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Abstract. An algorithm is proposed for multi-objective optimisation of Lipschitz objective functions that each satisfy a Lipschitz
condition of which a Lipschitz constant is a priori known. The number of function evaluations is reduced by determining a
good next point of evaluation using an Expected Hypervolume Improvement (EHVI) approach. It is closely related to Shubert’s
Algorithm for single objective optimisation on one-dimensional decision space, but sampling sequences can be slightly different.

INTRODUCTION

Algorithms for optimising Lipschitz continuous objective functions for which Lipschitz constants are known have
attracted some attention over the past decades. Shubert [1] introduced the algorithm (named later after him) for global
optimisation of a single Lipschitz continuous objective function on one-dimensional decision space. Žilinskas and
Žilinskas [2] introduced an approach to computing the Pareto optimal set for a bi-objective optimisation problem
with Lipschitz objective functions on a d-dimensional hyper-rectangular decision space. The Pareto optimal set is
approximated by that of a natural Lipschitz lower bound that is iteratively improved. See e.g. [2] for further references.

Here we propose an approach for optimisation of n Lipschitz continuous functions on d-dimensional decision
space, motivated by the Expected Hypervolume Improvement (EHVI) method introduced in Emmerich [3] and elab-
orated upon in Emmerich et al. [4]. We show that our EHVI method reduces ‘almost’ to Shubert’s Algorithm in the
case n � 1, d � 1. In multi-objective optimisation of a function f : D � Rd Ñ Rn the main objectives are to
determine the Pareto optimal solutions (simply called the ‘Pareto front’) in Rn and the corresponding set of decisions
in D (cf. Miettinen [5]). In case of minimising, this amounts to determining the points in f pDq that are not dominated
by any other point in f pDq. We say that an element y � py1, . . . , ydq in objective space Rn is dominated by y1, written
as y1   y, if py1qi ¤ yi for all i P t1, . . . , nu and py1qi   yi for at least one i P t1, . . . , nu. If n � 1 the Pareto front is
simply the global minimum.

The objective of the proposed EHVI algorithm is to approximate the Pareto front of a Lipschitz continuous f .
Recall that this entails the following:

Definition 1. A function f : D � Rd Ñ Rn, with f pxq � p f 1pxq, . . . , f npxqq for any x P D is called Lipschitz
continuous on D or is said to satisfy a Lipschitz condition on D with constant L � pL1, . . . , Lnq P Rn

� if for all
x, y P D:

| f kpxq � f kpyq| ¤ Lk}x � y}, k � 1, . . . , n.

Here we take }x � y} :�
°d

i�1|xi � yi|, the so-called Manhattan metric. (Note that f k and Lk are not powers of f and
L, but indicate the components of the vector f and L).

The objective is to use as few functions evaluations f pxq as possible, because in applications the evaluation f pxq
can be computationally quite expensive. The EHVI algorithm exploits the a priori knowledge of a Lipschitz constant L
to determine a position x P D for the next evaluation, given the previous evaluated points and corresponding computed
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FIGURE 1. The set of points that are dominated by a set Y4 � typ1q, . . . , yp4qu � R2 relative to reference point r P R2 (red) and
its hypervolume indicator (the area). The area of the blue region is the hypervolume improvement of Z � tzp1q, zp2qu relative to Y4.

values, that maximises the expected improvement – in a suitable sense – of the approximation of the Pareto front. This
‘educated guess’ of the new position x is based on the hypervolume improvement measure, that we discuss next.

Expected Hypervolume Improvement
Fix a reference point r P Rn. For Y � Rn, the set of points dominated by Y (relative to r) is the set

DomrpYq :� tu P Rn | u   r and there exists y P Y : y   uu. (1)

Definition 2. The hypervolume improvement of Z over Y is the increase of size of the set of dominated points relative
to Z compared to that relative to Y , as measured by n-dimensional Lebesgue measure λn:

HVIpZ | Yq :� λn
�

DomrpZq zDomrpYq
�
. (2)

Figure 1 illustrates the concepts discussed so far. If Z � tzu, a single point, we shall write HVIpz | Yq.
Emmerich et al. [4] showed that the expected hypervolume improvement is a useful tool for global optimisation.

Suppose one has evaluated the Lipschitz objective function f (with constant L) at the points x P Xk :� txp1q, . . . , xpkqu.
Let Yk :� f pXkq and write yp jq :� f pxp jqq. Because f is Lipschitz continuous, we know that if we evaluate f in x P Rd,
the corresponding value y :� f pxq P Rn satisfies for all i P t1, . . . , nu and j P t1, . . . , ku:

f i�xp jq�� Li}x � xp jq} ¤ yi ¤ f i�xp jq�� Li}x � xp jq}. (3)

That is, y has to be in the hyper-rectangle ExpXkq that is an n-fold Cartesian product of intervals in R:

ExpXkq :�
n¡

i�1

�
max

j

!
f i
�

xp jq
	
� Li}x � xp jq}

)
,min

j

!
f i
�

xp jq
	
� Li}x � xp jq}

)�
. (4)

Since one has no further information on the location of y within ExpXkq, we assume that its location is a random
variable Y that is homogeneously distributed over ExpXkq. Write Ex � ExpXkq and – motivated by [4] – define

Definition 3. The expected hypervolume improvement (EHVI) of a point x P D relative to the set Xk of previously
evaluated points and corresponding values Yk � f pXkq is EIpx | Xkq :� E rHVIpY | Ykqs.

Observe that the hypervolume improvement of Y relative to Yk will be 0 if Y P DomrpYkq X Ex. Otherwise it will
be HVIpY | Ykq. Therefore,

EIpx | Xkq �
1

VolpExq

»
ExzDomrpYkq

HVIpy | Ykq dy, (5)

where VolpExq is readily obtained from equation (4).
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THE EXPECTED HYPERVOLUME IMPROVEMENT ALGORITHM

The proposed EHVI algorithm for approximating the Pareto front consists of the following steps:
1. Select xp1q P D and put X1 :� txp1qu.
2. Compute yp1q :� f pxp1qq and put Y1 :� typ1qu.
3. Select xpk�1q P arg maxxPD EIpx | Xkq and put Xk�1 :� Xk Y txpk�1qu.
4. Compute ypk�1q :� f pxpk�1qq and put Yk�1 :� Yk Y typk�1qu.
5. Stop if EIpxpk�1q | Xkq ¤ ε, otherwise increase k and return to Step 3.

After stopping, the subset of Yk�1 consisting of those points that are not dominated by any other point in Yk�1 provide
an approximation of the part of the Pareto front of f in tu P Rn | u   ru, to an accuracy that is controlled by ε ¡ 0.
This algorithm is interesting to consider – roughly speaking – when computing a global maximum of the functions
D Ñ R : x ÞÑ EIpx | Xkq (k � 1, 2, 3, . . . q, required in Step 3, is computationally more efficient than evaluating f .

RELATION TO SHUBERT’S ALGORITHM

Now we will take a closer look at the case for n � 1 and d � 1, i.e. single objective optimisation in one dimensional
decision space. We take D � ra, bs � R and the single objective function f : ra, bs Ñ R is assumed to satisfy a
Lipschitz condition with constant L. Bruno O. Shubert introduced in 1972 an algorithm to approximate the global
maximum of f on ra, bs in [1]. Our main conclusion concerning the relationship to Shubert’s Algorithm, which will
be made precise below, is:

The sampling sequence of the Expected Hypervolume Improvement Algorithm applied to single objective optimisation
pn � 1q of a Lipschitz continuous objective function on ra, bs � R pd � 1q will generally follow that of Shubert’s
Algorithm, but may deviate at steps, occasionally.

Shubert’s Algorithm
We reformulate the algorithm in Shubert [1] for minimisation. Put φ :� minxPra,bs f pxq and Φ :� arg minxPra,bs f pxq.
Shubert’s Algorithm defines a sampling sequence x0, x1, x2, . . . of points from ra, bs recursively, by selecting (arbi-
trarily) x0 P ra, bs. Once x0, . . . , xn have been selected, xn�1 is selected according to

Fnpxq :� max
k�0,...,n

p f pxkq � L|x � xk |q, xn�1 P arg min
xPra,bs

Fnpxq. (6)

It is shown in [1] that the sequence pxnq converges to a point in Φ and that the minimal values Mn :� minxPra,bs Fnpxq
converges to φ. In practice one usually starts with x0 � a after which one can take x1 � b. This version of the
algorithm one may call the Canonical Shubert Algorithm (CSA). An example is visualised in Figure 2 (left).

Computation of the Expected Hypervolume Improvement

Select a reference point r P R sufficiently large, such that r ¥ maxxPra,bs f pxq. Suppose that evaluations have been
made at points x0, . . . , xk�1, with k ¥ 1. Put Xk :� tx0, . . . , xk�1u and Yk :� f pXkq. Assume for simplicity of
exposition that a, b P Xk. Fix x P ra, bszXk and define x� as the point in Xk closest to x such that x�   x. Similarly,
x� is the point closest to x with x� ¡ x, see Figure 2 (right). Put ymin :� minpYkq and define

Mx :� min
 

f px�q� Lpx� x�q, f px�q� Lpx� x�q
(
, mx :� max

 
f px�q� Lpx� x�q, f px�q� Lpx� x�q

(
. (7)

The computation of an expression for EIpx | Xkq and its maximisation are established in the following lemmas.

Lemma 4. ExpXkq � R is determined by the evaluations at x� and x� only: ExpXkq � rmx,Mxs.

Lemma 5. HVIpy | Ykq � ymin � y for y P ExpXkqzDomrpYkq �
�
minpmx, yminq, ymin

�
.

Lemma 6. EIpx | Xkq �
pymin�mxq

2

2pMx�mxq
if mx   ymin, and EIpx | Xkq � 0 otherwise.

Lemma 7. Define Fx�,x�pξq :� mint f px�q�Lpξ�x�q, f px�q�Lpξ�x�qu. Then arg maxxPrx�,x�s EIpx | Xkq � txLu,
where xL is the location of the unique minimum of Fx�,x� :

xL �
1
2

�
x� � x� � 1

L r f px�q � f px�qs
�
. (8)
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FIGURE 2. Left: Visualisation of a sampling sequence in the Canonical Shubert’s Algorithm, where x0 � a and x1 � b. Right:
The upper and lower bound for the values of f pxq in between two evaluated points x� and x�. The set ExpXkq of possible values
for f pxq is denoted by the vertical dashed lines. xL is the position of the minimum of the lower bound Fx� ,x� .

Comparison

Let x10   x11   � � �   x1k�1 be the enumeration of Xk in increasing order and put y1i :� f px1iq. In Shubert’s Algorithm
the next point xk is chosen at a position where Fk�1pxq is minimal. Fk�1 is the minimum of the functions Fx1i ,x

1
i�1

defined in Lemma 7, i P t0, 1, . . . , k� 2u. Let xL,i be the xL-location of the interval rx1i , x
1
i�1s. Put yL,i :� Fx1i ,x

1
i�1
pxL,iq.

Then xk � xL,i� for index i� for which yL,i� is minimal. Hence, zi� :� ymin � yL,i� is maximal.
In our EHVI algorithm the next point xk is chosen where EIpx | Xkq is maximal. According to Lemma 7, xk is

one of the points xL,i. A computation shows that MxL,i � mxL,i � 2rminpy1i , y
1
i�1q � yL,is. Thus, Lemma 6 yields

Ei :� EIpxL,i| Xkq �
1
4

pymin � yL,iq
2

minpy1i , y
1
i�1q � yL,i

� 1
4

z2
i

wi � zi
, with zi :� ymin � yL,i, wi :� minpy1i , y

1
i�1q � ymin. (9)

Then xk equals xL,i for i for which Ei is maximal. This is not necessarily at i with maximal zi, as in Shubert’s Algorithm.
Depending on the values wi, the EHVI algorithm may select a next point xk different from Shubert’s Algorithm. It
remains to be investigated how this phenomenon affects convergence rates to global minimum.

ACKNOWLEDGMENTS

This work was part of H. Otten’s research project for obtaining her Master’s degree in Mathematics at Leiden Univer-
sity under supervision of dr. S.C. Hille (Mathematical Institute) and dr. M.T.M. Emmerich (LIACS).

REFERENCES

[1] B. O. Shubert, SIAM Journal on Numerical Analysis 9, 379–388 (1972).
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