
RNA splicing in breast cancer progression
Koedoot, E.

Citation
Koedoot, E. (2019, December 17). RNA splicing in breast cancer progression. Retrieved from
https://hdl.handle.net/1887/81820
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/81820
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/81820


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/81820 holds various files of this Leiden University 
dissertation. 
 
Author: Koedoot, E. 
Title: RNA splicing in breast cancer progression 
Issue Date: 2019-12-17 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/81820
https://openaccess.leidenuniv.nl/handle/1887/1�




Appendix 

◄ IN BEELD

Microscopisch beeld van celkernen van 

(on)behandelde borstkankercellen. Door de 

celkernen te tellen werd het effect van de 

behandeling op celgroei bepaald.  

◄ IN THE PICTURE

Microscopic view of nuclei of (un)treated 

breast cancer cells. Nuclei were counted and 

used as a measure for cell proliferation.  
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Abbreviations 

2D Two-dimensional 

3D Three-dimensional 

A3SS Alternative 3’ splice site  

A5SS Alternative 5’ splice site  

AR Androgen receptor  

AS Alternative splicing 

ATF1 Activating transcription factor 1  

BAC Bacterial artificial chromosome  

BC Breast cancer 

BSA Bovine serum albumin  

CDK Cyclin dependent kinase 

CLL Chronic lymphocytic leukemia 

CREB1 CAMP responsive element binding protein 1 

CREM Cyclic AMP response element modulatory protein 

DDR DNA damage response 

DEG Differentially expressed gene 

DMFS Distant metastasis-free survival  

ECM Extracellular matrix  

EGFR Epidermal growth factor receptor  

EMT Epithelial-to-mesenchymal transition  

ER Estrogen receptor 

FACS Fluorescence-activated cell sorting  

FAK Focal adhesion kinase 

FC Fold change 

FDR False discovery rate 

GFP Green fluorescent protein 

GLM Generalized linear model  

GSEA Gene set enrichment analysis  

HER2 Human epidermal growth factor receptor 2 

HIS Human invasion signature  

HMEC Human mammary epithelial cell 

hnRNPs Heterogeneous nuclear ribonucleoproteins  

HR Hormone receptor 

HR Hazard ratio 

HRP Horseradish peroxidase  

IDR Image data resource 

IR Intron retention  

ITGB1 Integrin β1  

KM Kaplan Meier 

KP Kinasepool 

LINC Linkers of nucleoskeleton and cytoskeleton  

LMS Lung metastasis signature 

MAPK Mitogen activated protein kinase 

MDS Myelodysplastic syndrome 

MET Mesenchymal-to-epithelial transition 

MFS Metastasis-free survival  

MXE Mutually exclusive exon  

A 



 

168 
 

NGS Next generation sequencing  

NHEJ Non-homologous end-joining 

Par Partitioning-defective  

PB Pladienolide B 

PC Pearson correlation coefficient 

PCA Principal component analysis  

PDX Patient-derived xenograft 

PFA Paraformaldehyde 

PI3K Phosphoinositide 3 kinase  

PKM1 Pyruvate kinase M1 

PKM2 Pyruvate kinase M2 

PKT Phagokinetic track  

PPI Protein-protein interaction  

PR Progesteron receptor 

pre-mRNA pre-mature messenger RNA  

PXN Paxillin 

RBM4 RNA-binding motif protein 4  

RCM Random cell migration 

RRM RNA recognition motif 

RT Room temperature 

SCC Sisther chromatid cohesion 

SDS Sodium dodecyl sulfate  

SE Exon skipping  

SF Splicing factor 

sgRNA single guide RNA 

siRNA Small interference RNA 

snRNA small nuclear RNA 

snRNP small nuclear ribonucleoproteins  

SR Serine/arginine-rich  

SRB Sulforhodamine B 

SRPK SR-rich protein-specific kinase 

SRPK1 SRSF protein kinase 1  

SRSF1 Serine and arginine splicing factor 1  

STR Short tandem repeat  

TCGA The cancer genome atlas 

TNBC Triple-negative breast cancer 

VEGF Vascular endothelial growth factor  
 

 




