y2 · Y3) +

(3− 2gR)2 (Y1 · Y3) (Y2 · Y4)

+2gR (2gR − 3) a2m2
D (Y1 · Y2)

]
N +D → να +D 1 32

9
|θα|2

[
4g2

R (Y1 · Y4) (Y2 · Y3) +

(3− 2gR)2 (Y1 · Y2) (Y3 · Y4)

−2gR (2gR − 3) a2m2
D (Y1 · Y3)

]
N +D → να +D 1 32

9
|θα|2

[
4g2

R (Y1 · Y2) (Y3 · Y4) +

(3− 2gR)2 (Y1 · Y4) (Y3 · Y2)

−2gR (2gR − 3) a2m2
D (Y1 · Y3)

]
Table 3.7: Squared matrix elements for weak scattering processes involving HNLs, leptons
and quarks. Here: U are up-type quarks, D down-type quarks and gR = sin2 θW.
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Process (1→ 2 + 3 + 4) S SG−2
F a−4 |M|2

N → `−α + U +D 1 128 |θα|2 |Vud|2 (Y1 · Y4) (Y2 · Y3)

N → να + U + U 1 32
9
|θα|2

[
16g2

R (Y1 · Y4) (Y2 · Y3) +

(3− 4gR)2 (Y1 · Y3) (Y2 · Y4)

+4gR (4gR − 3) a2m2
U (Y1 · Y2)

]
N → να +D +D 1 32

9
|θα|2

[
4g2

R (Y1 · Y4) (Y2 · Y3) +

(3− 2gR)2 (Y1 · Y3) (Y2 · Y4)

+2gR (2gR − 3) a2m2
D (Y1 · Y2)

]
Table 3.8: Squared matrix elements for weak decay processes involving HNLs, leptons and
quarks. Here: U are up-type quarks, D down-type quarks and gR = sin2 θW.

3.B.3 Matrix elements for Heavy Neutral Leptons below ΛQCD

In addition to interactions with leptons, HNLs will also decay into mesons.

3.B.3.1 Three-particle processes with single mesons

Process (1→ 2 + 3) S SG−2
F M−4

N |M|2

N → να + π0 1 |θα|2 f 2
π

[
1− m2

π

M2
N

]
N → `∓α + π± 1 2 |θα|2 |Vud|2 f 2

π

[(
1− m2

`α

M2
N

)2

− m2
π

M2
N

(
1 +

m2
`α

M2
N

)]
N → να + η 1 |θα|2 f 2

η

[
1− m2

η

M2
N

]
N → να + ρ0 1 |θα|2

(
1− 2 sin2 θW

)2
f 2
ρ

[
1 + 2

m2
ρ

M2
N

] [
1− m2

ρ

M2
N

]
N → `∓α + ρ± 1 2 |θα|2 |Vud|2 f 2

ρ

[(
1− m2

`α

M2
N

)2

+
m2
ρ

M2
N

(
1 +

m2
`α

M2
N

)
− 2

m4
ρ

M4
N

]
N → να + ω 1 |θα|2

(
4
3

sin2 θW

)2
f 2
ω

[
1 + 2 m2

ω

M2
N

] [
1− m2

ω

M2
N

]
N → να + η′ 1 |θα|2 f 2

η′

[
1− m2

η′

M2
N

]
N → να + φ 1 |θα|2

(
4
3

sin2 θW − 1
)2
f 2
φ

[
1 + 2

m2
φ

M2
N

] [
1− m2

φ

M2
N

]
Table 3.9: Squared matrix elements for HNL decays into mesons.
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3.C Collision integrals

Consider the Boltzmann equation in comoving coordinates:

df1

dt
=

df1

d ln a

d ln a

dt
=

df1

d ln a
H =

∑
reactions

Icoll , (3.C.1)

with

Icoll =
a7−2Q

2gẼ1

∑
in,out

∫ ( Q∏
i=2

d3yi

(2π)32Ẽi

)
S|M|2F [f ](2π)4δ4(Yin − Yout) (3.C.2)

The delta function can be rewritten as

δ4(Yin − Yout) = δ4(s1Y1 + s2Y2 + ...+ sQYQ) , (3.C.3)

with si = {−1, 1} if particle i is on the {left, right}-hand side of the reaction. The Yi = aPi
here are the comoving four-momenta.

3.C.1 Three-particle collision integral

Icoll =
a

2Ẽ1

∫
d3y2d3y3

(2gπ)62Ẽ22Ẽ3

S|M|2F [f ](2π)4δ4(s1Y1 + s2Y2 + s3Y3) (3.C.4)

3.C.1.1 Case y1 6= 0

Since a homogeneous and isotropic universe is assumed, only absolute values of momenta
are relevant. Moreover, the matrix element in three particle interactions is independent of
the four-momenta. The collision integral becomes:

Icoll =
S|M|2a

8(2π)2gẼ1

∫
dy2dy3dΩ2dΩ3y

2
2y

2
3

Ẽ2Ẽ3

F [f ]δ4(s1Y1 + s2Y2 + s3Y3) (3.C.5)

Using the identity

δ3(s1y1 + s2y2 + s3y3) =
1

(2π)3

∫
dλdΩλλ

2ei(s1y1+s2y2+s3y3)·λ (3.C.6)

77



gives

Icoll =
S|M|2a

8(2π)5gẼ1

∫
dy2dy3y

2
2y

2
3

Ẽ2Ẽ3

F [f ]δ(s1Ẽ1 + s2Ẽ2 + s3Ẽ3) ·

·
∫

dλλ2

∫
dΩλe

is1y1λ cos θλ

∫
dΩ2e

is1y2λ cos θ2

∫
dΩ3e

is1y3λ cos θ3

=
S|M|2a

8(2π)5gẼ1

∫
dy2dy3y

2
2y

2
3

Ẽ2Ẽ3

F [f ]δ(s1Ẽ1 + s2Ẽ2 + s3Ẽ3) ·

·
∫

dλλ2

(
4π

sin(y1λ)

y1λ

)(
4π

sin(y2λ)

y2λ

)(
4π

sin(y3λ)

y3λ

)
=

S|M|2a
(2π)2gẼ1y1

∫
dy2dy3y2y3

Ẽ2Ẽ3

F [f ]δ(s1Ẽ1 + s2Ẽ2 + s3Ẽ3) ·

·
∫

dλ

λ
sin(y1λ) sin(y2λ) sin(y3λ) (3.C.7)

Rewrite the delta function of energies as∫
dy3y3

Ẽ3

δ(s1Ẽ1 + s2Ẽ2 + s3Ẽ3) =

∫
dy3

y3

Ẽ3

δ (y3 − y∗3)
y∗3
Ẽ∗3

θ
((

(s1Ẽ1 + s2Ẽ2

)
)2 − a2m2

3

)

=

∫
dy3

y3

Ẽ3

Ẽ∗3
y∗3
δ(y3 − y∗3) θ

((
Ẽ∗3

)2

− a2m2
3

)
,

(3.C.8)

where
(
Ẽ∗3

)2

= (y∗3)2 + x2

M2m
2
3 =

(
s1Ẽ1 + s2Ẽ2

)2

and y∗3 =

√
(s1Ẽ1 + s2Ẽ2)2 − a2m2

3.

Plugging Eq. (3.C.8) in Eq. (3.C.7) above:

Icoll =
S|M|2a

(2π)2gẼ1y1

∫
dy2y2

Ẽ2

F [f ]

∫
dλ

λ
sin(y1λ) sin(y2λ) sin(y∗3λ)θ

((
Ẽ∗3

)2

− a2m2
3

)
(3.C.9)

Now, the integral over λ is equal to

X =
π

8
(−Sgn[y1 − y2 − y∗3] + Sgn[y1 + y2 − y∗3] + Sgn[y1 − y2 + y∗3]− 1) , (3.C.10)

with Sgn the signum function and where y1 ≥ y2 ≥ y3 is assumed.
The final form is then

Icoll =
S|M|2a

(2π)2gẼ1y1

∫
dy2y2

Ẽ2

X θ
((

s1Ẽ1 + s2Ẽ2

)2

− a2m2
3

)
(F [f ])

∣∣∣∣
y3=y∗3

(3.C.11)
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3.C.1.2 Case y1 = 0

Icoll =
S|M|2a

8(2π)2gam1

∫
d3y2d3y3

Ẽ2Ẽ3

F [f ]δ
(
s1am1 + s2Ẽ2 + s3Ẽ3

)
δ3 (s2y2 + s3y3)

=
S|M|2

8(2π)2gm1

∫
d3y2F [f ]δ

(
s1am1 + s2

√
y2

2 + (am2)2 + s3

√
y2

2 + (am3)2

)
·

·
(√

y2
2 + (am2)2

√
y2

2 + (am3)2

)−1

=
S|M|2
8πgm1

∫
dy2y

2
2F [f ]δ (y2 − y∗2)

∣∣∣∣∣ s2y
∗
2√

(y∗2)2 + a2m2
2

+
s3y
∗
2√

(y∗2)2 + a2m2
3

∣∣∣∣∣
−1

·

·
(√

y2
2 + (am2)2

√
y2

2 + (am3)2

)−1

θ

((
s1am1 + s2Ẽ2

)2

− a2m2
3

)
=
S|M|2
8πgm1

y∗2

∣∣∣∣s2

√
(y∗2)2 + (am3)2 + s3

√
(y∗2)2 + (am2)2

∣∣∣∣−1

θ

((
Ẽ∗3

)2

− a2m2
3

)
·

· (F [f ])

∣∣∣∣
y1=0, y2=y∗2 , y3=−y∗2

=
S|M|2
8πgm1

y∗2 |s1s2s3am1|−1 θ

((
Ẽ∗3

)2

− a2m2
3

)
(F [f ])

∣∣∣∣
y1=0, y2=y∗2 , y3=−y∗2

=
S|M|2
8πgm2

1

y∗2
a
θ

((
Ẽ∗3

)2

− a2m2
3

)
(F [f ])

∣∣∣∣
y1=0, y2=y∗2 , y3=−y∗2

, (3.C.12)

with
(
Ẽ∗3

)2

=
(
s1am1 + s2Ẽ2

)2

and y∗2 = a

√
(m2

1−m2
2−m2

3)
2
−4m2

2m
2
3

4m2
1

.

3.C.2 Four-particle collision integral

Icoll =
1

2gẼ1

1

a

∫
d3y2d3y3dy3

4

(2π)98Ẽ2Ẽ3Ẽ4

S|M|2F [f ](2π)4δ4(s1Y1 + s2Y2 + s3Y3 + s4Y4)

(3.C.13)

As can be seen in Appendix 3.B, |M|2 can be written as

|M|2 =
1

a4

∑
i 6=j 6=k 6=l

[
K1(Yi · Yj)(Yk · Yl) +K2a

2mimj(Yk · Yl)
]

(3.C.14)

A similar procedure as with the three-particle case is followed here.
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3.C.2.1 Case y1 6= 0

Icoll =
S

16(2π)5gẼ1a

∫
dy2dy3dy4y

2
2y

2
3y

2
4

Ẽ2Ẽ3Ẽ4

F [f ]δ
(
s1Ẽ1 + s2Ẽ2 + s3Ẽ3 + s4Ẽ4

)
·

·
∫

dΩ2dΩ3dΩ4 |M|2 |δ3 (s1y1 + s2y2 + s3y3 + s4y4)

=
S

64π3gẼ1y1a5

∫
dy2dy3dy4y2y3y4

Ẽ2Ẽ3Ẽ4

F [f ]δ
(
s1Ẽ1 + s2Ẽ2 + s3Ẽ3s4Ẽ4

)
·

· D(Y1, Y2, Y3, Y4) , (3.C.15)

with

D(Y1, Y2, Y3, Y4) =
y1y2y3y4

64π5

∫
dΩ2dΩ3dΩ4 |M|2 |δ3 (s1y1 + s2y2 + s3y3 + s4y4)

=
y1y2y3y4

64π5

∫
dλλ2

∫
dΩλe

is1y1·λ
∫

dΩ2e
is2y2·λ

∫
dΩ3e

is3y3·λ ·

·
∫

dΩ4e
is4y4·λ

∑
i 6=j 6=k 6=l

[
K1(Yi · Yj)(Yk · Yl) +K2a

2mimj(Yk · Yl)
]

=
y1y2y3y4

64π5

∑
i 6=j 6=k 6=l

∫
dλλ2

∫
dΩλe

isiyiλ cos θi

∫
dΩje

isjyjλ cos θj ·

·
∫

dΩke
iskykλ cos θk

∫
dΩle

islylλ cos θl [K1(Yi · Yj)(Yk · Yl) +

+ K2a
2mimj(Yk · Yl)

]
(3.C.16)

Working out the inner products

Yi · Yj = ẼiẼj − yi · yj = ẼiẼj − yiyj cos θij

= ẼiẼj − yiyj (cos θi cos θj + cos(φi − φj) sin θi sin θj) , (3.C.17)

where θij is the angle between vectors yi and yj, and using that∫ π

0

∫ 2π

0

dθidφie
isiyiλ cos θi sin2 θi cos(φi − φj) = 0 (3.C.18)
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gives

D(Y1, Y2, Y3, Y4) =
y1y2y3y4

64π5

∑
i 6=j 6=k 6=l

∫
dλλ2

∫
dθidφi sin θie

isiyiλ cos θi · (3.C.19)

·
∫

dθjdφj sin θje
isjyjλ cos θj

∫
dθkdφk sin θke

iskykλ cos θk ·

·
∫

dθldφl sin θle
islylλ cos θl

[
K1

(
ẼiẼj − yiyj cos θi cos θj

)
·

·
(
ẼkẼl − ykyl cos θk cos θl

)
+K2a

2mimj

(
ẼkẼl − ykyl cos θk cos θl

)]
The integrals over the angles are given by∫ π

0

∫ 2π

0

dθdφ sin θeisyλ cos θ = 4π
sin(yλ)

yλ
(3.C.20)∫ π

0

∫ 2π

0

dθdφ sin θ cos θeisyλ cos θ =
4π

isyλ

[
cos(yλ)− sin(yλ)

yλ

]
(3.C.21)

(3.C.22)

and working out all the brackets gives

D(Y1, Y2, Y3, Y4) =
∑

i 6=j 6=k 6=l

[
K1

{
Ẽ1Ẽ2Ẽ3Ẽ4D1 (y1, y2, y3, y4) + ẼiẼjD2 (yi, yj, yk, yl) +

+ ẼkẼlD2 (yk, yl, yi, yj) +D3 (y1, y2, y3, y4)
}

+

+ K2a
2mimj

{
ẼkẼlD1 (y1, y2, y3, y4) +D2 (yi, yj, yk, yl)

}]
,

(3.C.23)

with

D1 (yi, yj, yk, yl) =
4

π

∫
dλ

λ2
sin(yiλ) sin(yjλ) sin(ykλ) sin(ylλ) (3.C.24)

D2 (yi, yj, yk, yl) =sksl
4ykyl
π

∫
dλ

λ2
sin(yiλ) sin(yjλ)

[
cos(ykλ)− sin(ykλ)

ykλ

]
·

·
[
cos(ylλ)− sin(ylλ)

ylλ

]
(3.C.25)

D3 (yi, yj, yk, yl) =sisjsksl
4yiyjykyl

π

∫
dλ

λ2

[
cos(yiλ)− sin(yiλ)

yiλ

] [
cos(yjλ)− sin(yjλ)

yjλ

]
·

·
[
cos(ykλ)− sin(ykλ)

ykλ

] [
cos(ylλ)− sin(ylλ)

ylλ

]
(3.C.26)

All these three functions are symmetric under the exchange yi ↔ yj and yk ↔ yl, which
then allows to take yi > yj and yk > yl. Integrating out λ gives the functions in terms of
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polynomials for all possible cases (factors sksl and sisjsksl omitted):

• yi > yj + yk + yl or yk > yi + yj + yl:

D1 = D2 = D3 = 0

• yi + yj > yk + yl and yi + yl < yj + yk:

D1 =yl

D2 =
1

3
y3
l

D3 =
1

30
y3
l

[
5
(
y2
i + y2

j + y2
k

)
− y2

l

]
• yi + yj > yk + yl and yi + yl > yj + yk:

D1 =
1

2
(yj + yk + yl − yi)

D2 =
1

12

[
(yi − yj)

{
(yi − yj)2 − 3

(
y2
k + y2

l

)}
+ 2

(
y3
k + y3

l

)]
D3 =

1

60

[
y5
i − y5

j − y5
k − y5

l + 5
(
−y3

i y
2
j + y2

i y
3
j − y3

i y
2
k + y2

i y
3
k

− y3
i y

2
l + y2

i y
3
l + y3

j y
2
k + y2

j y
3
k + y3

j y
2
l + y2

j y
3
l + y3

ky
2
l + y2

ky
3
l

)]
• yi + yj < yk + yl and yi + yl > yj + yk:

D1 =yj

D2 =
1

6
yj
[
3
(
y2
k + y2

l − y2
i

)
− y2

j

]
D3 =

1

30
y3
j

[
5
(
y2
i + y2

k + y2
l

)
− y2

j

]
• yi + yj < yk + yl and yi + yl < yj + yk:

D1 =
1

2
(yi + yj + yl − yk)

D2 =− 1

12

[
(yi + yj)

{
(yi + yj)

2 − 3
(
y2
k + y2

l

)}
+ 2

(
y3
k − y3

l

)]
D3 =

1

60

[
y5
k − y5

i − y5
j − y5

l + 5
(
−y3

ky
2
l + y2

ky
3
l − y3

ky
2
i + y2

ky
3
i

− y3
ky

2
j + y2

ky
3
j + y3

l y
2
i + y2

l y
3
i + y3

l y
2
j + y2

l y
3
j + y3

i y
2
j + y2

i y
3
j

)]
Going back to the collision integral, the same trick as before can be applied to the delta
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function of energies, which then gives:

Icoll =
S

64π3gẼ1y1a5

∫
dy2dy3

y2y3

Ẽ2Ẽ3

D(Y1, Y2, Y3, Y4) ·

· θ
((

(s1Ẽ1 + s2Ẽ2 + s3Ẽ3

)2

− a2m2
4

)
(F [f ])

∣∣∣∣
y4=y∗4

, (3.C.27)

with y∗4 =

√(
s1Ẽ1 + s2Ẽ2 + s3Ẽ3

)2

− a2m2
4.

3.C.2.2 Case y1 = 0

Icoll =
S

64π3gam1

1

a5

∫
dy2dy3dy4y2y3y4

Ẽ2Ẽ3Ẽ4

F [f ]δ
(
s1am1 + s2Ẽ2 + s3Ẽ3 + s4Ẽ4

)
·

· B(Y1, Y2, Y3, Y4) , (3.C.28)

with

B(Y1, Y2, Y3, Y4) =
y2y3y4

64π5

∫
dΩ2dΩ3dΩ4 |M|2 |δ3 (s2y2 + s3y3 + s4y4)

=
y2y3y4

64π5

∫
dλλ2dΩλ

∫
dθ2dφ2 sin θ2e

is2y2λ cos θ2 ·

·
∫

dθ3dφ3 sin θ3e
is3y3λ cos θ3

∫
dθ4dφ4 sin θ4e

is4y4λ cos θ4 ·

·
∑

i 6=j 6=k 6=l

[
K1

(
ẼiẼj − yiyj cos θi cos θj

)
·
(
ẼkẼl − ykyl cos θk cos θl

)
+

+K2 a
2mimj

(
ẼkẼl − ykyl cos θk cos θl

)]
(3.C.29)

Consider the case that i = 1 in one of the terms of |M|2. Then the B−function can be
written as:

Bi=1(Y1, Y2, Y3, Y4) =
y2y3y4

64π5
4π

∫
dλλ2

∑
j 6=k 6=l

∫
dθjdφj sin θje

isjyjλ cos θj ·

·
∫

dθkdφk sin θke
iskykλ cos θk

∫
dθldφl sin θle

islylλ cos θl ·

·
[
K1am1Ẽj ·

(
ẼkẼl − ykyl cos θk cos θl

)
+

+K2 a
2m1mj

(
ẼkẼl − ykyl cos θk cos θl

)]
(3.C.30)
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Bi=1(Y1, Y2, Y3, Y4) = K1am1

∑
j 6=k 6=l

[
ẼjẼkẼlB1 (yj, yk, yl) + ẼjB2 (yj, yk, yl)

]
+

+K2am1

∑
j 6=k 6=l

amj

[
ẼkẼlB1 (yj, yk, yl) +B2 (yj, yk, yl)

]
,

(3.C.31)

with B1 (yj, yk, yl) given by Eq. (3.C.10) and

B2 (yj, yk, yl) = sksl
4ykyl
π

∫
dλ

λ
sin(yjλ)

[
cos(ykλ)− sin(ykλ)

ykλ

] [
cos(ylλ)− sin(ylλ)

ylλ

]
=

{
1
2

[
y2
k + y2

l − y2
j

]
, yj + yk ≥ yl & yj + yl ≥ yk & yk + yl ≥ yj

0, otherwise

(3.C.32)

This procedure can be done for all the other terms in |M|2. If j = 1, the result is the same,
but with i↔ j. Note that if k = 1 or l = 1, there is no B2-term in the part with K2. The
collision integral then becomes

Icoll =
S

64π3gm1a6

∫
dy2dy3

y2y3

Ẽ2Ẽ3

B(Y1, Y2, Y3, Y4) ·

· θ
((

(s1m1 + s2Ẽ2 + s3Ẽ3

)2

− a2m2
4

)
(F [f ])

∣∣∣∣
y4=y∗4

, (3.C.33)

with y∗4 =

√(
s1am1 + s2Ẽ2 + s3Ẽ3

)2

− a2m2
4.

3.D Low-level code checks

Units correctness is a very important sanity check of the code. In practice not a single
programming language supports this out of the box, but many of them allow to implement
more or less complete units algebra with compile time or runtime verification. Typically
this restricts the structure of the code or is too verbose and has a big runtime performance
overhead.

Fortunately, there is a very economic way to gain a reasonable control of the units. It is
based on the idea that units can be treated as some free constants. For example,

m =
E

c2
(3.D.1)

E = 0.511 MeV c = 3 · 108 m/s (3.D.2)

m =
0.511 MeV

9 · 1016 (m/s)2 = 5.67 · 10−18 MeVs2

m2
(3.D.3)

Some units are related to each other:
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eV

J
= 1.602 · 10−19 J =

kg m2

s2
(3.D.4)

m = 5.67 · 10−18 · 1.602 · 10−13 J s2

m2
≈ 9 · 10−31 kg (3.D.5)

To employ this idea, one can write a program in the following way:

1 class UNITS:
2 # Base units
3 eV = 1.653e-2 # arbitrary constants
4 m = 5.27e3
5 s = 6.24
6 # Derived units
7 MeV = 1e6 * eV
8 J = 6.242e18 * eV
9 kg = J * s**2 / m**2

10

11 class CONST:
12 c = 3e8 * UNITS.m / UNITS.s
13

14 energy = 0.511 * UNITS.MeV
15 electron_mass = energy / CONST.c**2
16 print "Electron mass is", electron_mass / UNITS.kg, "kg"

Figure 3.19: Sample unit-preserving code in Python

Basically, some arbitrary (possibly random) constants should be assigned to all base
units, all derived units are defined in terms of base units and all dimensionful quantities
must be created with correct unit multipliers. Then, right before the output, one divides
quantity by the desired units constants and obtains the correct answer.

As long as units are used properly, change of the base units constants does not affect
the answer (except for corner cases of rounding errors). By running the code twice with
different definitions of base units verifies the correctness of the code.

The advantages of this approach are:

• Simplicity and zero overhead: for each occurrence of the unit, there is a simple
multiplication operation. There are additional constructs in the code and an obvious
recipe for proper usage

• Easy opt-out: all units can be set equal to 1 such that they have no way to influence
the computation

• Free unit conversion

On the other hand this approach is runtime-only and does not produce any exceptions
during the compilation or runs of the code.
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This idea is implemented in the numericalunits4 package that we use in conjunction
with simpler code suitable for natural units and similar to the listing 3.19 to enforce units
handling in our code.

Verification of the matrix elements. Our computations involve tens of different quantum
processes for which we have computed the matrix elements – App. 3.B. It is not uncommon
to find mistakes in papers with similar computations. We have checked our matrix elements
using Mathematica symbolic algebra scripts that automate the necessary transformations
for Fermi theory interactions.

4https://pypi.python.org/pypi/numericalunits
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