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Chapter 4 

Esmee Koedoot, Marcel Smid, John A. Foekens, John W.M. Martens, Sylvia E. Le 

Dévédec, Bob van de Water 

Sci Rep. 2019 Apr 2;9(1):5484. 

Highlights 

o Identification of 21 Enhancer- and 64 Suppressor-splicing factors that were co-regulated and

associated to breast cancer aggressiveness and metastasis formation

o Co-regulation of these splicing factors was observed in almost all major cancer types,

including lung, pancreas and prostate cancer

o This bioinformatics approach may also be applied to the uncovering of the differential co-

regulated expression of individual components that act in large protein complexes that are

critical in cancer progression

◄ IN THE PICTURE

Microscopic view of the nuclei of (un)treated 

triple-negative breast cancer cells. Depletion 

of splicing factors involved in cell proliferation 

caused an irregular polylobed nuclear 

phenotype.  

◄ IN BEELD

Microscopisch beeld van de celkernen van 

triple-negatieve borstkankercellen. Uitputting 

van splicing factoren die betrokken zijn bij het 

vermenigvuldigen van tumorcellen leidde tot 

een onregelmatig uiterlijk van de celkern.  
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Splicing factors (SFs) act in dynamic macromolecular complexes to modulate RNA 

processing. To understand the complex role of SFs in cancer progression, we performed 

a systemic analysis of the co-regulation of SFs using primary tumor RNA sequencing 

data. Co-regulated SFs were associated with aggressive breast cancer phenotypes and 

enhanced metastasis formation, resulting in the classification of Enhancer- (21 genes) 

and Suppressor-SFs (64 genes). High Enhancer-SF levels were related to distinct splicing 

patterns and expression of known oncogenic pathways such as respiratory electron 

transport, DNA damage and cell cycle regulation. Importantly, largely identical SF co-

regulation was observed in almost all major cancer types, including lung, pancreas and 

prostate cancer. In conclusion, we identified cancer-associated co-regulated expression 

of SFs that are associated with aggressive phenotypes. This increases the global 

understanding of the role of the spliceosome in cancer progression and also contributes 

to the development of strategies to cure cancer patients.   

 

Introduction 

To maintain the complexity of intracellular as well as extracellular homeostasis various cells 

require a vast number of well-controlled biological programs. To keep the various programs in 

balance, a tight regulation of the transcription and translation of the various components of 

these programs is essential. One of the critical processes involved in this regulation is splicing: 

the exclusion of non-coding pre-messenger RNA (pre-mRNA) regions (or introns) resulting in a 

transcript that can be translated into a functional protein67. Moreover, by including or excluding 

specific exons, splicing can regulate the expression of different isoforms of the same gene, 

thereby providing a new layer of genetic control and diversity in biological gene function68. 

Splicing is characterized by a complex series of reactions involving different small nuclear 

ribonucleoproteins (snRNPs): RNA-protein complexes that can bind to pre-mRNA and various 

other proteins. These snRNPs comprise 5 small nuclear RNAs (snRNAs) and can associate 

with approximately 250 proteins that are also named splicing factors69.  

Dysregulation of splicing is involved in a wide variety of diseases, such as muscular dystrophy, 

Parkinson’s disease and cardiac disease283. Furthermore, the flexibility to remodel the 

conformation and function of almost every cellular protein can be used by cancer cells in both 

tumor development and metastatic progression133,284. From this perspective, alternative splicing 

as well as single spliceosome components have been linked to apoptosis, regulation of 

oncogenes, invasion and metastasis, metabolism and angiogenesis in several cancer types, 

including breast cancer. For example, the splicing factor class that consists of heterogeneous 

nuclear ribonucleoproteins (hnRNPs) is known to control metastasis formation by regulating 

alternative splicing of the small GTPase Rac1124, but also by affecting CD44 isoform expression 

which increases TGFβ signaling221. Other hnRNP group members hnRNPA1 and hnRNPA2 are 

involved in deregulating cellular energetics, necessary to feed the cancer cells during cell 

growth and division242,285. Finally, some splicing factors are highly mutated in cancer with SF3B1 

being a driver gene in breast cancer76. Since the splicing machinery seems to play such a 
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critical role in cancer development and progression, targeting specific splicing factors might 

provide a therapeutic window to combat cancer progression and improve patients survival 

rates286. So far, most of these studies focused on the role of single splicing factors. Yet, it 

should be kept in mind that splicing factors are assembled in macromolecular complexes that 

are dynamic in composition, time and space. Therefore, we hypothesized that subsets of 

splicing factors are likely co-regulated in expression and, thereby, together act in driving the 

modulation of specific splicing events that would promote cancer progression. 

To assess our hypothesis, we made advantage of large datasets of breast tumor-derived patient 

RNA sequencing-based gene expression (The Cancer Genome Atlas and BASIS76,287). Using 

the two independent RNA sequencing datasets, we correlated the expression of all 

combinations of splicing factors and identified two subclasses of splicing factors with distinct 

expression behavior, which we referred to as ´Enhancer-SFs’ and ‘Suppressor-SFs’. In breast 

cancer, high Enhancer-SF expression levels associate with a more aggressive tumor phenotype 

and higher risk of developing metastases. Remarkably, the Enhancer- and Suppressor-SF 

patterns are also observed in more than 30 other cancer types, including highly prevalent and 

aggressive cancer types such as pancreas and lung cancer.  This study elicits an important role 

for splicing in cancer progression and might initiate the discovery of new biomarkers and 

treatments to combat this deadly disease. 

 

Materials and Methods 

Data retrieval and normalization 

RNA sequencing data from The Cancer Genome Atlas (TCGA) were obtained by using the 

TCGA Assembler R package281 after the new release in January 2017. Both normalized total 

gene expression and isoform-gene specific expression were extracted from this dataset. 

Normalized reads were log2 transformed before further analyses were performed. For 

correlation analysis, only solid primary tumor tissue samples were used. Tissue types and 

number of samples are shown in Suppl. Table 5. 

RNA sequencing data as well as clinical data of a total cohort of 354 patients from the BASIS 

cohort were previously published and are publicly available76. Log2 normalized read counts 

were retrieved from the public repository. 

Microarray data of primary tumors of 867 untreated patients (MA-867 dataset) was previously 

published and publicly available (GSE2034, GSE5327, GSE2990, GSE7390 and GSE11121).  

All data used in manuscript is publicly available.  

 

Kaplan Meier survival curves 

Kaplan Meier (KM) survival curves were obtained by using KM plotter with the multiclassifier 

function calculating the mean expression of the selected probes288. Patients were split by 

median expression levels. Overall, relapse-free and distant-metastasis-free survival curves were 

obtained for all breast cancer subtypes combined, but also for estrogen receptor positive and 

negative breast cancer subtypes separately.  
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Hierarchical clustering 

Correlation clustering. For the splicing factor correlation clusterings (Fig. 1J/K, Fig. 6A, Suppl. 

Fig 2, Suppl. Fig. 13), gene expression data of splicing factors were extracted from the RNA 

sequencing datasets. Pearson correlation coefficients (PCs) were calculated for all possible 

combinations of splicing factors. PCs were clustered using unsupervised clustering based on 

Euclidean distance and complete linkage. A cIValid stability test289 was performed to determine 

the optimal number of clusters for the primary correlation TCGA clustering (Fig. 1J), using a 

cluster number between 2 and 6 clusters as input. 4 clusters were selected based on the 

highest stability and major group representation. For the validation using the BASIS  RNA 

sequencing data, an equal cluster number was used. 

For isoform-splicing factor clusterings (Fig. 4B, Suppl. Fig. 10) and splicing factor-other gene 

clusterings (Fig. 6C, Suppl. Fig. 11, Suppl. Fig. 14 the same method was used but now PCs 

were calculated for isoform-splicing factor or splicing factor-gene combinations respectively.  

Clinical Clustering. For the hierarchical clustering (Fig. 2A, Suppl. Fig. 6) linked to clinical data, 

log2 RNA expression values were median normalized per splicing factor across all patients. 

Normalized expression values were subjected to unsupervised clustering based on correlation 

and complete linkage.  

 

Expression levels in normal, primary tumor and metastatic tissue 

Log2 fold change in expression levels of splicing factors (Fig. 1A, Fig. 1E, Suppl. Table 1 and 2) 

were calculated using RNA sequencing data derived from the TCGA database (114 normal 

tissue samples and 7 metastatic tissue samples with matched primary tumor samples) using the 

following steps: 1) Calculation of the log2 fold change of splicing factor expression level 

between tumor and normal tissue (Suppl. Table 1) or tumor and metastatic tissue (Suppl. Table 

2) per patient; tissue samples of the same patients were matched, 2) Calculation of the mean 

log2 fold change by taking the mean of all patients and 3) Significance determination by using a 

paired t-test. Adjusted p-value were calculated using the Benjamini-Hochberg correction for 

multiple testing. Since these methods were not based on a generalized linear model (GLM), the 

log2 fold changes of our initial method were compared to log2 fold changes calculated from raw 

RNA sequencing counts and the DESeq2 R packages that uses built in GLMs for 

normalization92. We observed a very strong and significant correlation between the log2 fold 

changes calculated with these two methods (Suppl. Fig. 17), suggesting that also the both 

methods are robust and reliable.   

 

Pathway analysis 

To calculate the correlation between splicing factor expression levels and expression of other 

genes, PCs of Enhancer- and Suppressor-SFs with all other genes in the TCGA RNA 

sequencing data were calculated. For every gene, the average PC with Enhancer- and 

Suppressor-SFs was calculated. Based on PC, genes were ranked and subjected to pathway 

analysis.  
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Over-representation analysis. The top 500 correlated genes with Enhancer- or Suppressor-SFs 

were used for over-representation analysis. Over-representation analysis was performed using 

ConsensusPathDb290 using the Reactome pathway database. 

Gene Set Enrichment Analysis (GSEA). Ranked GSEA was performed on the full ranked gene 

lists93. Results were visualized using the GSEA plugin in Cytoscape version 3.4.0.  

 

Transcription factor analysis 

Enrichment for transcription factor binding motifs in splicing factor start site regions was 

performed using the Pscan algorithm291 for Enhancer- and Suppressor-SFs separately. 

Enrichment was determined -50 – 450 nucleotides from the splicing factor start site. All 

transcription factors in the JASPAR transcription factor database were included in the analysis.  

 

Statistical analysis 

Data were compared with Student’s t-test (two-tailed, equal variances) or one-way ANOVA (for 

comparison of more than 2 groups) using GraphPad Prism 6.0. 

 

Results 

Co-regulated expression of splicing factors in human breast cancer 

In order to systematically evaluate the role of the complete spliceosome during breast cancer 

development and progression, we compared RNA expression levels of every single splicing 

factor (244 in total, derived from Hegele et al.69) between normal mammary gland tissue and 

matched primary breast tumor (Fig. 1A-D) and between primary breast tumor and metastatic 

tissue (Fig. 1E-H) using matched patient RNA sequencing data from 116 and 7 patients 

respectively, obtained from The Cancer Genome Atlas (TCGA). This analysis revealed that the 

spliceosome complex as a whole is not up- or downregulated during both breast cancer 

development (Fig. 1A) and progression (Fig. 1E). However, as expected, RNA expression levels 

of individual factors can be both positive and negatively related to tumor development (Suppl. 

Fig. 1A, Suppl. Table 1) and metastasis formation (Suppl. Figure 1B, Suppl. Table 2). The 

splicing factor SEC31B was significantly lower expressed while LSM4 and ILF2 were 

significantly higher expressed in tumor versus matched normal mammary gland tissue (Fig. 1B-

D). Similarly, ARGLU1 and CIRBP were lower expressed in tumor compared to metastatic 

tissue, while QKI was higher expressed (Fig. 1F-H). Given the strong association for various 

splicing factors with high expression in tumor compared to normal tissue, we anticipated co-

expression of splicing factors in association with cancer progression. To uncover the co-

regulated gene expression of spliceosomal components, we calculated the Pearson correlation 

coefficient (PC) of RNA expression levels for all possible combinations of the 244 splicing 

factors using two independent RNA sequencing datasets acquired from primary breast tumor 

patient derived material: 1) the TCGA dataset comprising 1097 primary breast tumors and the 

BASIS dataset comprising 354 primary breast tumors76,287. Within both datasets all breast 

cancer subtypes and stages are represented, with one major difference in the proportion of 

HER2 positive samples (22.5% in TCGA dataset vs. 1.5% in the BASIS dataset, see Suppl. 
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◄ Figure 1. Co-regulation of splicing factors in human breast cancer. (A) The mean log2 fold 

changes between primary breast tumor and matched normal tissue was calculated for all splicing factors 

(n=244) and visualized in a density plot. Log2 fold change > 0: factors were higher expressed in tumor 

tissue; log2 fold change < 0: factors were higher expressed in normal tissue. (B – D) Examples of splicing 

factors that are down (B) or upregulated (C-D) in tumor tissue compared to normal breast tissue. Dots 

represent single patients, matched patients are connected with a line (green = higher expressed in 

normal tissue, red = higher expressed in tumor tissue). (E) The mean log2 fold changes between primary 

breast tumor and matched metastatic tissue was calculated for all splicing factors (n=244) and visualized 

in a density plot. Log2 fold change > 0: factors were higher expressed in metastatic tissue; log2 fold 

change < 0: factors were higher expressed in primary tumor tissue. (F – H) Example splicing factors that 

are down (F-G) or upregulated (H) in tumor tissue compared to metastatic tissue. Dots represent single 

patients, matched patients are connected with a line (green = higher expression in metastatic tissue, red 

= higher expression in primary tumor tissue). (I) Method used to calculate Pearson Correlation 

coefficients (PCs) between RNA expression levels of splicing factors. (J) Hierarchical clustering 

(Euclidean distance, complete linkage) of the correlation of splicing factor expression levels in TCGA 

RNA sequencing data (red = high positive correlation, green = high negative correlation). The optimal 

cluster number was determined using CIvalid
289

. (K) Same as J for BASIS RNA sequencing data (only 

expression data for 235 factors available). (L) Example of highly negatively correlating splicing factors in 

TCGA RNA sequencing data. Dots represent single patient tumors. (M) Same as K for highly positively 

correlating splicing factors. (N) Number of genes that overlap between BASIS and TCGA hierarchical 

clusters shown in J and K. * p < 0.05, ** p < 0.01, *** p < 0.001. P-values were calculated with a paired t-

test and corrected for multiple hypothesis testing using the Benjamini Hochberg method. 

 

Table 3). By calculating the PCs between the transcript levels of all splicing factors (Fig. 1I), we 

identified pairs of factors positively (Fig. 1L) or negatively (Fig. 1M) correlating with each other. 

Unsupervised clustering of the PCs calculated using both RNA sequencing data from TCGA 

(Fig. 1J, Suppl. Fig. 2A) and BASIS (Fig. 1K, Suppl. Fig. 2B) revealed 2 separate main clusters 

(cluster 1 and cluster 2) containing splicing factors that positively correlated within clusters 

(positive PC), while negatively correlated between clusters (negative PC). The strong 

correlation between these selected clusters was further validated by separate clusterings 

(Suppl. Fig. 3). Importantly, genes within the clusters derived from the analysis of the TCGA 

database showed strong overlap with clusters derived from the analysis of the BASIS database 

(Fig. 1N), providing high confidence in the actual co-regulation of these subsets of splicing 

factors in breast cancer. Moreover, these correlation clusters were largely validated in a third 

dataset consisting of microarray data of 867 primary tumors of untreated breast cancer patients 

(MA-867 dataset) (Suppl. Fig. 4).  Even though the entire spliceosomal complex is not up- or 

downregulated in breast cancer development or progression (Fig. 1A and E), we discovered 

subgroups that seemed to be co-regulated with each other. Cluster 1 contained 61 overlapping 

genes, while cluster 2 contained 24 overlapping genes (Fig. 1N, Suppl. Fig 2). Although the 

splicing factors that overlapped in cluster 2 contained 25% more core splicing factors69 

compared to cluster 1 (Suppl. Fig. 5A/B), this was not related to enrichment for a specific 

subclass of the spliceosome (Suppl. Fig. 5C/D). For the remaining of the study, only the 61 and 

24 overlapping factors will be used defining cluster 1 and 2 splicing factors, respectively.  
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Figure 2. Association of co-regulated splicing factors with clinical breast cancer phenotypes. (A) 

Hierarchical clustering of cluster 1 and 2 SF RNA expression levels in BASIS RNA sequencing data. SF 

expression was log2 normalized, after which the for every SF the median was equalized to 0. (B) Cluster 

1 and cluster 2 splicing factor expression levels in primary breast tumors with different tumor grades. SF 

expression compared to grade 1 tumors was calculated. (C) Cluster 1 and cluster 2 splicing factor 

expression levels in primary breast tumors with different mitotic scores. Fold changes compared to mitotic 

score 1 were calculated for all splicing factors. (D) Log2 fold change in expression of cluster 1 and cluster 

2 splicing factors comparing ER negative to ER positive primary breast tumors. (E) Cluster 1 and cluster 2 

splicing factor expression in AIMS breast cancer subtypes. (F) Log2 fold change in expression of cluster 1 

and cluster 2 splicing factors comparing primary tumor to normal breast tissue. (G) Log2 fold change in 

expression of cluster 1 and cluster 2 splicing factors comparing primary tumor to metastatic tissue. 

Groups are compared using a student’s t-test. * P<0.05, ** P<0.01, ***P<0.001.   
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Association of co-regulated splicing factors with clinical breast cancer phenotypes 

Next, we investigated whether the cluster 1 and cluster 2 splicing factors were related to a more 

aggressive breast cancer phenotype by examining clinical and pathological parameters such as 

tumor grading, mitotic score and survival. We performed an unsupervised clustering of median 

normalized log2 RNA expression levels of both groups of splicing factors in primary breast 

tumors derived from the BASIS dataset, as this dataset is rich in patient data. With just using 

the transcriptomic data of the identified 85 splicing factors belonging to either cluster 1 or 2, we 

could separate tumors based on clinical characteristics such as the basal PAM50 and AIMS 

subtype and hormone receptor status (Fig. 2A), but not on known driver gene mutations (Suppl. 

Fig. 6A). Then we compared RNA expression levels of our set of splicing factors between 

tumors with different pleomorphism scores, mitotic scores and tumor grading. Compared to well 

differentiated grade 1 tumors, moderately differentiated grade 2 tumors showed slightly 

decreased levels of cluster 2 splicing factors (Fig. 2B). However, poorly differentiated grade 3 

tumors demonstrated the reverse effect exhibiting lower levels of cluster 1 factors, but higher 

cluster 2 factor levels compared to the low grade 1 tumors (Fig. 2B). Moreover, high 

pleomorphism and mitotic scores were associated with increased levels of cluster 2 factors and 

decreased levels of cluster 1 factors compared to low scored tumors (Fig. 2C, Suppl. Fig. 6D). 

Breast cancer invasiveness and progression is, amongst others, characterized by the subtype 

classification and hormone receptor status292. The estrogen receptor (ER) status has been 

demonstrated to be a favorable prognostic factor in breast cancer, especially in the first 5 years 

after diagnosis293. Confirming the observed tendency, cluster 1 splicing factors were slightly 

higher expressed in ER positive tumors, while cluster 2 factors were slightly higher expressed in 

the more aggressive ER negative tumors, yet both differences were not significant (Fig. 2D). 

This pattern was confirmed in the TCGA RNA sequencing dataset (Suppl. Fig. 6B-C). Moreover, 

compared to the less aggressive luminal A subtype, cluster 2 factors were higher expressed in 

the more aggressive luminal B, basal-like and HER2 amplified tumors while lower expressed in 

normal-like tumors. In contrary, cluster 1 factors were lower expressed in the more aggressive 

tumor types (Fig. 2E, Suppl. Fig. 6E). Altogether our data demonstrate that cluster 2 splicing 

factors are associated with a more aggressive tumor type which is in general related to a poorer 

prognosis. 

Our analysis demonstrated that by comparing primary tumor tissue with either normal breast 

tissue or metastatic breast tissue, we did not observe differences in expression levels for all 

splicing factors comparing primary tumor tissue with either normal breast tissue or metastatic 

breast tissue (see Fig. 1A and 1E). Repeating this analysis for cluster 1 and 2 splicing factors 

independently also did not demonstrate a difference between primary tumor and normal breast 

tissue (Fig. 2F, Suppl. Fig. 7A). However, cluster 2 splicing factors were significantly 

overexpressed in metastatic tissue compared to primary tumor tissue (Fig. 2G, Suppl. Fig. 7B) 

suggesting an involvement of these factors in breast cancer metastasis formation.  

Furthermore, the relation of cluster 1 and 2 splicing factor expression levels to survival of breast 

cancer patients was examined. Here, we selected all breast cancer subtypes, calculated the 

mean expression of all cluster splicing factors and split the patient cohort by the median  
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Figure 3. Association of the expression of cluster 1 and cluster 2 splicing factors with breast 

cancer overall survival. Per patient, mean expression of all factors within one cluster was calculated. 

Based on this mean expression, the patient cohort was median-split in low and high expression of cluster 

1 or 2 splicing factors and survival curves for overall survival, relapse-free survival and metastasis-free 

survival were generated.  

expression level. Interestingly, a high average expression level of cluster 1 factors is associated 

with increased overall and relapse-free survival (Fig. 3, Suppl. Fig. 8A). In contrast, a high 

average expression of cluster 2 factors is associated with decreased metastasis-free survival 

(Fig. 3, Suppl. Fig. 8A). We obtained similar results in ER negative tumors: high expression of 

cluster 1 factors was associated with prolonged overall survival, while high expression of cluster 

2 factors was linked to decreased metastasis free survival (Suppl. Fig. 8B). In ER positive 

tumors, cluster 1 splicing factors do not show an association with overall survival, while high 

cluster 2 levels are associated with a less favorable relapse-free and metastasis-free survival 

(Suppl. Fig. 8C). Furthermore, also in the MA-867 dataset the Hazard Ratio (HR) for metastasis 

development was increased for cluster 2 splicing factors, especially in ER positive tumors 

(Suppl. Fig. 8D). In conclusion, we propose that cluster 2 splicing factors are predictors of both 

a poor relapse- and metastasis-free survival. We will further refer to these as breast cancer 

enhancing splicing factors (“Enhancer-SF’’). Since cluster 1 splicing factors may act to suppress 

or delay the progression of breast cancer, we will further refer to these as breast cancer 

suppressing splicing factors (“Suppressor-SF”). 

Breast cancer Enhancer-splicing factors are linked to isoform specific gene expression  

Given that we could discriminate our co-regulated splicing factors in on the one hand breast 

cancer Enhancer-SF and the other hand breast cancer Suppressor-SF, we anticipated that the 

expression of these splicing factors would also be related to specific isoform expression 

patterns that might determine cancer progression. Therefore, we correlated the expression 

levels of Suppressor-SFs and Enhancer-SFs to gene isoforms using the TCGA isoform 

expression data. Here, we selected genes expressing multiple isoforms of which the expression  
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Figure 4. Linking breast cancer Enhancer-splicing factors to isoform specific gene expression. (A) 

Schematic overview of steps used to correlate Enhancer- and Suppressor-SF expression to isoform-

specific gene expression. (B) Hierarchical clustering (Euclidean distance, complete linkage) of the PC of 

Enhancer- and Suppressor-SFs with isoform expression in TCGA RNA sequencing data (red = positive 

correlation, green = negative correlation). Based on this clustering the isoforms were divided in 2 clusters.  

(C) Number of genes in the isoform clusters. (D) Correlation between ITGB1 isoforms and Suppressor-

SFs DDX3X and DHX9. (E) Correlation between ITGB1 isoforms and Enhancer-SFs CCDC12 and 

FAM50A.  
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levels of the individual isoforms are negatively correlated with each other (Fig. 4A). By 

performing the latter step, we selected genes that do switch isoforms comparing different 

primary tumors and remove isoforms that are only regulated on total gene expression level. 

Notably, breast tumor samples hardly expressed intermediate levels of both isoforms of 

selected genes resulting in one isoform being highly expressed while the other is absent, or 

high expression levels of both isoforms (Suppl. Fig. 9A). Hierarchical clustering of PCs between 

spliceosomal components and selected isoforms (Fig. 4B) allowed us to clearly discriminate 

between Suppressor-SFs and Enhancer-SFs, but also separated the isoforms in two clusters 

(Fig. 4B). Most of the selected genes had isoforms in both clusters (Fig. 4C, Suppl. Fig. 10) 

confirming that a switch in expression of splicing factors coincided with a downstream switch in 

splicing patterns. This could not be explained by a general increase in intron or exon inclusion, 

since the isoform length of isoforms in both clusters remained equal (Suppl. Fig. 9B). 

Interestingly, amongst the alternatively spliced genes were very well-known determinants of 

breast cancer progression, including integrin β1 (ITGB1). In primary human breast tumors, the 

most common ITGB1 isoform 1A was positively correlated to Suppressor-SFs such as DDX3X 

and DHX9 (Fig. 4D) while being negatively correlated to Enhancer-SFs such as CCDC12 and 

FAM50A (Fig. 4E). ITGB1 isoform 1D includes an alternative exon resulting in a prolonged and 

distinct C-terminus and is known to be specifically expressed in muscle tissue294,295. Here, we 

identified increased expression of isoform 1D in primary breast tumors in relation to high 

expression levels of Enhancer-SFs (Fig. 4E). Furthermore, also SMAD3 (Suppl. Fig. 9C) and 

NFKB2 (Suppl. Fig. 9D) showed alternative splicing patterns when comparing Enhancer-SF 

FAM50A with Suppressor-SF DHX9. Interestingly, SMAD3 and NFKB2 are implicated in survival 

signaling by regulating MCL-1, which has two well-known isoforms296. The common long MCL-1 

isoform which has pro-survival activity positively related to Enhancer-SFs; the short MCL-1 

isoform which mediates apoptosis was correlated to Suppressor-SF levels (Suppl. Fig. 9E)296. 

Furthermore, we also noticed that splicing factors regulate their own splicing pattern as was 

observed for HNRNPA1 (Suppl. Fig. 9F). Although the implication for most of these alternative 

splicing patterns has to be elucidated, we can conclude that differential expression of Enhancer-

SFs and Suppressor-SFs results in distinct isoform patterns for many genes, including genes 

that have been implicated in cancer progression.  

 

Breast cancer enhancing splicing factors are associated with the expression of 

mitochondrial electron transport, splicing, protein metabolism and decreased 

transcription 

As a next step, we studied whether the expression of the Enhancer-SF genes were linked to 

specific signaling networks and/or biological programs. Therefore, we calculated the PC of the 

Enhancer-SFs and Suppressor-SFs to all the genes available in the TCGA RNA sequencing 

dataset, naturally excluding the splicing factors (Fig. 5A, Suppl. Table 4). Next, genes were 

ranked based on their mean correlation to Suppressor- and Enhancer-SFs, respectively. Over-

representation analysis of the top 500 genes positively correlated with Suppressor-SFs were 

enriched in processes related to cell cycle and SUMOylation (Fig. 5B); top 500 genes that 

positively correlated with Enhancer-SFs were enriched in respiratory electron transport,  
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Figure 5. Association of Enhancer-SF expression levels with cancer-related biological programs. 

(A) Schematic overview of steps used to correlate Enhancer- and Suppressor-SF expression to other

genes in the genome followed by over-representation and gene-set enrichment analyses. (B) Top altered 

pathways in over-representation analysis of the top 500 genes positively correlating with Suppressor-SFs. 

(C) Top altered pathways in over-representation analysis of the top 500 genes positively correlating with

Enhancer-SFs. (D) Cytoscape visualization of GSEA of pathways highly correlated to Suppressor-SFs. 

(E) Same as in D, but for Enhancer-SFs.

mitochondrial translation, and also transcriptional elongation (Fig. 5C). Ranked Gene Set 

Enrichment Analysis (GSEA) confirmed the positive correlation of Suppressor-SFs with cell 

cycle, mitosis, RNA processing and transcription, while negatively correlating to genes linked 
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with mitochondrial processes such as electron transport and oxidative phosphorylation, 

ribosomal pathways and protein metabolism (Fig. 5D). As expected, Enhancer-SFs show the 

opposite behavior, being positively related to mitochondrial respiration, splicing and protein 

metabolism and negatively related to transcriptional pathways (Fig. 5E). Since both analyses 

demonstrated an important relation of splicing factors to cell cycle, sister chromatid cohesion, 

mitosis (all positively related to Suppressor-SFs), respiratory electron transport and 

mitochondrial translation (positively related to Enhancer-SFs), we investigated these pathways 

in greater detail. We first focused on the cell cycle and mitosis related pathways and observed a 

dual behavior, meaning that the majority of genes in these pathways were positively related to 

Suppressor-SFs, while a substantial fraction displayed a negative relation (Suppl. Fig. 11). A 

further detailed assessment of these pathways revealed that Suppressor-SFs were mainly 

associated with genes implicated in negative cell cycle regulation, such as cell cycle 

checkpoints and arrest (Suppl. Fig. 11); these genes involved amongst others BRCA1, ATM, 

ATR and RAD genes, which are related to inhibition of cell cycle progression in reaction to 

defects in DNA replication or DNA damage.  

Co-regulation of gene networks in cell biology is likely driven by transcription factors that bind 

similar promoter regions297–300. Therefore, we aimed to uncover the transcription factor networks 

that contribute to the expression of Enhancer- and Suppressor-SFs and their directly co-

regulated gene expression patterns. To answer this question, we performed a binding motif 

enrichment analysis using transcription factor binding motifs from the Jaspar database 

combined with the Pscan algorithm291 for Enhancer- and Suppressor-SFs separately. 

Interestingly, binding sites of the transcription factors CAMP responsive element binding protein 

1 (CREB1), cyclic AMP (cAMP) response element modulatory protein (CREM) and activating 

transcription factor 1 (ATF1) were highly enriched in Suppressor-SFs, while hardly present in 

Enhancer-SFs (Suppl. Fig. 12A). CREB1, ATF1, and CREM are members of a subfamily of the 

basic leucine zipper transcription factors that altogether can bind either as homo –or 

heterodimers to cAMP response elements located in the promoter regions of target genes301. 

We then selected i) the top 100 tumor samples expressing the highest level Suppressor-SFs 

and the lowest level of Enhancer-SFs (HS-LE tumors) and ii) the top 100 tumor samples 

expressing the lowest level of Suppressor-SFs and highest level of Enhancer-SFs (LS-HE 

tumors). Interestingly, the HS-LE tumors show significantly higher levels of ATF1 and CREB1 

compared to LS-HE tumors, suggesting that these transcription factors may regulate the 

transcription of Suppressor-SFs (Suppl. Figure 12B). CREM levels were equal in both tumor 

groups (Suppl. Figure 12B). As expected, we verified that CREB1 and ATF1 levels were 

positively correlated to Suppressor-SF levels, while being negatively correlated with Enhancer-

SF levels (Suppl. Figure 12C). Altogether, our analysis suggests that ATF1/CREB1 transcription 

factors play an important role in regulating the expression of Suppressor-SF genes.  

 

Confirmation of genuine co-regulated expression of Enhancer-SF and Suppressor-SF 

gene sets in other cancer types 

So far, we entirely focused on breast cancer due to the wealth of detailed datasets and tools 

available. Yet, we anticipated that the underlying alternative splicing through co-expression of  
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Figure 6. Enhancer-SF and Suppressor-SF expression levels are related to cancer progression in 

a wide variety of cancer types. (A) Hierarchical clustering (Euclidean distance, complete linkage) of 

Enhancer- and Suppressor-SF correlations in various cancer types. Red = highly positively correlated, 

green = highly negatively correlated. (B) Mean correlation of Suppressor- and Enhancer-SFs to the sister 

chromatid cohesion pathway in various cancer types. Here, for every SF, the correlation to the SCC 

pathway was calculated per patient, after which the mean patient correlation was calculated. (C) 

Hierarchical clustering (Euclidean distance, complete linkage) of PCs of Suppressor- and Enhancer-SFs 

to sister chromatid cohesion factors. (D) Per lung cancer patient, mean expression of all Suppressor- and 

Enhancer-SFs was calculated. Based on these expression levels, the patient cohort was median-split and 

overall and post-progression survival plots were generated
302

.

splicing factors into similar Enhancer and Suppressor subgroups is a general phenomenon that 

would likely also be observed in other cancer types present in the TCGA database. We 

calculated the PC between all possible combinations of Enhancer- and Suppressor-SFs using 

RNA sequencing data for 32 different cancer types acquired from the TCGA database and 

performed unsupervised clustering on these datasets similar to the breast cancer dataset. We 

identified Enhancer- and Suppressor-SF gene expression correlations resembling the breast 

cancer dataset in almost all other cancer types, including common aggressive types such as 
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lung, pancreas and prostate cancer, but not for testis and ovarian cancer (Fig. 6A, Suppl. Fig. 

13). Importantly, also in other cancer types Enhancer-SF and Suppressor-SF expression were 

strongly correlated to genes involved in sister chromatid cohesion (SCC, Fig. 6B and C), activity 

of cell cycle, M-phase, mitochondrial translation and respiratory electron transport, similar as for 

the observations in breast cancer (Suppl. Fig. 14). Next, we examined the relation of 

Suppressor- and Enhancer-SFs to survival of lung and ovarian cancer patients302,303. In lung 

cancer patients, high expression levels of Suppressor-SF genes were significantly associated 

with prolonged overall survival as well as post-progression survival, while high expression of 

Enhancer-SF genes correlated significantly with shorter overall and post-progression survival in 

lung cancer patients (Fig. 6D). This is in contrast to ovarian cancer patients, that did not exhibit 

the strong negative correlation between Enhancer- and Suppressor-SF expression levels and 

consequently, did lack the correlation regarding patient survival (Suppl. Fig. 15).   

 

Discussion 

RNA splicing is a complicated multistep process essential in multiple diseases amongst which 

cardiac disease, muscular dystrophy283 and cancer133. Common practice has been to define the 

role of single splicing factors in disease states66,206. Here, we took a bioinformatics approach to 

unravel splicing factor interactions at RNA expression levels in the context of cancer 

progression making advantage of the wealth of information provided by the TCGA and BASIS 

databases. By calculating PCs between the expression of all possible combinations of splicing 

factors in two independent human primary breast tumor RNA sequencing datasets, we identified 

two subgroups of splicing factors that are differentially co-expressed. One group of co-regulated 

splicing factors is particularly highly expressed in a more aggressive cancer phenotype and 

associated with poor survival rates, suggesting that the co-regulated expression of these 

splicing factors as a group contributes to cancer progression; we refer to this group as 

Enhancer-SFs of breast cancer. The other group of co-regulated splicing factors, which we refer 

to as Suppressor-SFs of breast cancer, are higher expressed in tumors with a more favorable 

prognosis. Importantly, we identified that these differential expression levels are associated with 

completely different alternative splicing patterns. In addition, expression of Enhancer-SF genes 

are negatively related to genes involved in negative cell cycle control and positively related to 

genes involved in mitochondrial respiration. We suggest that the poor clinical outcome of these 

high Enhancer-SF low Suppressor-SF patients might be caused by the combination of 

alternative splicing patterns, but also due to low expression levels of DNA damage repair genes 

as well as high levels of genes involved in oxidative phosphorylation. Importantly, we 

demonstrate that these relationships between splicing factors, pathways and survival outcome 

are not specific for breast cancer but are evident to most other cancer types, suggesting that the 

observed splicing factor co-regulation is a genuinely important driver in cancer progression.  

At this stage, we cannot assign the causality of splicing factor subgroup co-expression in 

relation to cancer signaling networks and therefore it is too early to envision the implementation 

of the SF expression levels in clinical decision making. For example, we found that high 
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expression of Enhancer-SFs in breast cancer is associated with high expression of genes 

involved in respiratory electron transport and mitochondrial translation, as well as a more 

aggressive clinical phenotype. The rewiring of cellular metabolism in order to promote survival 

of cancer cells is a well-known phenomenon304. The most profound metabolic adjustment in 

cancer cells is the increased activity of the less efficient glycolysis pathway over the more 

efficient oxidative phosphorylation, also known as the Warburg effect305. However, latest results 

suggest that oxidative phosphorylation is not completely lost during tumor progression and 

might even be important in metastasis formation306. Metastatic breast cancer cells exhibit 

elevated activity of mitochondrial respiration and patients bearing tumors with high levels of 

oxidative phosphorylation show a poorer clinical outcome307,308. From our observations, we 

cannot conclude that the differential expression of Enhancer-SFs is causing metabolic rewiring 

of cancer cells. Alternatively, changed Enhancer-SFs levels could be an effect instead of the 

cause of the altered activity in mitochondrial respiration. This could then indicate that the altered 

mitochondrial activity causes cells to switch their splicing pattern and subsequently, that 

metabolic rewiring and altered splicing patterns are both necessary to drive aggressiveness and 

poor clinical outcome. Further studies have to elucidate the causal link between splicing factors 

and the broad cellular transcriptional reprogramming to identify potential new targets for 

treatment or decide on a currently applied treatment strategy. Here, it would be interesting to 

start investigating the transcription factors ATF1 and CREB1, since these are potential 

transcriptional activators of the splicing factor clusters. 

In this study we mainly focused on the correlation of RNA expression of Enhancer- and 

Suppressor-SFs to cancer signaling networks. Validating these correlations at protein levels 

would be essential to confirm the direct role of these SFs in tumor progression. As a first 

attempt, we calculated Spearman correlation coefficients to quantify the RNA and protein levels 

of 32 splicing factors in 77 primary tumors309 (Suppl. Fig. 16). The average correlation 

coefficient of the assessed splicing factors (cor = 0.26) resembled the top RNA-protein 

correlations of ten cancer types observed by Kosti et al310. We did not always observe a strong 

correlation between RNA and protein expression levels of our splicing factors, suggesting that 

for some of these splicing factors, post-transcriptional processes can also be important for 

protein regulation. Although these splicing factors might be less involved in mediating 

downstream alternative splicing events, their RNA expression levels can still be used as a 

biomarker for the broad transcriptional reprogramming and metastatic behavior associated with 

the splicing factor levels. Further work would be needed to systematically link RNA expression 

to protein levels and next test the functional role of the Enhancer-SF in modulating particular 

programs that drive cancer progression.  

The splicing factors act functionally in several large well-defined specific spliceosome 

complexes 69. Intriguingly, neither Enhancer-SFs nor Suppressor-SFs could be assigned to 

specific spliceosome complexes. This observation underscores the complexity when 

investigating the role of single factors in such big complexes such as the spliceosome in relation 

to cancer progression. Likely the entire pattern of different factors, e.g. Enhancer-SF, is 

regulating the overall activity and functionality of the spliceosome and, thereby, driving defined 

4 



 

72 
 

RNA processing programs that drive tumor cell biology and cancer progression. For example, 

the differential increased expression of Enhancer-SF genes is associated with differential 

splicing of several genes including ITGB1. In primary human breast tumors the most common 

ITGB1 isoform A1 was negatively correlated to Enhancer-SF genes, yet positively correlated to 

Suppressor-SF genes. ITGB1 isoform 1D includes an alternative exon resulting in a prolonged 

and distinct C-terminus and is known to be specifically expressed in muscle tissue294,295. In our 

hands, the expression of the ITGB1 isoform 1D in primary breast tumors was particular related 

to high expression of Enhancer-SFs. While ITGB1 is a critical promotor of breast cancer 

progression311,312, in particular isoform 1D is known to affect focal adhesion kinase (FAK) and 

mitogen-activated protein kinase (MAPK) activation313, both known for their prominent role in 

(breast) cancer progression and metastasis formation314,315. This supports the rationale that the 

co-regulated Enhancer-SF genes drive RNA splicing leading to the formation of isoforms that 

are more prominently involved in aggressive cancer cell phenotypes.  

Our data also indicates that the differential co-regulation of Enhancer-SFs and Suppressor-SFs 

is not specific for breast cancer, as we observed this phenomenon in most cancer types, and for 

some even stronger differential expression than observed in the breast cancer cohort, i.e. eye 

cancer and prostate cancer. Enhancer-SFs were also associated with poor prognosis in lung 

cancer. We hypothesize that several critical drivers of cancer progression that are active in 

different cancer types may determine the expression of either Enhancer-SFs or Suppressor-

SFs, potentially by modulating the activity of CREB and ATF1 activity. Further studies need to 

await the unraveling of the activity of Enhancer-SFs.  

In conclusion, our current analyses demonstrate the differential co-regulated expression of a 

subset of splicing factors that are associated with cancer progression. While this work sheds 

light on the role of the differential regulation of the spliceosome in cancer, differential expression 

of splicing factors might also drive the progression of other complex diseases. Furthermore, our 

bioinformatics approach may also be applied to the uncovering of the differential co-regulated 

expression of individual components that act in large protein complexes that are critical in 

cancer progression, such as the translational machinery, respiratory or cell cycle systems or cell 

matrix adhesion complexes. This might illuminate unknown interactions, increasing the global 

understanding of these diseases and thereby contribute to the development of strategies to cure 

patients. 

 

Author contributions 

EK and BvdW designed the experiments, and EK performed the analysis. EK wrote the 

manuscript. BvdW, SELD, MS, JAF and JWMM reviewed and corrected the manuscript.  

 

Acknowledgements 

This work was supported by the ERC Advanced grant Triple-BC (grant no. 322737) and the 

Dutch Cancer Society project (grant nr 2011-5124). 

 



 

73 
 

Competing interests 

The authors declare no competing interests. 

 

Supplemental data availability 

Supplemental Figures 1-17 and Supplemental Tables 1-5 are available using the following link: 

https://www.nature.com/articles/s41598-019-40759-4#Sec21.  

4 

https://www.nature.com/articles/s41598-019-40759-4#Sec21



