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DIFFERENTIABILITY IN PERTURBATION PARAMETER OF MEASURE

SOLUTIONS TO PERTURBED TRANSPORT EQUATION

PIOTR GWIAZDA1, SANDER C. HILLE2, KAMILA ŁYCZEK3,

AND AGNIESZKA ŚWIERCZEWSKA-GWIAZDA3

ABSTRACT. We consider a linear perturbation in the velocity field of the transport equation. We

investigate solutions in the space of bounded Radon measures and show that they are differen-

tiable with respect to the perturbation parameter in a proper Banach space, which is predual to the

Hölder space C1+α(Rd). This result on differentiability is necessary for application in optimal

control theory, which we also discuss.

1. INTRODUCTION

Analysis of perturbations in partial differential equation systems is an important issue. Struc-

tured population models [CnCC13, GLM10, GM10, CCGU12, CGR18], dynamics of system

[CnCR11, BGSW13, DHL14, FLOS, AFM] and vehicular traffic flow [BDDR08, EHM16,

GS16, GR17] were investigated for Lipschitz dependence on initial conditions in space of mea-

sures. However, the differentiability (not only Lipschitz dependence) is necessary for the ap-

plication in optimal control theory or linearised stability. Previous considerations concerning

the transport equation in the space of measures did not allow to analyse the differentiability

of solutions with respect to a perturbation of the system [AGS08, Thi03, PF14].

In this paper we consider solutions to a perturbed transport equation in the space of bounded

Radon measures, denoted by M(Rd), where the perturbation is linear in the velocity field.

Consider the initial value problem for the transport equation in conservative form
{
∂tµt + divx(bµt) = wµt in (C1

c ([0,∞)× Rd))∗,
µt=0 = µ0 ∈ P(Rd),

(1.1)

where the velocity field (t 7→ b(t, ·)) ∈ C0([0,+∞) ; C1+α(Rd)), the initial condition is a prob-

ability measure on Rd and w(t, x) ∈ C1+α([0,∞) × Rd). By (·)∗ we denote the topological

dual to (·), when the latter is equipped with a suitable locally convex or norm topology; C1
c is
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POLAND
2MATHEMATICAL INSTITUTE, LEIDEN UNIVERSITY P.O. BOX 9512, 2300 RA LEIDEN, THE NETHER-

LANDS
3INSTITUTE OF APPLIED MATHEMATICS AND MECHANICS, UNIVERSITY OF WARSAW, BANACHA 2,

02-097 WARSZAWA, POLAND

E-mail addresses: pgwiazda@mimuw.edu.pl, shille@math.leidenuniv.nl,

k.lyczek@mimuw.edu.pl, aswiercz@mimuw.edu.pl.

1

http://arxiv.org/abs/1806.00357v4


2 MEASURE SOLUTION TO TRANSPORT EQUATION, K. ŁYCZEK, K.LYCZEK@MIMUW.EDU.PL

the space of continuous functions with compact support and C1+α is the space of functions of

which first order partial derivatives are Hölder continuous with exponent α, where 0 < α ≤ 1.

Existence and uniqueness of solutions to equation (1.1) was proved in [Man07], see Lemma 2.1.

The solution µt : [0,∞) → P(Rd) is a narrowly continuous curve (by [Man07], Lemma 3.2).

Recall that a mapping [0,∞) ∋ t 7→ µt ∈ P(Rd) is narrowly continuous if t 7→
∫
Rd ηdµt is

a continuous function for all η in the space of continuous and bounded functions defined on Rd,

Cb(R
d).

We start by defining a weak solution to equation (1.1).

Definition 1.1. Let µ0 ∈ P(Rd) and (t 7→ b(t, ·)) ∈ C0([0,+∞) ; C1+α(Rd)).
We say that the narrowly continuous curve t 7→ µt ∈ P(Rd) is a weak solution to (1.1) if

∫ ∞

0

∫

Rd

(∂tϕ(t, x) + b∇xϕ(t, x)) dµt(x)dt+

∫

Rd

ϕ(0, ·)dµ0

=

∫ ∞

0

∫

Rd

w(t, x)ϕ(t, x)dµt(x)dt,

(1.2)

holds for all test functions ϕ ∈ C1
c ([0,∞)× Rd).

We introduce a perturbation to the velocity field b as follows

bh(t, x):=b(t, x) + h · b1(t, x), (1.3)

where (t 7→ b(t, ·)) , (t 7→ b1(t, ·)) ∈ C0([0,+∞) ; C1+α(Rd)) and h ∈ R, close to 0.

The perturbed problem corresponding to (1.1) has the form
{
∂tµ

h
t + divx

(
bh(t, x)µht

)
= w(t, x)µht in (C1

c ([0,∞)× Rd))∗,
µht=0 = µ0 ∈ P(Rd).

(1.4)

Notice that the initial conditions in (1.1) and (1.4) are the same (µt=0 = µht=0 = µ0). For the

purpose of further considerations, without loss of generality, we may assume that h ∈ [−1
2
, 1
2
].

Before stating the main result, we need to define an appropriate Banach space. First recall that

the Hölder space C1+α(Rd) is a Banach space with the norm

‖f‖C1+α(Rd) := sup
x∈Rd

|f(x)|+ sup
x∈Rd

|∇xf(x)| + sup
x1 6=x2

x1,x2∈Rd

|∇xf(x1)−∇xf(x2)|

|x1 − x2|α
. (1.5)

The space of Radon measures M(Rd) inherits the dual norm of (C1+α(Rd))∗ by means of em-

bedding the former into the latter, where a measure is identified with the functional defined

by integration against the measure. Throughout we identify the former with the subspace

of (C1+α(Rd))∗. Let then

Z := M(Rd)
(C1+α(Rd))∗

, (1.6)

which is a Banach space equipped with the dual norm ‖ · ‖(C1+α(Rd))∗ .

We show in Proposition 5.3 that such defined Z is a predual space of C1+α(Rd): Z∗ is linearly

isomorphic to C1+α(Rd).
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The following theorem is the main result of this paper.

Theorem 1.1. Assume that (t 7→ b(t, ·)) and (t 7→ b1(t, ·)) ∈ C0
(
[0,+∞) ; C1+α(Rd)

)
, and

w(t, x) ∈ C1+α([0,∞) × Rd). Let µht be the weak solution to problem (1.4) with velocity

field defined by (1.3). Then the mapping

[−
1

2
,
1

2
] ∋ h 7→ µht ∈ P(Rd)

is differentiable in Z, i.e. ∂hµ
h
t ∈ Z.

Classically, the analysis of structured population models was carried out in Lipschitz setting

[Web85, Thi03]. This approach is appropriate for considering the densities of populations.

However, it does not allow to work with less regular distributions used in applications, like

Dirac mass. Firstly, we would like to argue why this result cannot be obtained in the space

W 1,∞ with the flat metric (called also bounded Lipschitz distance) – what is a natural setting to

consider transport equation in the space of bounded Radon measures [PR16, PFM, GJMU14,

CLM13, GM10].

Recall that the flat metric is defined as follows

ρF (µ, ν) := sup
f∈W 1,∞,‖f‖

W1,∞≤1

{∫

Rd

fd(µ− ν)

}
.

It is worth recalling that the generalized Wasserstein distance coincides with the flat metric

[PR16].

Now, we recall a counterexample presented in [Skr] for differentiability in the mentioned set-

ting. Consider a perturbed transport equation for one dimensional x on R
{
∂tµ

h
t + ∂x((1 + h)µht ) = 0,

µh0 = δ0.
(1.7)

It can be easily checked that µht = δ(1+h)t is a measure solution to (1.7). Note that the map

h 7→ µht is Lipschitz continuous

ρF (µ
h
t , µ

h′

t ) = ρF (δ(1+h)t, δ(1+h′)t) ≤ |h− h′|t.

However, it is not differentiable for the flat metric. If
µht −µ

0
t

h
were convergent, it would satisfy

Cauchy condition with respect to the flat metric. We compute
∫

R

f(x)

(
dµh1t (x)− dµ0

t

h1
−

dµh2t (x)− dµ0
t

h2

)
=
f((1 + h1)t)− f(t)

h1
−
f((1 + h2)t)− f(t)

h2
.

If we choose a test function from W 1,∞(R) such that

f(x) =

{
|x− t| − 1, if |x− t| ≤ 1,

0, if |x− t| > 1,

then for h1 > 0 and h2 < 0, we get pF

(
µ
h1
t −µ0t
h1

,
µ
h2
t −µ0t
h2

)
≥ 2t. Thus

µht −µ
0
t

h
does not converge.

That is why we need a space with test functions a little bit more regular than W 1,∞(R).
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Theorem 1.1, differentiability with respect to perturbing parameter, is required for various ap-

plications. One that we shall discuss in this paper is application to optimal control theory.

As additional results we have further characterizations of the Banach space Z, presented in

Section 5. First, Z is separable as the span of Dirac measures at rational points is a dense

countable subset of Z. Moreover we have that Z∗ is linearly isomorphic to C1+α(Rd).

The outline of the paper is as follows. Section 2 is devoted to preparing the necessary back-

ground in functional analysis. The proof of Theorem 1.1 is treated in Section 3. In Section 4

by discuss possible applications of the result of this paper. Characterization of the space Z is

presented in Section 5.

2. PRELIMINARIES

The characteristic system associated to equation (1.1), has the following form
{
Ẋb(t, y) = b (t, Xb(t, y)) ,
Xb(t0, y) = y ∈ Rd,

(2.8)

where (t 7→ b(t, ·)) ∈ C0([0,+∞) ; C1+α(Rd)).

A solution to (2.8), Xb is called a flow map. Note that the flow maps are defined for all t ∈ R

and thus y 7→ Xb(t, y) is a one-parameter group of diffeomorphisms on Rd (dependent on

the variable b).

Remark. The requirement (t 7→ b(t, ·)) ∈ C0
(
[0,+∞) ; C1(Rd)

)
is sufficient to conclude that

y 7→ Xb(t, y) is a diffeomorphism. Higher regularity is needed when we estimate remainder

terms of a Taylor expansion in the final proof of Theorem 1.1 (see e.g. equation (3.11)).

Now we define the push-forward operator [AGS08]. If Y1, Y2 are separable metric spaces,

µ ∈ P(Y1), and r : Y1 → Y2 is a µ-measurable map, we denote by µ 7→ r#µ ∈ P(Y2) the push-

forward of µ through r, defined by

r#µ(B) := µ(r−1(B)), for all B ∈ B(Y2).

The following lemma guarantees that a weak solution µt is probability measure.

Lemma 2.1 (A representation formula for the non-homogenous continuity equation [Man07]).

Let b(t, y) be a Borel velocity field in L1([0, T ];W 1,∞(Rd)), w(t, x) a Borel bounded and locally

Lipschitz continuous (w.r.t. the space variable) scalar function and µ0 ∈ P(Rd). Then there

exists a unique µt, narrowly continuous family of Borel finite positive measures solving (in the

distributional sense) the initial value problem (1.1) and it is given by the explicit formula

µt = Xb(t, ·)#(e
∫ t

0 w(s,Xb(s,·))ds · µ0), for all t ∈ [0, T ].

Remark. Since in our case (t 7→ b(t, ·)) ∈ C0
(
[0,+∞) ; C1+α(Rd)

)
then b is globally Lipschitz

and thus the solution Xt is global. Also w(t, x) satisfies the assumption in Lemma 2.1. Thus

we conclude that (1.1) has a unique weak solution t 7→ µt, that is defined for all t.

Since the representation formula could be generalized for the case when µ is a non-negative

measure M+(Rd) we can also consider non-positive measures as an initial condition.
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3. PROOF OF MAIN RESULT – THEOREM 1.1

By definition Z = span{δx : x ∈ Rd}
(C1+α(Rd))∗

is a subspace of (C1+α(Rd))∗. The space Z in-

herits the norm of (C1+α(Rd))∗. Since Z is complete, it is enough to show that proper sequence

of differential quotient is a Cauchy sequence.

The analogue of (2.8) for the system associated to perturbed equation (1.4) with velocity field

defined by (1.3), where (t 7→ b(t, ·)) , (t 7→ b1(t, ·)) ∈ C0
(
[0,+∞) ; C1+α(Rd)

)
, has the form

{
Ẋh(t, y) = (b+ b1h) (t, Xh(t, y)) ,
Xh(t0, y) = y ∈ Rd.

(3.9)

As before, y 7→ Xh(t, y) is a diffeomorphism. To underline the dependence of Xh(t, x) on

the parameter h from now on we will use the notation X(t, y; h) := Xh(t, y).

Lemma 3.1. Let (t 7→ b(t, ·)) , (t 7→ b1(t, ·)) ∈ C0([0,+∞) ; C1+α(Rd)). Then for all (t, y) ∈
[0,+∞)× Rd the mapping (h 7→ X(t, y; h)) ∈ C1+α([−1

2
, 1
2
]).

The proof goes in a similar way as the proof of higher order differentiability (Ck, where k ∈ N)

of the solution with respect to parameters, which can be found in the book [Har02] p. 100.

We are in the position to prove the main result.

Proof of Theorem 1.1. Consider the weak solution µt to system (1.1) (where h = 0) and µh1t ,

µh2t (h1 6= h2, h1,2 6= 0) to system defined by (1.4). They are unique and defined for all

t ∈ [0,∞), according to Lemma 2.1.

Notice that for every λ ∈ R,
µh+λ
t −µht
λ

∈ M(Rd) ⊆ Z, which is a complete space. First we show

differentiability at h = 0. Differentiability at other h follows from this result (see end of proof).

For the first part it suffices to show that

Ih1,h2 :=

∥∥∥∥
µh1t − µt

h1
−
µh2t − µt

h2

∥∥∥∥
(C1+α(Rd))∗

can be made arbitrary small, when h1 and h2 are sufficiently close to 0. Then for any sequence

hn → 0,
µhnt −µt
hn

is a Cauchy sequence in (C1+α(Rd))∗. Hence, converges to a limit that is the

same for each sequence (hn) such that hn → 0.

Ih1,h2 = sup
‖ψ‖

C1+α≤1

∣∣∣∣
∫

Rd

ψd

(
µh1t − µt

h1
−
µh2t − µt

h2

)∣∣∣∣

= sup
‖ψ‖

C1+α≤1

∣∣∣∣
∫

Rd

ψ
dµh1t
h1

−

∫

Rd

ψ
dµt
h1

−

∫

Rd

ψ
dµh2t
h2

+

∫

Rd

ψ
dµt
h2

∣∣∣∣

(3.10)
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First we use representation formula (Lemma 2.1) and the fact that y 7→ X(t, y; h) is a diffeo-

morphism. Introduce for convenience w(s, y; h) := w(s,Xb(s, y; h)).

Ih1,h2 = sup
‖ψ‖

C1+α≤1

∣∣∣∣
∫

Rd

ψ(X(t, y; h1))e
∫ t

0
w(s,y;h1)ds

dµ0

h1
−

∫

Rd

ψ(X(t, y; 0))e
∫ t

0
w(s,y;0)dsdµ0

h1

−

∫

Rd

ψ(X(t, y; h2))e
∫ t

0
w(s,y;h2)ds

dµ0

h2
+

∫

Rd

ψ(X(t, y; 0))e
∫ t

0
w(s,y;0)dsdµ0

h2

∣∣∣∣

= sup
‖ψ‖

C1+α≤1

∣∣∣∣∣

∫

Rd

(ψ(X(t, y; h1))− ψ(X(t, y; 0))) e
∫ t

0 w(s,y;h1)ds
dµ0

h1
︸ ︷︷ ︸

I
(1)
h1

−

∫

Rd

(ψ(X(t, y; h2))− ψ(X(t, y; 0))) e
∫ t

0 w(s,y;h2)ds
dµ0

h2︸ ︷︷ ︸
I
(1)
h2

−

∫

Rd

(
e
∫ t

0
w(s,y;0)ds − e

∫ t

0
w(s,y;h1)ds

)
ψ(X(t, y; 0))

dµ0

h1︸ ︷︷ ︸
I
(2)
h1

+

∫

Rd

(
e
∫ t

0
w(s,y;0)ds − e

∫ t

0
w(s,y;h2)ds

)
ψ(X(t, y; 0))

dµ0

h2

∣∣∣∣∣
︸ ︷︷ ︸

I
(2)
h2

Let us consider |I
(1)
h1

− I
(1)
h2

| and |I
(2)
h1

− I
(2)
h2

| separately.

In I
(2)
h1

− I
(2)
h2

expand e
∫ t

0 w(s,y;h1)ds and e
∫ t

0 w(s,y;h2)ds into Taylor series around h = 0

|I
(2)
h1

−I
(2)
h2

| =

∣∣∣∣∣

∫

Rd

ψ(X(t, y; 0))
[
e
∫ t

0 w(s,y;0)ds − e
∫ t

0 w(s,y;0)ds

− h1e
∫ t

0
w(s,y;0)ds∂h

(∫ t

0

w(s, y; h)ds
)∣∣∣
h=0

−O(|h1|
1+α)

]dµ0

h1

−

∫

Rd

ψ(X(t, y; 0))
[
e
∫ t

0 w(s,y;0)ds − e
∫ t

0 w(s,y;0)ds

− h2e
∫ t

0 w(s,y;0)ds∂h

(∫ t

0

w(s, y; h)ds
)∣∣∣
h=0

−O(|h2|
1+α)

]dµ0

h2

∣∣∣∣∣

=

∣∣∣∣∣ψ(X(t, y; 0))

∫

Rd

[
− e

∫ t

0 w(s,y;0)ds∂h

(∫ t

0

w(s, y; h)ds
)∣∣∣
h=0

+ e
∫ t

0
w(s,y;0)ds∂h

(∫ t

0

w(s, y; h)ds
)∣∣∣
h=0

−
O(|h1|

1+α)

h1
+

O(|h2|
1+α)

h2

]
dµ0

∣∣∣∣∣

(3.11)
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≤

∣∣∣∣∣ψ(X(t, y; 0))

∫

Rd

(
−
O(|h1|

1+α)

h1
+

O(|h2|
1+α)

h2

)
dµ0

∣∣∣∣∣

≤
∣∣∣c
∫

Rd

(
−
O(|h1|

1+α)

h1
+

O(|h2|
1+α)

h2

)
dµ0

∣∣∣.

We now take into consideration |I
(1)
h1

− I
(1)
h2

|. Because ψ ∈ C1+α(Rd), one has

ψ(x) = ψ(x0) +∇xψ(x0)(x− x0) +R(x, x0), (⋆)

with |R(x, x0)| ≤ C|∇xψ|α‖x− x0‖
1+α, where |∇xψ|α is an α-Hölder constant. Thus, expand

ψ(X(t, y; h1)) and ψ(X(t, y; h2)) into Taylor series around X(t, y; 0)

|I
(1)
h1

− I
(1)
h2

| =
∣∣∣
∫

Rd

[ψ(X(t, y; 0)) +∇xψ(X(t, y; h))|h=0 · (X(t, y; h1)−X(t, y; 0))

+ O
(
|X(t, y; h1)−X(t, y; 0)|1+α

)
− ψ(X(t, y; 0))

]
e
∫ t

0 w(s,y;h1)ds
dµ0

h1

−

∫

Rd

[ψ(X(t, y; 0)) +∇xψ(X(t, y; h))|h=0(X(t, y; h2)−X(t, y; 0))

+ O
(
|X(t, y; h2)−X(t, y; 0)|1+α

)
− ϕ(X(t, y; 0))

]
e
∫ t

0 w(s,y;h2)ds
dµ0

h2

∣∣∣.

Expanding X(t, y; h2) and X(t, y; h1) around h = 0, by Lemma 3.1 and expansion similar to

(⋆) for h 7→ X(t, y; h) we obtain

|I
(1)
h1

−I
(1)
h2

|

=

∣∣∣∣∣

∫

Rd

[
∇xψ(X(t, y; h))|h=0

(
X(t, y; 0) + h1∂hX(t, y; h)

∣∣∣
h=0

+O(|h1|
1+α)−X(t, y; 0)

)

+O
(
|X(t, y; h1)−X(t, y; 0)|1+α

)]
e
∫ t

0 w(s,y;h1)ds
dµ0

h1

−

∫

Rd

[
∇xψ(X(t, y; h))|h=0

(
X(t, y; 0) + h2∂hX(t, y; h)

∣∣∣
h=0

+O(|h2|
1+α)−X(t, y; 0)

)

+O
(
|X(t, y; h2)−X(t, y; 0)|1+α

)]
e
∫ t

0
w(s,y;h2)ds

dµ0

h2

∣∣∣∣∣.

Since the remainder term O
(
|X(t, y; h)−X(t, y; 0)|1+α

)
≤ c|h|1+α for all h ∈ [−1

2
, 1
2
], we

can further estimate

|I
(1)
h1

−I
(1)
h2

|

≤
∣∣∣
∫

Rd

[
∇xψ(X(t, y; h))|h=0

(
∂hX(t, y; h)

∣∣∣
h=0

+O(|h1|
α)
)
+O(|h1|

α)
]
· e

∫ t

0 w(s,y;h1)dsdµ0

−

∫

Rd

[
∇xψ(X(t, y; h))|h=0

(
∂hX(t, y; h)

∣∣∣
h=0

+O(|h2|
α)
)
+O(|h2|

α)
]
· e

∫ t

0 w(s,y;h2)dsdµ0

∣∣∣.
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We consider function ψ ∈ C1+α, with ‖ψ‖C1+α ≤ 1. Hence we can further estimate

∇xψ(X(t, y; h))|h=0 ≤ 1. This yields

|I
(1)
h1

− I
(1)
h2

| ≤
∣∣∣
∫

Rd

[
∂hX(t, y; h)

∣∣∣
h=0

(
e
∫ t

0
w(s,y;h1)ds − e

∫ t

0
w(s,y;h2)ds

)

+
(
O1(|h1|

α)e
∫ t

0
w(s,y;h1)ds −O1(|h2|

α)e
∫ t

0
w(s,y;h2)ds

) ]
dµ0

∣∣∣.

To summarize estimations of |I
(1)
h1

− I
(1)
h2

|:

• ∂hX(t, y; h)
∣∣∣
h=0

is just finite number (Lemma 3.1),

•
(
e
∫ t

0 w(s,y;h1)ds − e
∫ t

0 w(s,y;h2)ds
)

can be estimated by c|h1−h2| (argumentation is similar

as in estimations of |I
(2)
h1

− I
(2)
h2

|),

•
(
O(|h1|

α)e
∫ t

0 w(s,y;h1)ds −O(|h2|
α)e

∫ t

0 w(s,y;h2)ds
)

is going to zero when h1 → 0 and

h2 → 0.

Thus Ih1,h2 can be made arbitrarily small when h1 and h2 are sufficiently close to 0. Therefore

we have shown that
µh+λn
t −µht
λn

is a Cauchy sequence for every λn → 0 in (C1+α(Rd))∗ for h = 0,

with the same limit. Hence µht is differentiable with respect to parameter h at h = 0.

The same argumentation works for h 6= 0. Let us consider a sequence
µh+λn
t −µht
λn

, where λn → 0

and h 6= 0. By definition of perturbation (1.3), i.e. bh := b+hb1, the solution µh+λnt for velocity

field

bh+λn = b+ hb1 + λnb1 =: b+ λnb1

and initial condition µh+λn0 = µ0 is equal (by Lemma 2.1) to the solution µλnt with velocity field

b + λnb1 and initial condition µ0. A similar statement holds for the µht and the solution µ0
t of

(1.1) with velocity field b. Thus

µh+λnt − µht
λn

=
µλnt − µ0

λn

and the latter sequence converges in Z as h→ ∞, by the first part of the proof. �

4. APPLICATION TO OPTIMAL CONTROL

The results discussed above can be applied in optimal control theory. The list of references

on optimal problems concerning transport equation is steadily growing [BGSW13, BFRS17,

ACFK17, BDT17, AHP, BR19].

There are two main approaches to solve optimal control problem when the solution is not differ-

entiable with respect to the control parameter. The first one is just to use non-smooth analysis.

The second one is to strengthen assumptions for the problem to provide the solution will be

differentiable , and then use smooth analysis – for which there are developed significantly more

tools, and which are less numerically complex than non-smooth methods.
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In [BR19] the authors consider the following optimal control problem




maxu∈U

[∫ T
0
L(µt, u(t, ·))dt+ ψ(µT )

]
,

{
∂tµt + divx

(
(v(t, µt, ·) + u(t, ·))µt

)
= 0,

µt=0 = µ0 ∈ Pc(R
d),

(4.12)

where Pc(R
d) is the subset of P(Rd) of Borel probability measures with compact support. The

function L can be interpreted as income dependent on the level of sales (which is described

by measure µt) and a situation on the market, u(t) . In this optimal control problem, we want

to maximize the total income in the period [0, T ]. Function ψ(µT ) describes the income in a

terminal time T .

Notice that the period of time is finite and v(t, µt, x) + u(t, x) corresponds to the velocity field

b(t, x) in our transport equation. Contrary to the problem (1.1) the authors consider the term

v(t, µt, x) which depends on the solution. The studies on such non-linear problems will appear

in [GHŁ]. Nevertheless, briefly speaking, the assumptions for coefficients of (4.12) are weaker

than the ones for (1.1). In particular the velocity field v(t, µt, x) + u(t, x) is not differentiable

with respect to perturbation in u(t, x), it just satisfies Lipschitz condition.

The authors formulated a new Pontryagin Maximum Principle in the language of subdifferential

calculus in Wasserstein spaces.

Below we would like to present the second approach. We want to argue how differentiability of

velocity field with respect to perturbing parameter in problem (1.4) can be applied in optimal

control.

In control theory, the control is based on observation of the state of the system at each or

some finite points: u(t) := φ(µht ). The state µht is in M(Rd) ⊂ Z. Thus, a reasonable class

of differentiable observation function φ is provided by the composition of a continuous linear

functional on Z and f ∈ C1(R,R). In Proposition 5.3 we show that every continuous linear

functional on Z is represented essentially by integration with respect to a C1+α(Rd)-function –

denote it here by K.

Thus, aiming at optimal control of the solution to (1.4), where h is a control parameter attaining

values in R, we start by considering functionals of the form

γ(µh) := γ̂

(∫

Rd

K(x)dµh(x)

)
, (4.13)

where γ̂ is a C1-function and K ∈ C1+α(Rd).

The meaning is essentially the following: the integral operator
∫
Rd K(x)dµ(x) is well-defined

for µ being a measure and necessary not every element from the space Z is measure. Following

lemma provides extension of the domain to whole space Z.

Lemma 4.1 (Extension Theorem). [AE08, Theorem 2.1] Suppose X and Y are metric spaces,

and Y is complete. Also suppose X1 is a dense subset of X , and f : X1 → Y is uniformly
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continuous. Then f has a uniquely determined extension f : X → Y given by

f(x) = lim
x1→x,x1∈X1

f(x1), for x ∈ X,

and f is also uniformly continuous.

In our case the operator
∫
Rd K(x)dµ(x) is of course well-defined for any µ ∈ M(Rd) and it

can be uniquely extended to Z = M(Rd)
(C1+α(Rd))∗

(span{δx : x ∈ Rd} is dense subset of Z,

Proposition 5.1). Denote this uniquely determined extension by

〈K(·), µ〉C1+α(Rd),Z ,

where 〈·, ·〉 is dual pair. Thus the functional corresponding to (4.13) has the form

γ(µh) = γ̂
(
〈K,µ〉C1+α(Rd),Z

)
. (4.14)

Now consider the problem

min
h∈R

γ(µh). (4.15)

That is, we wish to find an h∗ ∈ R such that γ(µh
∗

) ≤ γ(µh) for all h ∈ R.

A necessary condition for µh
∗

realizing a minimum is that the gradient of the function γ is zero

at µh
∗

∂hγ(µ
h)
∣∣
h=h∗

= γ̂′
∣∣
〈K,µh〉 ·

〈
K, ∂hµ

h
∣∣
h=h∗

〉
C1+α(Rd),Z

= 0. (4.16)

For this condition to be satisfied it is necessary that h 7→ γ(µh) ∈ C1(Z,R). This is guaran-

teed by the following lemma when combined with the differentiability of µh with respect to h

(Theorem 1.1).

Lemma 4.2. If K(x) ∈ C1+α(Rd) and γ̂ ∈ C1(R) then γ defined by (4.14) is C1(Z,R).

Proof. What we want to show is that ifK ∈ C1+α(Rd) then the functional µ 7→ 〈K,µ〉C1+α(Rd),Z

is linear and bounded on Z. Then γ̂(〈K,µ〉C1+α(Rd),Z) ∈ C1(Z,R), as a composition of C1-

function and a bounded linear functional.

Linearity of µ 7→ 〈K,µ〉C1+α(Rd),Z is clear. Following holds
∣∣〈K,µ〉C1+α(Rd),Z

∣∣ ≤ ‖K‖C1+α(Rd) · ‖µ‖(C1+α(Rd))∗ ≤ C‖µ‖(C1+α(Rd))∗ ,

where constant C = supx∈Rd |K(x)|+ supx∈Rd |∇K(x)|+ supx,y∈Rdx 6=y
|∇K(x)−∇K(y)|

|x−y|α
.

Thus the functional µ 7→ 〈K,µ〉C1+α(Rd),Z is bounded. We conclude that γ ∈ C1(Z,R). �

Of course, there are many optimization methods which do not depend on finding derivative

analytically and then setting it to zero. When a functional γ(µh) is differentiable with respect

to h, an optimization problem (4.15) can be solved with gradient-based analytical methods or

through numerical methods such as the steepest descent. When γ(µh) is not differentiable,

the above-mentioned methods cannot be applied, the problem becomes more complex numer-

ically. And for differentiability of γ(µh) necessary is differentiability of µh, which is satisfied

by Theorem 1.1.
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Remark. If γ̂ is convex then condition (4.16) is not only necessary but also sufficient for µh
∗

to

realize a minimum.

4.1. Further application. In [CGR18] authors consider optimization in the structured popu-

lation model defined by





∂tµt + ∂x

(
b(t)(µt, x)µt

)
+ w(t)(µt, x)µt = 0,(

b(t)(µt, 0)
)
Dλµt(0) =

∫∞

0
β(t)(µt, x)dµt,

µt=0 = µ0,

(4.17)

where t ∈ [0,∞) and x ∈ R+ is a biological parameter, typically age or size. The unknown

µt is a time dependent, non-negative and finite Radon measure. The growth function b and

the mortality rate w are strictly positive, while the birth function β is non-negative – b, w, β are

Nemytskii operators. By Dλµt we denote the Radon-Nikodym derivative of µt with respect to

the Lebesgue measure λ computed at 0. The initial datum µ0 is a non-negative Radon measure.

Remark. The reason for analyzing solutions to structured population models in the space of mea-

sures is as follows: typical experimental data are not continuous, they provide information on

percentiles, i.e., the number of individuals in some intervals of the structural variable (like age).

In the case of demography and epidemiology a number of births are typically used per years.

Aiming at the optimal control of the solution to (4.17), a control parameter h is introduced

(possibly time and/or state dependent), attaining values in a given set H. Therefore, we obtain:





∂tµ
h
t + ∂x

(
b(t; h)(µht , x)µ

h
t

)
+ w(t; h)(µht , x)µ

h
t = 0,(

b(t; h)(µht , 0)
)
Dλµ

h
t (0) =

∫∞

0
β(t; h)(µht , x)dµt,

µht=0 = µ0.

(4.18)

The goal is to find minimum of a given functional

J (µht ) =

∫ ∞

0

j(t, µht ; h)dt, (4.19)

within a suitable function space i.e. to find an h∗ ∈ H such that J (µh
∗

) ≤ J (µh) for all h ∈ H.

Aiming at the optimal control problem in [CGR18] the Escalator Boxcar Train (EBT) algo-

rithm is adapted (defined in [GJMU14]), i.e. an appropriate ODE system is used approximating

the original PDE model. Authors mention that solutions to conservation or balance laws typi-

cally depend in a Lipschitz continuous way on the initial datum as well as from the functions

defining the equation. This does not allow the use of differential tools in the search for the op-

timal control.

Since solution to the transport equation is differentiable with respect to parameter, mathematical

tools applied to (4.19) can be extended by e.g. gradient methods.
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5. CHARACTERIZATION OF THE SPACE Z

In this section we establish some further properties of the space Z defined by (1.6). The identifi-

cation of the dual space Z∗ in Proposition 5.3 is particularly interesting eg. in view of the appli-

cation to control theory, discussed in Section 4. By δx we denote the Dirac measure concentrated

in x.

Proposition 5.1. Let Z be given by (1.6). Then the set span{δx : x ∈ Qd} is dense in Z with

respect to the (C1+α(Rd))∗-topology, i.e.

Z = span{δx : x ∈ Qd}
(C1+α(Rd))∗

.

Consequently, Z is a separable space.

Proof. We want to show that for any measure µ ∈ M(Rd) there exists a sequence {µn}n∈N ∈
span{δx : x ∈ Qd} such that ‖µn − µ‖(C1+α(Rd))∗ → 0 as n→ ∞.

We consider bounded Radon measures, thus for any µ ∈ M(Rd) and for any ε > 0 there exists

Rε such that |µ|(Rd \ B(0, Rε)) ≤
ε
2
. The closure of a ball B(0, Rε) in Rd as a compact set has

finite cover {B(gi,
ε

4‖µ‖TV
)}n(ε)
i=1

, where gi ∈ Qd. Denote by Bi := B(gi,
ε

4‖µ‖TV
). Then define

Ui,ε := (B(0, Rε) ∩ Bi) \ ∪
i−1
j=1 Bj (5.20)

are disjoint Borel sets and ∪
n(ε)
i=1 Ui,ε = B(0, Rε). Notice that gi (the center of Bi) is not neces-

sarily contained in Ui,ε. In case gi is not contained in Ui,ε we take any other point of the ball Bi
contained in Ui,ε, we will denote this point the same way, slightly abusing notation.

For any µ ∈ M(Rd) and any ε > 0 we consider µε =
∑n(ε)

i=1 µ(Ui,ε) · δgi (linear combination

of Dirac deltas concentrated at points gi ∈ Qd). Denote by µ̂ := µ|B(0,Rε)
the measure restricted

to B(0, Rε). Then the following holds:

‖µε − µ‖(C1+α(Rd))∗ ≤ ‖µε − µ̂‖(C1+α(Rd))∗ + ‖µ̂− µ‖(C1+α(Rd))∗ ≤ ‖µε − µ̂‖(C1+α(Rd))∗ +
ε

2
.

We need to estimate the following

‖µε − µ̂‖(C1+α(Rd))∗

= sup

{∫

Rd

fd (µε − µ̂) : f ∈ C1+α(Rd), ‖f‖C1+α(Rd) ≤ 1

}

≤ sup

{∫

Rd

fd(µε − µ̂) : f ∈ Lip(Rd), ‖f‖∞ + ‖∇f‖∞ ≤ 1

}

= sup





∫

Rd

fd
( n(ε)∑

i=1

(µ(Ui,ε)δgi − µ̂)
)
: f ∈ Lip(Rd), ‖f‖∞ + ‖∇f‖∞ ≤ 1
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= sup





n(ε)∑

i=1

(∫

Ui,ε

f(gi)dµ−

∫

Ui,ε

fdµ

)
: f ∈ Lip(Rd), ‖f‖∞ + ‖∇f‖∞ ≤ 1





= sup





n(ε)∑

i=1

∫

Ui,ε

(f(gi)− f)dµ : f ∈ Lip(Rd), ‖f‖∞ + ‖∇f‖∞ ≤ 1





≤ sup





n(ε)∑

i=1

∫

Ui,ε

|gi − x|d|µ| : f ∈ Lip(Rd), ‖f‖∞ + ‖∇f‖∞ ≤ 1





=

n(ε)∑

i=1

∫

Ui,ε

|gi − x|d|µ| ≤

n(ε)∑

i=1

∫

Ui,ε

ε

2‖µ‖TV

d|µ|

=
ε

2‖µ‖TV

∫

B(0,Rε)

d|µ| =
ε

2‖µ‖TV

|µ|(B(0, Rε)) ≤
ε

2
.

And now we get that for any µ ∈ M(Rd) there exists an element µε ∈ span{δx : x ∈ Qd} such

that ‖µε − µ‖(C1+α(Rd))∗ ≤ ε.

Hence, span{δx : x ∈ Qd} is a dense subset of M(Rd). Countability of span{δx : x ∈ Qd} is

clear because of countability of Qd. This implies that the space Z is separable. �

Moreover, we can characterize the dual space of Z, similar in spirit to [HW09, Theorem 3.6,

Theorem 3.7]. This result may be of separate interest in other settings.

Before giving and proving this characterization, we need the following lemma.

Lemma 5.2. The mapping defined by δ(x) := δx is C1+α(Rd, Z).

Proof. For f ∈ C1+α(Rd), λ ∈ Rd and x ∈ Rd define Dδ(x) ∈ L(Rd, Z) by means of
〈
Dδ(x)λ, f

〉
(C1+α(Rd))∗,C1+α(Rd)

:= λ • ∇f(x).

By • we denote an inner product on Rd. Thus, λ • ∇f(x) relates to the gradient of f in

the direction given by λ. Then

1

|λ|

[
δx+λ − δx −Dδ(x)λ

]
→ 0

in Z as λ→ 0. Thus Dδ(x) is the Fréchet derivative of δ at x.

Of course, for x, y ∈ Rd, x 6= y,

‖Dδ(x)−Dδ(y)‖Z = ‖Dδ(x)−Dδ(y)‖(C1+α(Rd))∗

because Z is linear subspace of (C1+α(Rd))∗, thus ‖ · ‖Z = ‖ · ‖(C1+α(Rd))∗ coincides on Z. Now,

we can estimate

‖Dδ(x)−Dδ(y)‖(C1+α(Rd))∗ = sup
λ∈Rd, |λ|≤1

‖Dδ(x)λ−Dδ(y)λ‖(C1+α(Rd))∗
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= sup
λ∈Rd, |λ|≤1

sup
‖f‖

C1+α≤1

∣∣∣
〈
Dδ(x)λ−Dδ(y)λ, f

〉
(C1+α(Rd))∗,C1+α(Rd)

∣∣∣

= sup
λ∈Rd, |λ|≤1

sup
‖f‖

C1+α≤1

∣∣∣∣∣

d∑

i=1

λi (∂xif(x)− ∂xif(y))

∣∣∣∣∣

≤ sup
λ∈Rd, |λ|≤1

sup
‖f‖

C1+α≤1

|λ| ·

(
d∑

i=1

|∂xif(x)− ∂xif(y)|
2

)1/2

≤ sup
‖f‖

C1+α≤1

|∇f(x)−∇f(y)|

|x− y|α
· |x− y|α

≤ sup
‖f‖

C1+α≤1

‖f‖(C1+α(Rd))∗ · |x− y|α ≤ |x− y|α.

This concludes that ‖Dδ(x)−Dδ(y)‖Z ≤ |x− y|α, thus δ ∈ C1+α(Rd, Z). �

Proposition 5.3. The space Z∗ is isomorphic to C1+α(Rd) under the map φ 7→ Tφ, where

Tφ(x) := φ(δx), T : Z∗ → C1+α(Rd).

Proof. We need to show that T is bijection from (Z∗, ‖ · ‖Z∗) to (C1+α(Rd), ‖ · ‖C1+α) such that

T (λ1z
∗
1 + λ2z

∗
2) = λ1T (z

∗
1) + λ2T (z

∗
2),

for z∗1 , z
∗
2 ∈ Z∗ and λ1, λ2 ∈ Rd, where

‖z∗‖Z∗ = sup
z∈Z

{|z∗(z)| : ‖z‖Z ≤ 1} = sup
z∈Z

{z∗(z) : ‖z‖Z ≤ 1}.

In addition T is bounded. By Banach Isomorphism Theorem, T−1 is bounded.

Step 1. Obviously the mapping defined by Tφ(x) = φ(δx) maps Z∗ into RRd

, where by RRd

we denote a function space from Rd to R. The mapping T is injective, because if z∗1 6= z∗2 then

using density of span{δx : x ∈ Rd} in Z (Proposition 5.1) there exists x ∈ Rd such that

z∗1(δx) 6= z∗2(δx) ⇒ (Tz∗1) (x) 6= (Tz∗2) (x).

Indeed,

z∗1 6= z∗2 ⇒ ∃z ∈ Z such that z∗1(z) 6= z∗2(z).

Since span{δx : x ∈ Rd} is dense in Z, there exists {zn}n∈N ⊂ span{δx : x ∈ Rd} such that

zn → z. Functionals z∗1 , z
∗
2 are continuous and thus there exists n such that z∗1(zn) 6= z∗2(zn).

Of course zn =
∑k(n)

i=1 αiδxi and z∗1 , z
∗
2 are linear

k(n)∑

i=1

αiz
∗
1(δxi) 6=

k(n)∑

i=1

αiz
∗
2(δxi).

To show that the mapping T is linear we need to show

T (λ1z
∗
1 + λ2z

∗
2) = λ1Tz

∗
1 + λ2Tz

∗
2 , for all λ1, λ2 ∈ Rd, z∗1 , z

∗
2 ∈ Z∗,
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what means that ∀x ∈ Rd, T (λ1z
∗
1 + λ2z

∗
2)(x) = λ1Tz

∗
1(x) + λ2Tz

∗
2(x). Indeed, T (λ1z

∗
1 +

λ2z
∗
2)(x) = (λ1z

∗
1 + λ2z

∗
2)(δx) = λ1z

∗
1(δx) + λ2z

∗
2(δx) = λ1T (z

∗
1)(x) + λ2T (z

∗
2)(x).

Step 2. First we prove that im(T (Z∗)) ⊆ C1+α(Rd). By Lemma 5.2 we know that (x 7→
δx) ∈ C1+α(Rd, Z) and then (x 7→ z∗(δx)) ∈ C1+α(Rd,R) – as a composition of two functions

(x 7→ δx) ∈ C1+α(Rd, Z) and z∗ ∈ L(Z,R). Therefore (x 7→ Tz∗(x)) ∈ C1+α(Rd,R).

Step 3. To prove the opposite inclusion C1+α(Rd) ⊆ im(T (Z∗)), let us consider an arbitrary y ∈
C1+α(Rd). We want to show there exists z∗y such that y = Tz∗y . Define a functional z∗y(δx) :=

y(x). Our goal is to show that z∗y ∈ Z∗. It is enough to consider only z ∈ span{δx : x ∈ Rd}
and then

|z∗y(z)| = |z∗y(
n∑

i=1

αiδxi)|,

functional z∗y is linear thus above is equal to |
∑n

i=1 αi · z
∗
y(δxi)|. Using the definition of z∗y

the following holds∣∣∣∣∣

n∑

i=1

αiz
∗
y(δxi)

∣∣∣∣∣ =
∣∣∣∣∣

n∑

i=1

αiy(xi)

∣∣∣∣∣ =
∣∣∣∣∣

n∑

i=1

αi

∫

Rd

ydδxi

∣∣∣∣∣

=

∣∣∣∣∣

∫

Rd

yd(
n∑

i=1

αiδxi)

∣∣∣∣∣ =
∣∣∣∣
∫

Rd

ydz

∣∣∣∣ ≤ ‖y‖C1+α‖z‖(C1+α(Rd))∗ .

Thus ‖z∗y‖Z∗ = sup{z∗y(z) : ‖z‖Z ≤ 1} ≤ ‖y‖C1+α(Rd).

Step 4. To complete the proof we need continuity of the mapping T which is of course equiv-

alent to boundedness. In fact it is easy to see that T−1y = z∗y is bounded. Estimations in

step 3 imply that ‖T−1‖ ≤ 1. By Banach Isomorphism Theorem ‖T‖ ≤ C, what finishes

the proof. �
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