
Asynchronous Programming in the Abstract Behavioural Specification
Language
Azadbakht, K.

Citation
Azadbakht, K. (2019, December 11). Asynchronous Programming in the Abstract Behavioural
Specification Language. Retrieved from https://hdl.handle.net/1887/81818
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/81818
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/81818


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/81818 holds various files of this Leiden University 
dissertation. 
 
Author: Azadbakht, K. 
Title: Asynchronous Programming in the Abstract Behavioural Specification Language 
Issue Date: 2019-12-11 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/81818
https://openaccess.leidenuniv.nl/handle/1887/1�


Propositions belonging to the PhD dissertation

Asynchronous Programming in the Abstract

Behavioural Specification Language

By Keyvan Azadbakht

1. Current programming means of parallelism and communication are in-
sufficient for optimally exploiting the computational power of multicore
architectures (Chapter 1).

2. It is generally recognized that asynchronous communication is well suited
for distributed applications and therefore the actor model is a natural fit
for such systems (Chapter 5).

3. The resulting integration of Actors with object-orientation allows for new
object-oriented models of concurrency that are better suited for the anal-
ysis and construction of distributed systems than the standard model of
multi-threading (Chapter 1, 4 and 5).

4. ABS can bridge modelling and programming for the purpose of formal
reasoning and verification (this thesis).

5. Data streaming is gaining ever-growing applications in different domains.
Integration of data streams with ABS enables formal reasoning and veri-
fication of data streaming in a concurrent object system (Chapter 4).

6. Absence of particular deadlocks caused by coroutines in an actor-based
model of concurrency that features Cooperative Scheduling is decidable,
even in the context of unbounded method invocations (Chapter 6).

7. The current challenge in language design is to efficiently use the underlying
multicore resources while maintaining a high level of abstraction for the
programmer.

8. Only the most capable programmers can explicitly control concurrency,
and efficiently make use of the relatively small number of cores readily
available today.

1


