
Asynchronous Programming in the Abstract Behavioural Specification
Language
Azadbakht, K.

Citation
Azadbakht, K. (2019, December 11). Asynchronous Programming in the Abstract Behavioural
Specification Language. Retrieved from https://hdl.handle.net/1887/81818

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/81818

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/81818

Cover Page

The handle http://hdl.handle.net/1887/81818 holds various files of this Leiden University
dissertation.

Author: Azadbakht, K.
Title: Asynchronous Programming in the Abstract Behavioural Specification Language
Issue Date: 2019-12-11

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/81818
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 6

Deadlock Detection for

Actor-Based Coroutines

6.1 Introduction

Actors [2][47] provide an event-driven concurrency model for the analysis and con-

struction of distributed, large-scale parallel systems. In actor-based modeling lan-

guages, like Rebeca [69], Creol [51], and ABS [48], the events are generated by

asynchronous calls to methods provided by the actors. The resulting integration

with object-orientation allows for new object-oriented models of concurrency, better

suited for the analysis and construction of distributed systems than the standard

model of multi-threading in languages like Java.

The new object-oriented models of concurrency arise from the combination of

different synchronization mechanisms. By design, the basic run-to-completion mode

of execution of asynchronously called methods as for example provided by the lan-

guage Rebeca does not provide any synchronization between actors. Consequently,

the resulting concurrent systems of actors do not give rise to undesirable conse-

quences of synchronization like deadlock. The languages Creol and ABS extend the

basic model with synchronization on the values returned by a method. So-called

futures [27] provide a general mechanism for actors to synchronize on return values.

Creol and ABS further integrate a model of execution of methods based on and in-

spired by coroutines, attributed by D. Knuth to M. Conway [24]. This model allows

for controlled suspension and resumption of the executing method invocation and

so-called cooperative scheduling of another method invocation of the actor.

Both the synchronization mechanisms of futures and coroutines may give rise

to deadlock. Futures may give rise to global deadlock in a system of actors. Such

a global deadlock consists of a circular dependency between different method in-

vocations of possibly different actors which are suspended on the generation of the

return value. On the other hand, coroutines may give rise to a local deadlock which

occurs when all method invocations of a single actor are suspended on a Boolean

93

94 Deadlock Detection for Actor-Based Coroutines

condition. In this chapter we provide the formal foundations of a novel method for

the analysis of such local deadlocks.

To the best of our knowledge, our work provides a first method for deciding local

deadlocks in actor-based languages with coroutines. The method itself is based on

a new technique for predicate abstraction of actor-based programs with coroutines,

which aims at the construction of a well-structured transition system. In contrast,

the usual techniques of predicate abstraction [17] aim at the construction of a finite

abstraction, which allows model checking of properties in temporal logic. In [29], a

restricted class of actor-based programs is modeled as a well-structured transition

system. This class does not support coroutines and actors do not have a global state

specifying the values of the global variables.

Methods that utilize different techniques aiming at detection of global deadlocks

in various actor settings include the following. The work in [53] uses ownership

to organize CoJava active objects into hierarchies in order to prevent circular rela-

tionships where two or more active objects wait indefinitely for one another. Also

data-races and data-based deadlocks are avoided in CoJava by the type system that

prevents threads from sharing mutable data. In [26], a sound technique is proposed

that translates a system of asynchronously communicating active objects into a Petri

net and applies Petri net reachability analysis for deadlock detection. The work that

is introduced in [38] and extended in [45] defines a technique for analyzing deadlocks

of stateful active objects that is based on behavioural type systems. The context is

the actor model with wait-by-necessity synchronizations where futures are not given

an explicit ”Future” type. Also, a framework is proposed in [52] to statically verify

communication correctness in a concurrency model using futures, with the aim that

the type system ensures that interactions among objects are deadlock-free.

A deadlock detection framework for ABS is proposed in [39] which mainly focuses

on deadlocks regarding future variables, i.e., await and get operations on futures.

It also proposes a naive annotation-based approach for detection of local deadlocks

(await on Boolean guards), namely, letting programmers annotate the statement

with the dependencies it creates. However, a comprehensive approach to investigate

local deadlocks is not addressed. Our approach, and corresponding structure of

the chapter, consists of the following. First, we introduce the basic programming

concepts of asynchronous method calls, futures and coroutines in Section 6.2. In

Section 6.3 we introduce a new operational semantics for the description of the local

behavior of a single actor. The only external dependencies stem from method calls

generated by other actors and the basic operations on futures corresponding to calls

of methods of other actors. Both kinds of external dependencies are modeled by

non-determinism. Method calls generated by other actors are modeled by the non-

deterministic scheduling of method invocations. The basic operations on futures

are modeled by the corresponding non-deterministic evaluation of the availability

of the return value and random generation of the return value itself. Next, we

introduce in Section 6.4 a predicate abstraction [17, 40] of the value assignments to

The Programming Language 95

the global variables (“fields”) of an actor as well as the local variables of the method

invocations. The resulting abstraction still gives rise to an infinite transition system

because of the generation of self -calls, that is, calls of methods of the actor by the

actor itself, and the corresponding generation of “fresh” names of the local variables.

Our main contribution consists of the following technical results.

• a proof of the correctness of the predicate abstraction, in Section 6.5, and

• decidability of checking for the occurrence of a local deadlock in the abstract

transition system in Section 6.7.

Correctness of the predicate abstraction is established by a simulation relation be-

tween the concrete and the abstract transition system. Decidability is established

by showing that the abstract system is a so-called well-structured transition sys-

tem, cf. [36]. Since the concrete operational semantics of the local behavior of a

single actor is an over-approximation of the local behavior in the context of an ar-

bitrary system of actors, these technical results together comprise a general method

for proving absence of local deadlock of an actor. A short discussion follow-up in

Section 6.8 concludes the chapter.

6.2 The Programming Language

In this section we present, in the context of a class-based language (with a subset of

ABS features), the basic statements which describe asynchronous method invocation

and cooperative scheduling.

A class introduces its global variables, also referred to as “fields”, and methods.

We use x, y, z, . . . to denote both the fields of a class and the local variables of the

methods (including the formal parameters). Method bodies are defined as sequential

control structures, including the usual conditional and iteration constructs, over the

basic statements listed below.

Dynamic instantiation For x a so-called future variable or a class variable of

type C, for some class name C, the assignment

x = new

creates a new future or a unique reference to a new instance of class C.

Side effect-free assignment In the assignment

x = e

the expression e denotes a side effect-free expression. The evaluation of such an

expression does not affect the values of any global or local variable and also does

96 Deadlock Detection for Actor-Based Coroutines

not affect the status of the executing process. We do not detail the syntactical

structure of side effect-free expressions.

Asynchronous method invocation A method is called asynchronously by an

assignment of the form

x = e0 !m(e1, . . . , en)

Here, x is a future variable which is used as a unique reference to the return value

of the invocation of method m with actual parameters e1, . . . , en. The called actor

is denoted by the expression e0. Without loss of generality we restrict the actual

parameters and the expression e0 to side effect-free expressions. Since e0 denotes an

actor, this implies that e0 is a global or local variable.

The get operation The execution of an assignment

x = y.get

blocks till the future variable y holds the value that is returned by its corresponding

method invocation.

Awaiting a future The statement

await x?

releases control and schedules another process in case the future variable x does

not yet hold a value, that is to be returned by its corresponding method invoca-

tion. Otherwise, it proceeds with the execution of the remaining statements of the

executing method invocation.

Awaiting a Boolean condition Similarly, the statement

await e

where e denotes a side effect-free Boolean condition, releases control and schedules

another process in case the Boolean condition is false. Otherwise, it proceeds with

the execution of the remaining statements of the executing method invocation.

We describe the possible deadlock behavior of a system of dynamically generated

actors in terms of processes, where a process is a method invocation. A process is

either active (executing), blocked on a get operation, or suspended by a future or

Boolean condition. At run-time, an actor consists of an active process and a set of

suspended processes (when the active method invocation blocks on a get operation

it blocks the entire actor). Actors execute their active processes in parallel and

only interact via asynchronous method calls and futures. When an active process

The Concrete System 97

awaits a future or Boolean condition, the actor can cooperatively schedule another

process instead. A global deadlock involves a circular dependency between processes

which are awaiting a future. On the other hand, a local deadlock appears when all

the processes of an actor are awaiting a Boolean condition to become true. In the

following sections we present a method for showing if an initial set of processes of

an individual actor does not give rise to a local deadlock.

6.3 The Concrete System

In order to formally define local deadlock we introduce a formal operational seman-

tics of a single actor. Throughout this chapter we assume a definition of a class C

to be given. A typical element of its set of methods is denoted by m. We assume

the definition of a class C to consist of the usual declarations of global variables and

method definitions. Let Var(C) denote all the global and local variables declared

in C. Without loss of generality we assume that there are no name clashes between

the global and local variables appearing in C, and no name clashes between the

local variables of different methods. To resolve in the semantics name clashes of the

local variables of the different invocations of a method, we assume a given infinite

set Var such that Var(C) ⊆ Var . The set Var\Var(C) is used to generate “fresh”

local variables. Further, for each method m, we introduce an infinite set Σ(m) of

renamings σ such that for every local variable x of m, σ(x) is a fresh variable in Var ,

i.e. not appearing in Var(C). We assume that any two distinct σ, σ′ ∈
⋃
m Σ(m) are

disjoint (Here m ranges over the method names introduced by class C.) Renamings

σ and σ′ are disjoint if their ranges are disjoint. Note that by the above assump-

tion the domains of renamings of different methods are also disjoint. By auxiliary

function fresh(σ′) we check that the renaming σ′ ∈ Σ(m) is different from all the

existing renamings in Q.

A process p arising from an invocation of a method m is described formally as

a pair (σ, S), where σ ∈ Σ(m) and S is the sequence of remaining statements to

be executed, also known as continuation. An actor configuration then is a triple

(Γ, p, Q), where Γ is an assignment of values to the variables in Var , p denotes

the active process, and Q denotes a set of suspended processes. A configuration is

consistent if for every renaming σ there exists at most one statement S such that

(σ, S) ∈ {p} ∪ Q.

A computation step of a single actor is formalized by a transition relation between

consistent actor configurations. A structural operational semantics for the derivation

of such transitions is given in Table 6.1. Here, we assume a given set Val of values of

built-in data types (like Integer and Boolean), and an infinite set R of references or

“pointers”. Further, we assume a global variable refs such that Γ(refs) ⊆ R records

locally stored references.

We proceed with the explanation of the rules of Table 6.1. The rule <ASSIGN>

98 Deadlock Detection for Actor-Based Coroutines

<ASSIGN>
(Γ, (σ, x = e;S), Q)→

(Γ[xσ = Γ(eσ)], (σ, S), Q)

<NEW>
r ∈ R\Γ(refs)

(Γ, (σ, x = new;S), Q)→
(Γ[refs = Γ[refs] ∪ {r}], (σ, x = r;S), Q)

<GET-VALUE>
v ∈ Val

(Γ, (σ, x = y.get;S), Q)→
(Γ[xσ = v], (σ, S), Q)

<GET-REF>
r ∈ R

(Γ, (σ, x = y.get;S), Q)→
(Γ[refs = Γ(refs) ∪ {r}], (σ, x = r;S), Q)

<REMOTE-CALL >
Γ(yσ) 6= Γ(this)

(Γ, (σ, x = y !m(ē);S), Q)→
(Γ, (σ, x = new;S), Q)

<LOCAL-CALL>
Γ(yσ) = Γ(this) fresh(σ′)

(Γ, (σ, x = y !m(ē);S), Q)→
(Γ[z̄σ′ = Γ(ēσ)], (σ, x = new;S), Q ∪ {(σ′, S ′)})

<IF-THEN>
Γ(eσ) = true

(Γ, (σ,if e {S ′} else {S ′′};S), Q)→
(Γ, (σ, S ′;S), Q)

<IF-ELSE>
Γ(eσ) = false

(Γ, (σ,if e {S ′} else {S ′′};S), Q)→
(Γ, (σ, S ′′;S), Q)

<WHILE-TRUE>
Γ(eσ) = true

(Γ, (σ,while e {S ′};S), Q)→
(Γ, (σ, S ′;while e do {S ′};S), Q)

<WHILE-FALSE>
Γ(eσ) = false

(Γ, (σ,while e {S ′};S), Q)→ (Γ, (σ, S), Q)

<AWAITB-TRUE>
Γ(eσ) = true

(Γ, (σ,await e;S), Q)→
(Γ, (σ, S), Q)

<AWAITB-FALSE>
Γ(eσ) = false (σ′, S ′) ∈ Q

(Γ, (σ,await e;S), Q)→
(Γ, (σ′, S ′), (Q ∪ {(σ,await e;S)})\{(σ′, S ′)})

<AWAITF-SKIP>
(Γ, (σ,await x?;S), Q)→

(Γ, (σ, S), Q)

<AWAITF-SCHED>
(σ′, S ′) ∈ Q

(Γ, (σ,await x?;S), Q)→
(Γ, (σ′, S ′), (Q ∪ {(σ,await true;S)})\{(σ′, S ′)})

<RETURN>
(σ′, S ′) ∈ Q

(Γ, (σ,return e), Q)→ (Γ, (σ′, S ′), Q\{(σ′, S ′)})

Figure 6.1: Concrete transition relation

The Concrete System 99

describes a side effect-free assignment. Here, and in the sequel, eσ denotes the result

of replacing any local variable x in e by σ(x). By Γ(e) we denote the extension of

the variable assignment Γ to the evaluation of the expression e. By Γ[x = v], for

some value v, we denote the result of updating the value of x in Γ by v.

The rule <NEW> describes the non-deterministic selection of a fresh reference

not appearing in the set Γ(refs). The rule <GET-VALUE> models an assignment

involving a get operation on a future variable y which holds a value of some built-in

data type by an assignment of a random value v ∈ Val (of the appropriate type).

The rule <GET-REF> models an assignment involving a get operation on a future

variable y which holds a reference by first adding a random value r ∈ R to the

set Γ(refs) and then assign it to the variable x (note that we do not exclude that

r ∈ Γ(refs)).

It should be observed that we model the local behavior of an actor. The ab-

sence of information about the return values in the semantics of a get operation is

accounted for by a non-deterministic selection of an arbitrary return value. Further,

since we restrict to the analysis of local deadlocks, we also abstract from the possi-

bility that the get operation blocks and assume that the return value is generated.

The rules regarding choice and iteration statements are standard. The rule

<REMOTE-CALL> describes an assignment involving an external call (Γ(yσ) 6=
Γ(this), where yσ denotes y, if y is a global variable, otherwise it denotes the

variable σ(y)). It is modeled by the creation and storage of a new future reference

uniquely identifying the method invocation. On the other hand, according to the

rule <LOCAL-CALL> a local call (Γ(yσ) = Γ(this)) generates a new process and

future corresponding to the method invocation. Also it is checked that the renaming

σ′ is fresh. Further, by Γ[z̄σ′ = Γ(ēσ)] we denote the simultaneous update of Γ which

assigns to each local variable σ′(zi) (i.e., the renamed formal parameter zi) the value

of the corresponding actual parameter ei with its local variables renamed by σ, i.e.,

the local context of the calling method invocation. For technical convenience we

omitted the initialization of the local variables that are not formal parameters. The

body of method m is denoted by S ′.

The rule <AWAITB-TRUE> describes that when the Boolean condition of the

await statement is true, the active process proceeds with the continuation, and

<AWAITB-FALSE> describes that when the Boolean condition of the await state-

ment is false, a process is selected for execution. This can give rise to the activation

of a disabled process, which is clearly not optimal. The transition system can be

extended to only allow the activation of enabled processes. However, this does not

affect the results of this chapter and therefore is omitted for notational convenience.

The rule <AWAITF-SKIP> formalizes the assumption that the return value re-

ferred to by x has been generated. On the other hand, <AWAITF-SCHED> formal-

izes the assumption that the return value has not (yet) been generated. Note that

we transform the initial await statement into an await on the Boolean condition

“true”. Availability of the return value then is modeled by selecting the process for

100 Deadlock Detection for Actor-Based Coroutines

execution. Finally, in the rule RETURN we assume that the return statement is the

last statement to be executed. Note that here we do not store the generated return

value (see also the discussion in section 6.8).

In view of the above, we have the following definition of a local deadlock.

Definition 6.3.1. A local configuration (Γ, p, Q) deadlocks if

for all (σ, S) ∈ {p} ∪ Q we have that the initial statement of S is an

await statement await e such that Γ(eσ) = false.

In the sequel we describe a method for establishing that an initial configuration

does not give rise to a local deadlock configuration. Here it is worthwhile to ob-

serve that the above description of the local behavior of a single actor provides an

over-approximation of its actual local behavior as part of any system of actors. Con-

sequently, absence of a local deadlock of this over-approximation implies absence of

a local deadlock in any system of actors.

6.4 The Abstract System

Our method of deadlock detection is based on predicate abstraction. This boils

down to using predicates instead of concrete value assignments. For the class C,

the set Pred(m) includes all (the negations of) the Boolean conditions appearing

in the body of m. Further, Pred(m) includes all (negations of) equations x = y

between reference variables x and y, where both x and y are global variables of

the class C (including this) or local variables of m (a reference variable is either

a future variable or used to refer to an actor.) In addition to these conditions,

the set Pred(m) can also include user-defined predicates that possibly increases the

precision of the analysis.

An abstract configuration α is of the form (T, p,Q), where, as in the previous

section, p is the active process and Q is a set of suspended processes. The set T

provides for each invocation of a method m a logical description of the relation

between its local variables and the global variables. Formally, T is a set of pairs

(σ, u), where u ⊆ Pred(m), for some method m, is a set of predicates of m with fresh

local variables as specified by σ. We assume that for each process (σ, S) ∈ {p} ∪Q
there exists a corresponding pair (σ, u) ∈ T . If for some (σ, u) ∈ T there does not

exist a corresponding process (σ, S) ∈ {p} ∪ Q then the process has terminated.

Further, we assume that for any σ there is at most one (σ, u) ∈ T and at most one

(σ, S) ∈ {p} ∪Q.

We next define a transition relation on abstract configurations in terms of a

strongest postcondition calculus. To describe this calculus, we first introduce the

following notation. Let L(T) denote the set {uσ |(σ, u) ∈ T }, where uσ = {ϕσ |ϕ ∈
u }, and ϕσ denotes the result of replacing every local variable x in ϕ with σ(x).

The Abstract System 101

Logically, we view each element of L(T) as a conjunction of its predicates. Therefore,

when we write L(T) ` ϕ, i.e., ϕ is a logical consequence (in first-order logic) of L(T),

the sets of predicates in L(T) are interpreted as conjunctions. (It is worthwhile to

note that in practice the notion of logical consequence will also involve the first-order

theories of the underlying data structures.) The strongest postcondition, defined

below, describes for each basic assignment a and local context σ ∈ Σ(m), the set

spσ(L(T), a) of predicates ϕ ∈ Pred(m) such that ϕσ holds after the assignment,

assuming that all predicates in L(T) hold initially.

For an assignment x = e we define the strongest postcondition by

spσ(L(T), x = e) = {ϕ | L(T) ` ϕσ[e/x], ϕ ∈ Pred(m)}

where [e/x] denotes the substitution which replaces occurrences of the variable x by

the side effect-free expression e. For an assignment x = new we define the strongest

postcondition by

spσ(L(T), x = new) = {ϕ | L(T) ` ϕσ[new/x], ϕ ∈ Pred(m) }

The substitution [new/x] replaces every equation x = y, with y distinct from x, by

false, x = x by true. It is worthwhile to note that for every future variable and vari-

able denoting an actor, these are the only possible logical contexts consistent with

the programming language. (Since the language does not support de-referencing,

actors encapsulate their local state.)

For an assignment x = y.get we define the strongest postcondition by

spσ(L(T), x = y.get) = {ϕ | L(T) ` ∀x.ϕσ, ϕ ∈ Pred(m) }

The universal quantification of the variable x models a non-deterministic choice for

the value of x.

Table 6.2 presents the structural operational semantics of the transition relation

for abstract configurations. In the <ASSIGN> rule the set of predicates u for each

(σ′, u) ∈ T , is updated by the strongest postcondition spσ′(L(T), (x = e)σ). Note

that by the substitution theorem of predicate logic, we have for each predicate ϕ

of this strongest postcondition that ϕσ′ will hold after the assignment (x = e)σ

(i.e., xσ = eσ) because L(T) ` ϕσ[e/x]. Similarly, the rules <GET> and <NEW>
update T of the initial configuration by their corresponding strongest postcondition

as defined above.

In the rule <REMOTE-CALL> we identify a remote call by checking whether the

information this 6= yσ can be added consistently to L(T). By T ∪ {(σ, ϕ)} we

denote the set { (σ′, u) ∈ T | σ′ 6= σ } ∪ { (σ, u ∪ {ϕ}) | (σ, u) ∈ T }. In the rule

<LOCAL-CALL> the set of predicates u of the generated invocation of method m

consists of all those predicates ϕ ∈ Pred(m) such that L(T) ` ϕ[ēσ/z̄], where

z̄ denotes the formal parameters of m. By the substitution theorem of predicate

102 Deadlock Detection for Actor-Based Coroutines

<ASSIGN>
T ′ = { (σ′, spσ′(L(T), (x = e)σ)) | (σ′, u) ∈ T }

(T, (σ, x = e;S), Q)→ (T ′, (σ, S), Q)

<GET>
T ′ = { (σ′, spσ′(L(T), (x = y.get)σ)) | (σ′, u) ∈ T }

(T, (σ, x = y.get;S), Q)→ (T ′, (σ, S), Q)

<NEW>
T ′ = { (σ′, spσ′(L(T), (x = new)σ)) | (σ′, u) ∈ T }

(T, (σ, x = new;S), Q)→ (T ′, (σ, S), Q)

<REMOTE-CALL>
L(T) ∪ {this 6= yσ} 6` false

(T, (σ, x = y !m(e);S), Q)→ (T ∪ {(σ,this 6= y)}}, (σ, x = new;S), Q)

<LOCAL-CALL>
L(T) ∪ {this = yσ} 6` false

u = {ϕ | L(T) ` ϕ[ēσ/z̄], ϕ ∈ Pred(m) } fresh(σ′)

(T, (σ, x = y !m(e);S), Q)→
(T ∪ {(σ′, u)} ∪ {(σ,this = y)}, (σ, x = new;S), Q ∪ {(σ′, S ′)})

<IF-THEN>
L(T) ∪ {eσ} 6` false

(T, (σ,if e {S ′} else {S ′′};S), Q)
→ (T ∪ {(σ, e)}, (σ, S ′;S), Q)

<IF-ELSE>
L(T) ∪ {¬eσ} 6` false

(T, (σ,if e {S ′} else {S ′′};S), Q)
→ (T ∪ {(σ,¬e)}, (σ, S ′′;S), Q)

<WHILE-TRUE>
L(T) ∪ {eσ} 6` false

(T, (σ,while e do {S}′;S), Q)
→ (T ∪ {(σ, e)}, (σ, S ′;while e do {S ′};S), Q)

<WHILE-FALSE>
L(T) ∪ {¬eσ} 6` false

(T, (σ,while e do {S ′};S), Q)
→ (T ∪ {(σ,¬e)}, (σ, S), Q)

<AWAIT-TRUE>
L(T) ∪ {eσ} 6` false

(T, (σ,await e;S), Q)→ (T ∪ {(σ, e)}, (σ, S), Q)

<AWAIT-FALSE>
L(T) ∪ {¬eσ} 6` false (σ′, S ′) ∈ Q

(T, (σ,await e;S), Q)→ (T ∪ {(σ,¬e)}, (σ′, S ′), (Q ∪ {(σ,await e;S)})\{(σ′, S ′)})

<AWAITF-SKIP>
(T, (σ,await x?;S), Q)
→ (T, (σ, S), Q)

<AWAITF-SCHED>
(σ′, S ′) ∈ Q

(T, (σ,await x?;S), Q)→
(T, (σ′, S ′), (Q ∪ {(σ,await true;S)})\{(σ′, S ′)})

<RETURN>
(σ′, S ′) ∈ Q

(T, (σ,return e), Q)→ (T, (σ′, S ′), Q\{(σ′, S ′)})

Figure 6.2: Abstract transition system

Correctness of Predicate Abstraction 103

logic, the (simultaneous) substitution [ēσ/z̄] ensures that ϕ holds for the generated

invocation of method m. Note that by definition, L(T) only refers to fresh local

variables, i.e., the local variables of m do not appear in L(T) because for any (σ, u) ∈
T we have that σ(x) is a fresh variable not appearing in the given class C. For

technical convenience we omitted the substitution of the local variables that are

not formal parameters. The renaming σ′, which is assumed not to appear in T ,

introduces fresh local variable names for the generated method invocation. The

continuation S ′ of the new process is the body of method m. The generation of

a new future in both the rules <REMOTE-CALL> and <LOCAL-CALL> is simply

modeled by the x = new statement.

By <IF-THEN>, the active process transforms to the ”then” block, i.e. S ′,

followed by S, if the predicate set L(T) is consistent with the guard e of the if-

statement. (Note that as L(T) is in general not complete, it can be consistent with

e as well as with ¬e.) The other rules regarding choice and iteration statements

are defined similarly. By <RETURN> the active process terminates, and is removed

from the configuration. A process is selected from Q for execution. Note that the

pair (σ, u) ∈ T is not affected by this removal.

The rules <AWAIT-TRUE> and <AWAIT-FALSE> specify transitions assum-

ing the predicate set L(T) is consistent with the guard e and with ¬e, respec-

tively. In the former case, the await statement is skipped and the active process

continues, whereas in the latter, the active process releases control and a process

from Q is activated. Similar to the concrete semantics in the previous section, in

<AWAITF-SKIP> and <AWAITF-SCHED>, the active process non-deterministically

continues or cooperatively releases the control. In the latter, a process from Q is

activated.

We conclude this section with the counterpart of Definition 6.3.1 for the abstract

setting.

Definition 6.4.1. A local configuration (T, p,Q) is a (local) deadlock if

for all (σ, S) ∈ {p} ∪ Q we have that the initial statement of S is an

await statement await e such that L(T) ∪ {¬eσ} 6` false.

6.5 Correctness of Predicate Abstraction

In this section we prove that the concrete system is simulated by the abstract system.

To this end we introduce a simulation relation ∼ between concrete and abstract

configurations:

(Γ, p, Q) ∼ (T, p,Q), if Γ |= L(T)

where Γ |= L(T) denotes that Γ satisfies the formulas of L(T).

Theorem 3. The abstract system is a simulation of the concrete system.

104 Deadlock Detection for Actor-Based Coroutines

Proof. Given (Γ, p, Q) ∼ (T, p,Q) and a transition (Γ, p, Q) → (Γ′, p′, Q′), we need

to prove that there exists a transition (T, p,Q)→ (T ′, p′, Q′) such that (Γ′, p′, Q′) ∼
(T ′, p′, Q′).

For all the rules that involve the evaluation of a guard e, it suffices to observe

that Γ |= L(T) and Γ |= e implies L(T) ∪ {e} 6` false.

We treat the case x = e where e is a side effect-free expression (the others cases

are treated similarly). If p = (σ, x = e;S), where e is a side effect-free expression,

then Γ′ = Γ[(x = e)σ]. We put T ′ = { (σ′, spσ′(L(T), (x = e)σ)) | (σ′, u) ∈ T }.
Then it follows that (T, p,Q) → (T ′, p′, Q′). To prove Γ′ |= L(T ′) it remains to

show for (σ, u) ∈ T and ϕ ∈ spσ′(L(T), (x = e)σ) that Γ′ |= ϕσ′: Let (σ′, u) ∈ T
and ϕ ∈ spσ′(L(T), (x = e)σ). By definition of the strongest postcondition, we

have L(T) ` ϕσ′[(x = e)σ]. Since Γ |= L(T), we have Γ |= ϕσ′[(x = e)σ]. Since

Γ′ = Γ[xσ = Γ(eσ)], we obtain from the substitution theorem of predicate logic that

Γ′ |= ϕσ′ ⇐⇒ Γ |= ϕσ′[(x = e)σ]

and hence we are done.

We conclude this section with the following observation: if the initial abstract

configuration (T, p,Q) does not give rise to a local deadlock then also the config-

uration (Γ, p, Q) does not give rise to a local deadlock, when Γ |= L(T). To see

this, by the above theorem it suffices to note that if (Γ′, p′, Q′) is a local dead-

lock and Γ′ |= L(T ′) then (T ′, p′, Q′) is also a local deadlock because for any

(σ,await e;S) ∈ {p′} ∪Q′ we have that Γ′ 6|= eσ implies L(T ′) ∪ {¬eσ} 6` false.

6.6 Example

We represent the proposed method by means of an example. Given partial definition

of the class C as follows:

class C {
Int a = 0;
void m() {

a= a + 1; await a < 5;
}
...

}

We want to check the program for the absence of the local deadlock, where Q

contains only one process (σ,a=a+1;await a<5), which is an invocation of the

method m. The Pred(m) = {a < 5,¬(a < 5), a = 3,¬(a = 3)} is the set of

predicates of the method m, and a user-defined predicate a = 3 and its negation.

We try to check the system for the absence of deadlock for the initial u = {a < 5},

Decidability of Deadlock Detection 105

1:((σ, {a < 5}), (σ,a=a+1;await a<5), ∅)

2: ((σ, {¬(a < 5)}), (σ,a=a+1;await a<5), ∅)

4: ((σ, {a < 5}), (σ,await a<5), ∅)

5: ((σ, {¬(a < 5)}), (σ,await a<5), ∅)

6: ((σ, {a < 5}), (σ, ε), ∅)

3: ((σ, {a = 3}), (σ,a=a+1;await a<5), ∅)

Figure 6.3: Example of the abstract system

u = {¬(a < 5)} and u = {a = 3}. The abstract systems for three different initial

states form a finite transition system which is shown in Figure 6.3.

The states 1,2 and 3 denote the three initial states. State 5 denotes a local

deadlock configuration. State 6 denotes a normal termination configuration. The

resulting transition system shows that the execution of method m, where initially

a > 4, possibly causes deadlock.

6.7 Decidability of Deadlock Detection

The abstract local behavior of a single actor, as defined in the previous section,

gives rise, for a given initial configuration, to an infinite transition system because

of dynamic generation of local calls and the corresponding introduction of fresh local

variables. In this section we show how we can model an abstract system for which

the transition relation is computable as well-structured transition system and obtain

the decidability of deadlock detection for such abstract systems. To this end, we

first provide a canonical representation of an abstract configuration which abstracts

from renamings of the local variables by means of multisets of closures. A closure

of a method m is a pair (u, S), where S is a continuation of the body of m and

u ⊆ Pred(m). (Here Pred(m) denotes the set of predicates associated with m as

defined in Section 6.3). The set of continuations of a statement S is the smallest set

Cont(S) such that S ∈ Cont(S) and ε ∈ Cont(S), where the “empty” statement ε

denotes termination, and which is closed under the following conditions

• S ′;S ′′ ∈ Cont(S) implies S ′′ ∈ Cont(S)

• if e {S1} else {S2}; S ′ ∈ Cont(S) implies S1;S ′ ∈ Cont(S) and S2;S ′ ∈
Cont(S)

• while e {S ′}; S ′′ ∈ Cont(S) implies S ′; while e {S ′}; S ′′ ∈ Cont(S).

106 Deadlock Detection for Actor-Based Coroutines

Note that for a given method the set of all possible closures is finite. We formally

represent a multiset of closures as a function which assigns a natural number f(c)

to each closure c which indicates the number of occurrences of c. For notational

convenience we write c ∈ f in case f(c) > 0.

In preparation of the notion of canonical representation of abstract configura-

tions, we introduce for every abstract configuration α = (T, p,Q) the set ᾱ of triples

(σ, u, S) for which (σ, u) ∈ T and either (σ, S) ∈ {p} ∪Q or S = ε.

Definition 6.7.1. An abstract configuration (T, p,Q) is canonically represented by

a multiset of closures f , if for every method m and closure (u, S) of m we have

f((u, S)) = |{σ | (σ, u, S) ∈ ᾱ }|

(where |V | denotes the cardinality of the set V).

Note that each abstract configuration has a unique multiset representation. For any

multiset f of closures, let T (f) denote the set of predicates {∃v | (v, S)n ∈ f},
where ∃v denotes v with all the local variables appearing in the conjunction of the

predicates of v existentially quantified.

The following lemma states the equivalence of a set of closures and its canonical

representation.

Lemma 6.7.1. Let the abstract configuration (T, p,Q) be canonically represented

by the multiset of closures f . Further, let (σ, u) ∈ T , where σ ∈ Σ(m), and ϕ ∈
Pred(m). It holds that

L(T) ` ϕσ iff {u} ∪ T (f) ` ϕ

Proof. Proof-theoretically we reason, in first-order logic, as follows. For notational

convenience we view a set of predicates as the conjunction over its elements. By the

Deduction Theorem we have

L(T) ` ϕσ iff ` L(T)→ ϕσ

From the laws of universal quantification we obtain

` L(T)→ ϕσ iff ` ∀X(L(T)→ ϕσ)

and

` ∀X(L(T)→ ϕσ) iff ` ∃XL(T)→ ϕσ

where X denotes the set of local variables appearing in L(T) \{uσ}. Note that no

local variable of X appears in ϕσ or uσ.

Since any two distinct v, v′ ∈ L(T) have no local variables in common, we can

Decidability of Deadlock Detection 107

push the quantification of ∃XL(T) inside. That is,

` ∃XL(T)→ ϕσ iff ` {∃Xv | v ∈ L(T) } → ϕσ

No local variable of X appears in uσ, therefore we have

` {∃Xv | v ∈ L(T) } → ϕσ iff ` uσ ∧ {∃Xv | v ∈ L(T) } → ϕσ

Again by the Deduction Theorem we then have

` uσ ∧ {∃Xv | v ∈ L(T) } → ϕσ iff {uσ} ` { ∃Xv | v ∈ L(T) } → ϕσ

Clearly uσ ` ∃u and ∃Xv is logically equivalent to ∃v, for any v ∈ L(T) \{uσ}. So,

we have

{uσ} ` { ∃Xv | v ∈ L(T) } → ϕσ iff {uσ} ` { ∃v | v ∈ L(T) } → ϕσ

Since f represents (T, p,Q) we have that T (f) = { ∃v | v ∈ L(T) }. Renaming the

local variables of uσ and ϕσ then finally gives us

{uσ} ` { ∃v | v ∈ L(T) } → ϕσ iff {u} ` T (f)→ ϕ

which proves the lemma.

We next define an ordering on multisets of closures.

Definition 6.7.2. By f 4 f ′ we denote that f(c) 6 f ′(c) and f ′(c) = 0 if f(c) = 0.

In other words, f 4 f ′ if all occurrences of f belong to f ′ and f ′ does not add

occurrences of closures which do not already occur in f . The following result states

that this relation is a well-quasi-ordering.

Lemma 6.7.2. The relation f 4 f ′ is a quasi-ordering such that for any infinite

sequence (fn)n there exist indices i < j such that fi 4 fj.

Proof. First observe that for a given class there is only a finite number of closures.

We show that the proof for the standard subset relation for multisets also holds

for this variation. Assume that for some set X of closures we have constructed an

infinite subsequence (f ′n)n of (fn)n such that f ′i(c) 6 f ′j(c), for every c ∈ X and i < j.

Suppose that for every c /∈ X the set { k | f ′j(c) = k, j ∈ N } is bounded. It follows

that there exists an f ′k which appears infinitely often in (f ′n)n, since there exists only

a finite number of combinations of occurrences of closures in X̄ = { c | c /∈ X }. On

the other hand, if there exists a d /∈ X such that set { k | f ′j(d) = k, j ∈ N } has no

upperbound then we can obtain a subsequence (f ′′n)n of (f ′n)n such that f ′′i (c) 6 f ′′j (c)

for every c ∈ X ∪ {d} and i < j. Thus, both cases lead to the existence of indices

i < j such that fi 4 fj.

108 Deadlock Detection for Actor-Based Coroutines

From the above lemma it follows immediately that the following induced ordering

on abstract configurations is also a well-quasi-ordering.

Definition 6.7.3. We put (T, (σ, S), Q) 4 (T ′, (σ′, S), Q′) iff f 4 f ′, for multi-

sets of closures f and f ′ (uniquely) representing (T, (σ, S), Q) and (T ′, (σ′, S), Q′),

respectively.

We can now formulate and prove the following theorem which states that this well-

quasi-ordering is preserved by the transition relation of the abstract system.

Theorem 4. For abstract configurations α, α′, and β, if α → α′ and α 4 β then

β → β′, for some abstract configuration β′ such that α′ 4 β′.

Proof. The proof proceeds by a case analysis of the transition α→ α′. Crucial in this

analysis is the observation that α 4 β implies that α = (T, p,Q) and β = (T ′, p, Q),

for some T and T ′ such that

L(T) ` ϕσ ⇐⇒ L(T ′) ` ϕσ′

for renamings σ, σ′ ∈ Σ(m), where m is a method defined by the given class C, such

that (σ, u, S) ∈ ᾱ and (σ′, u, S) ∈ β̄, for some closure (u, S) and predicate ϕ of the

method m. This follows from Lemma 6.7.1 and that f 4 f ′ implies T (f) = T (f ′),

where f and f ′ represent α and β, respectively. Note that by definition, f ′ does not

add occurrences of closures which do not already occur in f .

It follows that abstract systems for which the transition relation is computable are

well-structured transition systems (see [36] for an excellent explanation and overview

of well-structured transition systems). For such systems the covering problem is

decidable. That is, for any two abstract configurations α and β it is decidable

whether starting from α it is possible to cover β, meaning, whether there exists a

computation α →∗ α′ such that β 4 α′. To show that this implies decidability

of absence of deadlock, let α be a basic (abstract) deadlock configuration if α is a

deadlock configuration according to Definition 6.4.1 and for any closure (u, S) there

exists at most one renaming σ such that (σ, u, S) ∈ ᾱ. Note that thus f(c) = 1,

for any closure c, where f represents α. Let ∆ denote the set of all basic deadlock

configurations. Note that this is a finite set. Further, for every (abstract) deadlock

configuration α there exists a basic deadlock configuration α′ ∈ ∆ such that f 4
f ′, where f and f ′ represent α and α′, respectively. This is because the different

renamings of the same closure do not affect the definition of a deadlock. Given

an initial abstract configuration α, we now can phrase presence of deadlock as the

covering problem of deciding whether there exists a computation starting from α

reaching a configuration β that covers a deadlock configuration in ∆.

Summarizing the above, we have the following the main technical result of this

chapter.

Conclusion 109

Theorem 5. Given an abstract system with a computable transition relation and

an abstract configuration α, it is decidable whether

{ β | α→∗ β } ∩ { β | ∃β′ ∈ ∆: β′ 4 β } = ∅ (6.1)

Given this result and the correctness of predicate abstraction, to show that an initial

concrete configuration (Γ, p, Q) does not give rise to a local deadlock, it suffices to

construct an abstract configuration α = (T, p,Q) such that Γ |= L(T) and for which

Equation (6.1) holds. Note that we can construct T by the constructing pairs (σ, u),

where u = {φ ∈ Pred(m) | Γ |= φσ} (assuming that σ ∈ Σ(m)).

6.8 Conclusion

For future work we first have to validate our method for detecting local deadlock

in tool-supported case studies. For this we envisage the use of the theorem-prover

KeY [3] for the construction of the abstract transition relation, and its integration

with on-the-fly reachability analysis of the abstract transition system.

Another major challenge is the extension of our method to (predicate) abstrac-

tion of local futures, that is, futures generated by self calls. Note that in the method

described in the present chapter, we do not distinguish between these futures and

those generated by external calls. The main problem is to extend the abstraction

method to describe and reason about local futures which preserves the properties of

a well-structured transition system.

Of further interest, in line with the above, is the integration of the method of

predicate abstraction in the theorem-prover KeY for reasoning compositionally about

general safety properties of actor-based programs. For reasoning about programs in

the ABS language this requires an extension of our method to synchronous method

calls and concurrent object groups.

